On the Stationary Measures of Critical Branching Processes

Ch. Pommerenke
Fachbereich Mathematik, Technische Universität, D-1000 Berlin 12

Abstract

Let $Z_{n}(n=0,1, \ldots)$ be an aperiodic critical Galton-Watson process and let σ^{2} be the (possibly infinite) variance of Z_{1}. Let $\eta_{k}(k=1,2, \ldots$) denote the stationary measure of the process. Kesten, Ney and Spritzer proved in 1966 that

$\eta_{k} \rightarrow 2 / \sigma^{2}$ as $k \rightarrow \infty$
under the additional assumption that
$E Z_{1}^{2} \log Z_{1}<\infty$.
In the present paper, $(*)$ is proved without the assumption $(* *)$. The proof uses complex function theory.

1. Introduction

Let $Z_{n}(n=0,1, \ldots)$ be a Galton-Watson branching process starting from $Z_{0}=1$. In the standard interpretation, Z_{n} is the random number of individuals in the n-th generation; these individuals propagate independently and the probability that an individual has k direct descendents $(k=0,1, \ldots)$ is always p_{k}. This process is called critical if the average number of direct descendents is 1 , that is if $p_{1}+2 p_{2}$ $+3 p_{3} \ldots=1$; we assume $p_{0}>0$ because otherwise we have the trivial case $p_{1}=1$, $p_{k}=0(k \geqq 2)$. The process is called aperiodic if there does not exist $m \geqq 2$ such that $p_{k}=0$ for $k \neq \mu m(\mu=0,1, \ldots)$. We refer to the books of Harris [4] and Athreya and Ney [1] for the theory of branching processes.

We describe now this process in analytical terms. The generating function of Z_{1},

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} p_{k} z^{k} \quad\left(p_{k} \geqq 0 \text { aperiodic, } p_{0}>0\right) \tag{1.1}
\end{equation*}
$$

is analytic in the unit disk \mathbb{D} and satisfies

$$
\begin{equation*}
f(1)=\sum_{k=0}^{\infty} p_{k}=1, \quad f^{\prime}(1)=\sum_{k=1}^{\infty} k p_{k}=1 . \tag{1.2}
\end{equation*}
$$

The variance of Z_{1} is given by

$$
\begin{equation*}
\sigma^{2}=f^{\prime \prime}(1)=\sum_{k=1}^{\infty} k(k-1) p_{k} \leqq+\infty . \tag{1.3}
\end{equation*}
$$

The iterates $f_{n}=f \circ \ldots \circ f$ are the generating functions of Z_{n}. The limit

$$
\begin{equation*}
h(z) \equiv \sum_{k=1}^{\infty} \eta_{k} z^{k}=\lim _{n \rightarrow \infty} \frac{f_{n}(z)-f_{n}(0)}{f_{n+1}(0)-f_{n}(0)} \tag{1.4}
\end{equation*}
$$

exists locally uniformly in ID and satisfies

$$
\begin{equation*}
h(f(z))=h(z)+1 \quad(z \in \mathbb{D}) ; \tag{1.5}
\end{equation*}
$$

see [9], [1, Th. I8.2]. Similar results hold for the iteration of power series with complex coefficients that satisfy $f(\mathbb{D}) \subset \mathbb{D}$; see [10, Chapt. VI], $[8,2,3]$.

It follows from (1.5) that $\eta_{k}(k=1,2, \ldots)$ is the stationary measure of the process, that is

$$
\begin{equation*}
\eta_{k}=\sum_{j=1}^{\infty} P\left(Z_{n+1}=k \mid Z_{n}=j\right) \eta_{j} \quad(k=1,2, \ldots ; n=1,2, \ldots) . \tag{1.6}
\end{equation*}
$$

It is unique (up to a multiplicative constant) in the critical case under consideration [1, Sect. II2].
Theorem. For every aperiodic critical Galton-Watson process with variance $\sigma^{2} \leqq$ $+\infty$, the stationary measure satisfies

$$
\begin{equation*}
\eta_{k} \rightarrow 2 / \sigma^{2} \quad \text { as } \quad k \rightarrow \infty \tag{1.7}
\end{equation*}
$$

