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Abstract. Let Z ,  (n = 0, 1, ...) be an aperiodic critical Galton-Watson process 
and let a z be the (possibly infinite) variance of Z~. Let t/c (k = 1, 2 . . . .  ) denote 
the stationary measure of the process. Kesten, Ney and Spritzer proved in 1966 that 

r/k ~ 2/0 -2 as k ~ ~ (,) 

under the additional assumption that 

EZ~ logZ 1 < ~ .  (**) 

In the present paper, (,) is proved without the assumption (**). The proof 
uses complex function theory. 

1. Introduction 

Let Z ,  (n =0,  1 . . . .  ) be a Galton-Watson branching process starting from Z 0 = 1. In 
the standard interpretation, Z n is the random number of individuals in the n-th 
generation; these individuals propagate independently and the probability that 
an individual has k direct descendents (k=0, 1,...) is always Pc. This process is 
called critical if the average number of direct descendents is 1, that is if Pl +2P2 
+ 3p3 ... -- 1 ; we assume Po > 0 because otherwise we have the trivial case pl = 1, 
Pc=0 (k=>2). The process is called aperiodic if there does not exist m > 2  such 
that pk=0 for k~el~m (#=0,  1 . . . .  ). We refer to the books of Harris [-4] and 
Athreya and Ney [-1] for the theory of branching processes. 

We describe now this process in analytical terms. The generating function of 
Zl ,  

f ( z ) =  ~ pkz k (pc>0 aperiodic, po>0),  
C = 0  

(1.1) 
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is analytic in the unit disk ID and satisfies 

f ( 1 ) =  ~ pk= 1, f ' ( 1 ) =  ~ kpk= 1. (1.2) 
k=0 k= l  

The variance of Z 1 is given by 

a-~ = f " ( 1 )  = y~ k ( k -  1) Pk <= + ~ .  (1.3) 
k=l  

The iterates f ,  = f  . . . . .  f are the generating functions of Z,.  The limit 

h(z) = _ ~ tlkzk= lim f,(z)--f,(O) (1.4) 
k =1 n ~ oo L +1 (0) - f ,  (0) 

exists locally uniformly in ID and satisfies 

h(f(z))=h(z)+ 1 (z~lD); (1.5) 

see [-9], [1, Th. I8.2]. Similar results hold for the iteration of power series with 
complex coefficients that satisfy f ( l D ) c  ID; see [10, Chapt. VII, [-8, 2, 3]. 

It follows from (1.5) that t/~ (k= 1, 2 . . . .  ) is the stationary measure of the 
process, that is 

~lk = ~ P(Z,+I=kIZ,=j)~l j  (k= l ,  2, ...; n = 1 , 2  .. . .  ). (1.6) 
d=l  

It is unique (up to a multiplicative constant) in the critical case under con- 
sideration [-1, Sect. II2]. 

Theorem. For every aperiodic critical Galton-Watson process with variance a2 < 
+ o% the stationary measure satisfies 

r/k----~2/cr 2 as k--~oo. (1.7) 

This limit relation was proved by Kesten, Ney and Spitzer [-6] under the 
additional assumption 

E(Z 2 log + Z t ) -  ~ k2pk l o g k <  oo. (1.8) 
k=l  

We do not even assume that the variance is finite. 
Our proof is complex analytic and is modeled after Hayman's proof of the 

asymptotic form of the Bieberbach conjecture for univalent functions [5, Th. 
5.7]. The new feature is the unrestricted limit relation 

(1-z )  h(z)--,2/a 2 as z ~ l ,  zMD. 

Its proof uses strongly the assumption that f has non-negative coefficients. 

I want to thank C.C. Cowen for drawing my attention to the connection between analytic iteration 
theory and branching processes. I also want to thank H. Hering and P.E. Ney for our exchange 
of letters. 
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2. Some Auxiliary Results 

Let (1.1) and (1.2) be satisfied and let h be defined by (1.4). An analytic function 
g is called univalent in a domain G if g(z~)=l=g(z2) for distinct zl, z2~G. 

Lemma 1. 7here exists p >0  such that f and h are univalent in 

G = l D m { l z -  l[<p}. (2.1) 

Proof. By (1.1) and (1.2), the der ivat ivef '  is continuous in the closed unit disk ID 
a n d f ' ( 1 ) =  1. Hence we can determine p > 0  such that R e f ' ( z ) > 0  for z~G. Thus 

Re f(z2) - f ( z l )  = i R e f '  (z 1 + (z 2 - z 1) t) d t > 0 
Z2 --ZI 0 

for distinct z1, z2eG and f is therefore univalent in G. 
We obtain from [f'(z)l < 1 by integration that 

I i - f ( z ) l < l l - z l  for z~lD. (2.2) 

It follows t h a t f ( G ) c G  and thus that f~(G)~G for all n. Hence f~ is univalent in 
G and therefore also h, by (1.4). 

Lemma 2. The derivative h' has a continuous extension to ID\{1} .  