This limit relation was proved by Kesten, Ney and Spitzer [6] under the additional assumption

$$
\begin{equation*}
E\left(Z_{1}^{2} \log ^{+} Z_{1}\right) \equiv \sum_{k=1}^{\infty} k^{2} p_{k} \log k<\infty \tag{1.8}
\end{equation*}
$$

We do not even assume that the variance is finite.
Our proof is complex analytic and is modeled after Hayman's proof of the asymptotic form of the Bieberbach conjecture for univalent functions [5, Th. 5.7]. The new feature is the unrestricted limit relation

$$
(1-z) h(z) \rightarrow 2 / \sigma^{2} \quad \text { as } \quad z \rightarrow 1, z \in \mathbb{D}
$$

Its proof uses strongly the assumption that f has non-negative coefficients.
I want to thank C.C. Cowen for drawing my attention to the connection between analytic iteration theory and branching processes. I also want to thank H. Hering and P.E. Ney for our exchange of letters.

2. Some Auxiliary Results

Let (1.1) and (1.2) be satisfied and let h be defined by (1.4). An analytic function g is called univalent in a domain G if $g\left(z_{1}\right) \neq g\left(z_{2}\right)$ for distinct $z_{1}, z_{2} \in G$.

Lemma 1. There exists $\rho>0$ such that f and h are univalent in

$$
\begin{equation*}
G=\mathbb{D} \cap\{|z-1|<\rho\} \tag{2.1}
\end{equation*}
$$

Proof. By (1.1) and (1.2), the derivative f^{\prime} is continuous in the closed unit disk $\overline{\mathrm{D}}$ and $f^{\prime}(1)=1$. Hence we can determine $\rho>0$ such that $\operatorname{Re} f^{\prime}(z)>0$ for $z \in G$. Thus

$$
\operatorname{Re} \frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{z_{2}-z_{1}}=\int_{0}^{1} \operatorname{Re} f^{\prime}\left(z_{1}+\left(z_{2}-z_{1}\right) t\right) d t>0
$$

for distinct $z_{1}, z_{2} \in G$ and f is therefore univalent in G.
We obtain from $\left|f^{\prime}(z)\right| \leqq 1$ by integration that

$$
\begin{equation*}
|1-f(z)| \leqq|1-z| \quad \text { for } z \in \mathbb{D} \tag{2.2}
\end{equation*}
$$

It follows that $f(G) \subset G$ and thus that $f_{n}(G) \subset G$ for all n. Hence f_{n} is univalent in G and therefore also h, by (1.4).

Lemma 2. The derivative h^{\prime} has a continuous extension to $\overline{\mathbf{D}} \backslash\{1\}$.
Proof. If $z \in \overline{\mathbb{D}} \backslash\{1\}$ then, by (1.2),

$$
\begin{equation*}
|f(z)|=\left|\sum_{k=0}^{\infty} p_{k} z^{k}\right|<\sum_{k=0}^{\infty} p_{k}=1 ; \tag{2.3}
\end{equation*}
$$

equality cannot hold because $\left(p_{k}\right)$ is aperiodic and $p_{0}>0$. We obtain from (1.5) by differentiation that

$$
\begin{equation*}
h^{\prime}(z)=h^{\prime}(f(z)) f^{\prime}(z) \quad(z \in \mathbb{D}) \tag{2.4}
\end{equation*}
$$

Since f^{\prime} is continuous in $\overline{\mathbb{D}}$ and since $f(\overline{\mathbb{D}} \backslash\{1\}) \subset \mathbb{D}$ by (2.3), it follows that h^{\prime} is continuous in $\overline{\mathrm{D}} \backslash\{1\}$.

Lemma 3. Let $\sigma \leqq+\infty$ and $c=2 / \sigma^{2}$. Then

$$
\begin{equation*}
(1-x) h(x) \rightarrow c \quad \text { as } \quad x \rightarrow 1-0, x \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

Proof (See [1, p. 88]). It follows from (1.5) that

$$
\begin{equation*}
h\left(f_{n}(z)\right)=h(z)+n \tag{2.6}
\end{equation*}
$$

Hence we obtain that, for $0<x<1$ and $n \rightarrow \infty$,

$$
\left(1-f_{n}(x)\right) h\left(f_{n}(x)\right)=\left(1-f_{n}(x)\right) h(x)+\left(1-f_{n}(x)\right) n \rightarrow c
$$

because $\left(1-f_{n}(x)\right) n \rightarrow c$ [1, p.19]. It is easy to see that this implies (2.5).
We come now to our main lemma.

Lemma 4. Let $\sigma<\infty$ and $c=2 / \sigma^{2}$. Then

$$
\begin{equation*}
(1-z) h(z) \rightarrow c \quad \text { as } \quad z \rightarrow 1, z \in \mathbb{D} . \tag{2.7}
\end{equation*}
$$

Proof. (a) We show first that $(1-z) h(z)$ has the angular limit c at 1 . If ψ is univalent and $\neq 0$ in \mathbb{D} then [5, Th. 5.1]

$$
\begin{equation*}
\left|\frac{\psi^{\prime}(s)}{\psi(s)}\right| \leqq \frac{4}{1-|s|^{2}} \quad(s \in \mathbb{D}) \tag{2.8}
\end{equation*}
$$

Let the univalent function φ map \mathbb{D} onto G such that $\varphi(1)=1$ and $\varphi(\xi)$ is real for real ξ. Then $1-\varphi(s)$ and $\psi(s)=h(\varphi(s))$ are univalent and $\neq 0$ in \mathbb{D} (if ρ is sufficiently small). Hence $g(s)=(1-\varphi(s)) \psi(s)(s \in \mathbb{D})$ satisfies

$$
\left(1-|s|^{2}\right)\left|\frac{g^{\prime}(s)}{g(s)}\right| \leqq \frac{\left(1-|s|^{2}\right)\left|\varphi^{\prime}(s)\right|}{|1-\varphi(s)|}+\frac{\left(1-|s|^{2}\right)\left|\psi^{\prime}(s)\right|}{|\psi(s)|} \leqq 8
$$

by (2.8). We conclude that g is a normal function [7, Sect. 9.1].
Since $g(\xi)=(1-\varphi(\xi)) h(\varphi(\xi)) \rightarrow c$ as $\xi \rightarrow 1-0$ by Lemma 3, it follows from a result on normal functions [7, Th. 9.3] that g has the angular limit c at 1 . Since φ is analytic at 1 and $\varphi^{\prime}(1) \neq 0$ (by the reflection principle), we conclude that

$$
\begin{equation*}
(1-z) h(z) \rightarrow c \quad \text { as } \quad z \rightarrow 1,|\arg (1-z)|<\alpha \tag{2.9}
\end{equation*}
$$

for each $\alpha<\pi / 2$.
(b) We set

$$
\begin{equation*}
w \equiv u+i v=\frac{1}{1-z}, \quad F(w)=\frac{1}{1-f(z)}, \quad H(w)=h(z) . \tag{2.10}
\end{equation*}
$$

Then F and H are analytic in the halfplane $\left\{u+i v: u>\frac{1}{2}\right\}$. The iterates F_{n} are given by $F_{n}(w)=1 /\left(1-f_{n}(z)\right)$. Hence it follows from (2.2) that

$$
\begin{equation*}
\left|F_{n+1}(w)\right|=\left|F\left(F_{n}(w)\right)\right| \geqq\left|F_{n}(w)\right| \quad\left(u>\frac{1}{2}\right) \tag{2.11}
\end{equation*}
$$

Integration by parts shows that, for $z \in \mathbb{D}$,

$$
\begin{equation*}
\frac{f(z)-z}{(1-z)^{2}}=\int_{0}^{1}(1-t) f^{\prime \prime}(1-(1-z) t) d t . \tag{2.12}
\end{equation*}
$$

Since $\sigma<\infty$ we see from (1.3) that $f^{\prime \prime}$ is continuous in $\overline{\mathbb{D}}$. Hence it follows from (2.12) that

$$
\begin{equation*}
\frac{f(z)-z}{(1-z)^{2}} \rightarrow \frac{1}{2} f^{\prime \prime}(1)=\frac{\sigma^{2}}{2}=\frac{1}{c} \quad(z \rightarrow 1) \tag{2.13}
\end{equation*}
$$

and thus, by (2.10),

$$
F(w)-w=\frac{f(z)-z}{(1-z)^{2}} \frac{1-z}{1-f(z)} \rightarrow \frac{1}{c} \quad\left(|w| \rightarrow \infty, u>\frac{1}{2}\right) .
$$