Proof. If zEID\{1}  then, by (1.2), 

c o  o o  

I f ( z ) l -  k~oPkZ k <k~oP~ = 1; (2.3) 

equality cannot hold because (Pk) is aperiodic and Po >0. We obtain from (1.5) 
by differentiation that 

h'(z)=h'(f(z))f ' (z)  (z~lD). (2.4) 

Since f '  is continuous in ID and since f ( ID \ { 1})c ID by (2.3), it follows that h' is 
continuous in ID \ {1}. 

Lemma 3. Let a < + oo and c = 2/or 2. Then 

( 1 - x ) h ( x ) ~ c  as x ~ l - 0 ,  x~lR. (2.5) 

Proof (See [1, p. 88]). It follows from (1.5) that 

h (f,(z)) = h (z) + n. (2.6) 

Hence we obtain that, for 0 < x < 1 and n ~ oo, 

(1 - L  (x)) h (L (x)) = (i - L  (x)) h (x) + (1 - L  (x)) n --, c 

because (1--fn(X)) n---,c [1, p. 19]. It is easy to see that this implies (2.5). 
We come now to our main lemma. 
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Lemma 4. Let 0- < oo and c = 2 /0  -2. Then 

(1 - z )h ( z )~c  as z--*1, z~ID. (2.7) 

Proof (a) We show first that (1-z)h(z) has the angular limit c at 1. If ~ is 
univalent and # 0  in ID then [5, Th. 5.1] 

tp'(s) _< 4 (sslD). (2.8) 
@(s) - l - I s [  2 

Let the univalent function (p map ID onto G such that ~0(1)= 1 and ~0(~) is 
real for real 4. Then 1 -qffs) and O(s)=h(q~(s)) are univalent and , 0  in ID (ifp is 
sufficiently small). Hence g ( s ) = ( 1 -  ~o(s))O(s) (sslD) satisfies 

(1 - [s l  2) g'(s) <(1 -Is[  2) I~o'(s)l ~_(1 -Is l  2) 10'(s)l ___8 

g ~  = I I -~o(s) l  I~,(s)l - 

by (2.8). We conclude that g is a normal function [7, Sect. 9.1]. 
Since g(0  = ( 1 -  q)(~))h(~p(~))~c as ~ ~ 1 - 0  by Lemma 3, it follows from a 

result on normal functions [-7, Th. 9.3] that g has the angular limit c at 1. Since 
(p is analytic at 1 and q ; (1)#0  (by the reflection principle), we conclude that 

(1-z)  h(z)~c as z - ,1 , ] a rg (1 -z ) ]<c~  (2.9) 

for each ~ < 7r/2. 
(b) We set 

1 1 
w=_u+iv=l_z ,  F(W)=l_f(z~ , H(w)=h(z). (2.10) 

Then F and H are analytic in the halfplane {u+iv: u>�89 The iterates F, are 
given by Fn(w)= 1/(1-f,(z)). Hence it follows from (2.2) that 

[F,+l(w)l=lf(F,(w))l>]F,(w)[ (u>�89 (2.11) 

Integration by parts shows that, for z~ID, 

f ( z ) - z  1 
- S (1 - t) f "  (1 - (1 - z)  t) d t. ( 2 .12 )  

( l - z )  2 o 

Since 0- < oe we see from (1.3) that f "  is continuous in 1D. Hence it follows from 
(2.12) that 

f (z)-  z 1 , ,  0-2 1 
(1__Z)2--*~f ( 1 ) = ~ - =  c (z-+l) (2.13) 

and thus, by (2.10), 

f ( z ) - z  1 - z  71 
F(w)--w 

- ( 1 - z )  2 1 - f ( z )  c 
(Iwl--, oo, u>�89 
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Hence  we conclude from (2.11) that  

1 1 n - - i  

(F,(w)-w) ~ [f(F~(w))-f~(w)]~ 1 (Iwl--,oo) (2.14) 
F/ n v =  0 C 

uniformly in n. Hence there exists R such that  IF.(w)-w-n/cl<n/(2c) for 
Iwl > e ,  u >  1/2, h e n  and thus 

IImF,(w)l < Ivl +n/(2c) = 2 c  Ivl+ 1. (2.15) 
Re F,(w) n/(2c) n 

(c) We assume now lw l>R  and ]vl>u>l. Setting n=[ [v ] ]  we obtain from 
(2.15) that  

1Ira Fn(w)] < 2 c  n +  1 + 1 < 4 c +  1. (2.16) 
Re F,(w) n 

It follows from (2.10) and (2.9) that, in particular,  

H(w) Ivl 
- - - ~ c  as I w l - ~ ,  ' _ _ < 4 c + 1 .  (2.17) 

W U 

Since H(w)=H(F,(w))-n by (2.10) and (1.5), we obtain 

H(__w)_ {H(Fn(w)) Fn(w)-w 1] n_~ H(Fn(w)) 
w \ F n(w) n ] w F,,(w) 

We let now ]w] ~ oo; note  that  n depends on w. It follows from (2.16) and (2.17) 
that  H (Fn(W))/Fn(W ) ~c  and from (2.14) that  (F,(w)-w)/n ~ 1/c. Since In~w] <(Iv] 
+ 1)/twl < 2  we conclude that  

H(w)/w~c as ]wl~oo  (2.18) 

if ]vl>u. The case ]v[ < u  follows from (2.17). Thus (2.18) always holds, and by 
(2.10) this is equivalent to the assertion (2.7). 