Hence we conclude from (2.11) that

$$
\begin{equation*}
\frac{1}{n}\left(F_{n}(w)-w\right)=\frac{1}{n} \sum_{v=0}^{n-1}\left[F\left(F_{v}(w)\right)-F_{v}(w)\right] \rightarrow \frac{1}{c} \quad(|w| \rightarrow \infty) \tag{2.14}
\end{equation*}
$$

uniformly in n. Hence there exists R such that $\left|F_{n}(w)-w-n / c\right|<n /(2 c)$ for $|w|>R, u>1 / 2, n \in \mathbb{N}$ and thus

$$
\begin{equation*}
\frac{\left|\operatorname{Im} F_{n}(w)\right|}{\operatorname{Re} F_{n}(w)}<\frac{|v|+n /(2 c)}{n /(2 c)}=2 c \frac{|v|}{n}+1 . \tag{2.15}
\end{equation*}
$$

(c) We assume now $|w|>R$ and $|v| \geqq u \geqq 1$. Setting $n=[|v|]$ we obtain from (2.15) that

$$
\begin{equation*}
\frac{\left|\operatorname{Im} F_{n}(w)\right|}{\operatorname{Re} F_{n}(w)}<2 c \frac{n+1}{n}+1 \leqq 4 c+1 \tag{2.16}
\end{equation*}
$$

It follows from (2.10) and (2.9) that, in particular,

$$
\begin{equation*}
\frac{H(w)}{w} \rightarrow c \quad \text { as } \quad|w| \rightarrow \infty, \quad \frac{|v|}{u} \leqq 4 c+1 \tag{2.17}
\end{equation*}
$$

Since $H(w)=H\left(F_{n}(w)\right)-n$ by (2.10) and (1.5), we obtain

$$
\frac{H(w)}{w}=\left(\frac{H\left(F_{n}(w)\right)}{F_{n}(w)} \frac{F_{n}(w)-w}{n}-1\right) \frac{n}{w}+\frac{H\left(F_{n}(w)\right)}{F_{n}(w)}
$$

We let now $|w| \rightarrow \infty$; note that n depends on w. It follows from (2.16) and (2.17) that $H\left(F_{n}(w)\right) / F_{n}(w) \rightarrow c$ and from (2.14) that $\left(F_{n}(w)-w\right) / n \rightarrow 1 / c$. Since $|n / w| \leqq(|v|$ $+1) /|w| \leqq 2$ we conclude that

$$
\begin{equation*}
H(w) / w \rightarrow c \quad \text { as } \quad|w| \rightarrow \infty \tag{2.18}
\end{equation*}
$$

if $|v| \geqq u$. The case $|v| \leqq u$ follows from (2.17). Thus (2.18) always holds, and by (2.10) this is equivalent to the assertion (2.7).

3. Proof of the Theorem

(a) Let first $\sigma<\infty$ and thus $c=2 / \sigma^{2}>0$. We set

$$
\begin{equation*}
g(z)=h(z)-\frac{c}{1-z} \quad(z \in \mathbb{D}) \tag{3.1}
\end{equation*}
$$

Since $g^{\prime}(z)=\sum_{k=0}^{\infty}(k+1)\left(\eta_{k+1}-c\right) z^{k}$ we see that, for $0<r<1$,

$$
\begin{equation*}
(k+1)\left(\eta_{k+1}-c\right)=\frac{1}{2 \pi r^{k}} \int_{-\pi}^{\pi} g^{\prime}\left(r e^{i t}\right) e^{-i k t} d t \quad(k=0,1, \ldots) \tag{3.2}
\end{equation*}
$$

We set

$$
\begin{equation*}
r_{k}=\frac{k-1}{k+1}, \quad r_{k}^{\prime}=\frac{k}{k+1} \quad(k=2,3, \ldots) \tag{3.3}
\end{equation*}
$$

Since $r_{k}^{k-1} \geqq e^{-2}$ we obtain from (3.2) that

$$
\begin{equation*}
\left|\eta_{k+1}-c\right| \leqq 2 \int_{r_{k}}^{r_{k}^{\prime}} \int_{-\pi}^{\pi}\left|g^{\prime}\left(r e^{i t}\right)\right| r d t d r \tag{3.4}
\end{equation*}
$$