3. Proof of the Theorem 

(a) Let  first o- < oo and thus c = 2/or 2 > 0. We set 

C 
g(z)=h(z) 1 - z  (zelD). (3.1) 

Since g ' (z )=  ~ (k+  1)(t/k+ I --C)Z k we see that, for 0 < r < l ,  
k=O 

- c )=  1~ ! g'(re it) e-iktdt ( k ~ 0 ,  1, ..). (3.2) (k+  1)(~/k+1 27rr k _ 
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We set 
k - 1  k 

rk--k+ 1 (k=2,  3 . . . .  ). (3.3) G-kq_  1, 

Since rk k-1 __>e -a we obtain from (3.2) that 

I~k+~--cl=<2~ i Ig'(re")t rdtdr. (3.4) 
r k - - ~  

(b) Let 0 < e <  1 be given and let 2 =  1/g 2. We denote by K 1, K e . . . .  constants 
independent of e and k. Let p be as in Lemma 1. Then 

Gk= { Z : rk < lZl < r'k, 2/k < larg zl < p } c G  (3.5) 

for k>k~(e). It follows from Lemma 4 that 

]h(z)[ < K1 < K2k (ZeGk). (3.6) 
= l l - z [  = 2 

Let k > k 1. We obtain from the Schwarz inequality that 

(~[h'(z) ldxdy)2<~lh(z)l-~lh'(z) lZdxdyS~lh(z)l~dxdy,  (3.7) 
Gk Gk Gk 

and since Gk~G the univalent substitution w=h(z)  shows that the first right- 
hand integral is (see (3.6)) 

= ~ [w]--~dudv < ~ [w]-~dudv=Ka(k/2) ~. 
h ( G k )  Iwl  _-< K2k/,l ,  

Since J l -  r eit[ > 1 ~ 1 1 -  eitl, the second right-hand integral in (3.7) is, by (3.6), 

r'~ , g .  l k \ ~  
<=14f ~ l l - e i t l - ~ d t d r < k ~ l  ~2) <Ks(k2 ) -~  

rk ,~./k 

because of (3.3). Hence we obtain from (3.7) that 

r~ p 
S ~ [h'(re")[ rdtdr<K6R-~=K6e. (3.8) 
rk 2 /k  

The integral over [p,~z] instead of [2/k,p] is <=KTk -1 by Lem m a2  and 
(3.3). Furthermore 

~k [. c r d t d r < k ~  1 ~/k II--re~t[ 2 ~/k [1--eitlE dt< <=Kae. 

Hence we see from (3.1) and (3.8) that, for k>kl(e),  

r k 2 re-- 2 /k  

S [~ [g'(reit)l r d t d r < K 9 e + K l o  k-1 (3.9) 
rk  2 /k  

because the range [~z, 2~z-2/k] can be treated in a similar way. 
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(c) Since ( 1 - z ) g ( z ) ~ 0  as z ~ l  by (3.1) and Lemma4,  we can find k 2 
=k2(e)>k 1 such that 

2 
I (1-z)  g(z)l<e 3 for [argzl <~,  rk<lZl<r'k. 

Hence it follows from the Cauchy integral formula for the derivative that 

d I(1 - z )  g(z)] <K~0 -rl)=Kao(k+ 1) ~3/(1 g3 

for l arg z[ < 2/k and r k__< I zl = r; hence 

(1 d - z) g (z)] I(1 - z )  2 gt(z)[ = --Z) g(Z)+(1 --Z) dzz [(1 <e  3 

2 
+ K l l  k (k + l) e3 <K12 e 

because 2 = e  -2. Therefore we see that, for k>k2, 
r~ 2/k r'k ~z 

~ Ig'(re")lrdtdr<(. [. K~E~e 
~ -~/k rk -~ II-rei~[ 2 dtdr 

=Klzjk 1 - ~  dr<=2~K12& 

Hence we conclude from (3.4) and (3.9) that 

]~lk+l-c[<=K13e+2K,o k-x (k>k2(g)). 

This proves */k--+C (k--+ m) for the case o-< c~. 
(d) Let now cr=oo and thus c=0.  Since ~/k>0 by (1.1) and (1.4), we obtain 

from Lemma 3 that 

Ih(z)l <h(lzl)=O (l@lzl ) ([zl-,1). (3.10) 

It is well-known that (3.10) implies 

t/k--+0 as k--+oo (3.11) 

in the case that h is univalent in ID; compare [7, Th. 5.3J. 
In our case we use the standard proof of (3.11) in the domain G--1Dn{lz 

- l  I< p} where h is univalent, and we make trivial estimates in ID \ G where h' 
is bounded, by Lemma 2. 
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