(b) Let $0<\varepsilon<1$ be given and let $\lambda=1 / \varepsilon^{2}$. We denote by K_{1}, K_{2}, \ldots constants independent of ε and k. Let ρ be as in Lemma 1. Then

$$
\begin{equation*}
G_{k}=\left\{z: r_{k}<|z|<r_{k}^{\prime}, \lambda / k<|\arg z|<\rho\right\} \subset G \tag{3.5}
\end{equation*}
$$

for $k>k_{1}(\varepsilon)$. It follows from Lemma 4 that

$$
\begin{equation*}
|h(z)| \leqq \frac{K_{1}}{|1-z|} \leqq \frac{K_{2} k}{\lambda} \quad\left(z \in G_{k}\right) \tag{3.6}
\end{equation*}
$$

Let $k>k_{1}$. We obtain from the Schwarz inequality that

$$
\begin{equation*}
\left(\iint_{G_{k}}\left|h^{\prime}(z)\right| d x d y\right)^{2} \leqq \iint_{G_{k}}|h(z)|^{-\frac{3}{2}}\left|h^{\prime}(z)\right|^{2} d x d y \iint_{G_{k}}|h(z)|^{\frac{3}{2}} d x d y \tag{3.7}
\end{equation*}
$$

and since $G_{k} \subset G$ the univalent substitution $w=h(z)$ shows that the first righthand integral is (see (3.6))

$$
=\iint_{h\left(G_{k}\right)}|w|^{-\frac{3}{2}} d u d v \leqq \iint_{|w| \leqq K_{2} k / \lambda}|w|^{-\frac{3}{2}} d u d v=K_{3}(k / \lambda)^{\frac{1}{2}}
$$

Since $\left|1-r e^{i t}\right| \geqq \sqrt{r}\left|1-e^{i t}\right|$, the second right-hand integral in (3.7) is, by (3.6),

$$
\leqq K_{4} \int_{r_{k}}^{r_{k}^{\prime}} \int_{\lambda / k}^{\rho}\left|1-e^{i t}\right|^{-\frac{3}{2}} d t d r \leqq \frac{K_{5}}{k+1}\left(\frac{k}{\lambda}\right)^{\frac{1}{2}}<K_{5}(k \lambda)^{-\frac{1}{2}}
$$

because of (3.3). Hence we obtain from (3.7) that

$$
\begin{equation*}
\int_{r_{k}}^{r_{k}^{\prime}} \int_{\lambda / k}^{\rho}\left|h^{\prime}\left(r e^{i t}\right)\right| r d t d r \leqq K_{6} \lambda^{-\frac{1}{2}}=K_{6} \varepsilon \tag{3.8}
\end{equation*}
$$

The integral over $[\rho, \pi]$ instead of $[\lambda / k, \rho]$ is $\leqq K_{7} k^{-1}$ by Lemma 2 and (3.3). Furthermore

$$
\int_{r_{k}}^{r_{k}^{\prime}} \int_{\lambda / k}^{\pi} \frac{c}{\left|1-r e^{i t}\right|^{2}} r d t d r \leqq \frac{c}{k+1} \int_{\lambda / k}^{\pi} \frac{1}{\mid 1-e^{\left.i t\right|^{2}}} d t \leqq \frac{K_{8}}{\lambda} \leqq K_{8} \varepsilon .
$$

Hence we see from (3.1) and (3.8) that, for $k>k_{1}(\varepsilon)$,

$$
\begin{equation*}
\int_{r_{k}}^{r_{k}^{\prime}} \int_{\lambda / k}^{2 \pi-\lambda / k}\left|g^{\prime}\left(r e^{i t}\right)\right| r d t d r \leqq K_{9} \varepsilon+K_{10} k^{-1} \tag{3.9}
\end{equation*}
$$

because the range $[\pi, 2 \pi-\lambda / k]$ can be treated in a similar way.
(c) Since $(1-z) g(z) \rightarrow 0$ as $z \rightarrow 1$ by (3.1) and Lemma 4, we can find k_{2} $=k_{2}(\varepsilon)>k_{1}$ such that

$$
|(1-z) g(z)|<\varepsilon^{3} \quad \text { for } \quad|\arg z| \leqq \frac{\lambda}{k}, \quad r_{k} \leqq|z| \leqq r_{k}^{\prime} .
$$

Hence it follows from the Cauchy integral formula for the derivative that

$$
\left|\frac{d}{d z}[(1-z) g(z)]\right|<K_{10} \varepsilon^{3} /\left(1-r_{k}^{\prime}\right)=K_{10}(k+1) \varepsilon^{3}
$$

for $|\arg z| \leqq \lambda / k$ and $r_{k} \leqq|z| \leqq r_{k}^{\prime}$ hence

$$
\begin{aligned}
\left|(1-z)^{2} g^{\prime}(z)\right|= & \left|(1-z) g(z)+(1-z) \frac{d}{d z}[(1-z) g(z)]\right|<\varepsilon^{3} \\
& +K_{11} \frac{\lambda}{k}(k+1) \varepsilon^{3}<K_{12} \varepsilon
\end{aligned}
$$

because $\lambda=\varepsilon^{-2}$. Therefore we see that, for $k>k_{2}$,

$$
\begin{gathered}
\int_{r_{k}}^{r_{k}^{\prime}} \int_{-\lambda / k}^{\lambda / k}\left|g^{\prime}\left(r e^{i t}\right)\right| r d t d r \leqq \int_{r_{k}}^{r_{k}^{\prime}} \int_{-\pi}^{\pi} \frac{K_{12} \varepsilon}{\left|1-r e^{i t}\right|^{2}} d t d r \\
=K_{12} \int_{r_{k}}^{r_{k}^{\prime}} \frac{2 \pi \varepsilon}{1-r^{2}} d r \leqq 2 \pi K_{12} \varepsilon
\end{gathered}
$$

Hence we conclude from (3.4) and (3.9) that

$$
\left|\eta_{k+1}-c\right| \leqq K_{13} \varepsilon+2 K_{10} k^{-1} \quad\left(k>k_{2}(\varepsilon)\right) .
$$

This proves $\eta_{k} \rightarrow c(k \rightarrow \infty)$ for the case $\sigma<\infty$.
(d) Let now $\sigma=\infty$ and thus $c=0$. Since $\eta_{k} \geqq 0$ by (1.1) and (1.4), we obtain from Lemma 3 that

$$
\begin{equation*}
|h(z)| \leqq h(|z|)=o\left(\frac{1}{1-|z|}\right) \quad(|z| \rightarrow 1) . \tag{3.10}
\end{equation*}
$$

It is well-known that (3.10) implies

$$
\begin{equation*}
\eta_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{3.11}
\end{equation*}
$$

in the case that h is univalent in \mathbb{D}; compare [7, Th. 5.3].
In our case we use the standard proof of (3.11) in the domain $G=\mathbb{D} \cap\{\mid z$ $-1 \mid<\rho\}$ where h is univalent, and we make trivial estimates in $\mathbb{D} \backslash G$ where h^{\prime} is bounded, by Lemma 2.

References

1. Athreya, K.B., Ney, P.E.: Branching processes. Berlin-Heidelberg-New York: Springer 1972
2. Baker, I.N., Pommerenke, Ch.: On the iteration of analytic functions in a halfplane II. J. London Math. Soc. (2) 20, 255-258 (1979)
3. Cowen, C.C.: Iteration and the solution of functional equations for functions analytic in the unit disk. To appear
4. Harris, T.E.: The theory of branching processes. Berlin-Göttingen-Heidelberg: Springer 1963
5. Hayman, W.K.: Multivalent functions. Cambridge University Press 1958
6. Kesten, H., Ney, P., Spitzer, F.: The Galton-Watson process with mean one and finite variance. Theor. Probability Appl. 11, 513-540 (1966)
7. Pommerenke, Ch.: Univalent functions. Göttingen: Vandenhoeck \& Ruprecht 1975
8. Pommerenke, Ch.: On the iteration of analytic functions in a halfplane I. J. London Math. Soc. (2) 19, 439-447 (1979)
9. Seneta, E.: The Galton-Watson process with mean one. J. Appl. Probability 4, 489-495 (1967)
10. Valiron, G.: Fonctions analytiques. Paris: Presse Univ. de France 1954

Received March 20, 1980

