Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1981

On the Stationary Measures of Critical Branching Processes

Ch. Pommerenke

Fachbereich Mathematik, Technische Universität, D-1000 Berlin 12

Abstract. Let Z_n (n=0, 1, ...) be an aperiodic critical Galton-Watson process and let σ^2 be the (possibly infinite) variance of Z_1 . Let η_k (k=1, 2, ...) denote the stationary measure of the process. Kesten, Ney and Spritzer proved in 1966 that

$$\eta_k \to 2/\sigma^2 \quad \text{as} \quad k \to \infty$$
 (*)

under the additional assumption that

$$EZ_1^2 \log Z_1 < \infty. \tag{**}$$

In the present paper, (*) is proved without the assumption (**). The proof uses complex function theory.

1. Introduction

Let Z_n (n=0, 1, ...) be a Galton-Watson branching process starting from $Z_0 = 1$. In the standard interpretation, Z_n is the random number of individuals in the *n*-th generation; these individuals propagate independently and the probability that an individual has k direct descendents (k=0, 1, ...) is always p_k . This process is called *critical* if the average number of direct descendents is 1, that is if $p_1 + 2p_2$ $+ 3p_3 ... = 1$; we assume $p_0 > 0$ because otherwise we have the trivial case $p_1 = 1$, $p_k = 0$ $(k \ge 2)$. The process is called *aperiodic* if there does not exist $m \ge 2$ such that $p_k = 0$ for $k \neq \mu m$ $(\mu = 0, 1, ...)$. We refer to the books of Harris [4] and Athreya and Ney [1] for the theory of branching processes.

We describe now this process in analytical terms. The generating function of Z_1 ,

$$f(z) = \sum_{k=0}^{\infty} p_k z^k \qquad (p_k \ge 0 \text{ aperiodic, } p_0 > 0), \tag{1.1}$$

0044-3719/81/0055/0305/\$01.60

C. Pommerenke

is analytic in the unit disk ID and satisfies

$$f(1) = \sum_{k=0}^{\infty} p_k = 1, \quad f'(1) = \sum_{k=1}^{\infty} k p_k = 1.$$
(1.2)

The variance of Z_1 is given by

$$\sigma^2 = f''(1) = \sum_{k=1}^{\infty} k(k-1) \, p_k \leq +\infty.$$
(1.3)

The iterates $f_n = f \circ \dots \circ f$ are the generating functions of Z_n . The limit

$$h(z) \equiv \sum_{k=1}^{\infty} \eta_k z^k = \lim_{n \to \infty} \frac{f_n(z) - f_n(0)}{f_{n+1}(0) - f_n(0)}$$
(1.4)

exists locally uniformly in ID and satisfies

$$h(f(z)) = h(z) + 1$$
 (z \in ID); (1.5)

see [9], [1, Th. I8.2]. Similar results hold for the iteration of power series with complex coefficients that satisfy $f(\mathbb{D}) \subset \mathbb{D}$; see [10, Chapt. VI], [8, 2, 3].

It follows from (1.5) that η_k (k=1, 2, ...) is the stationary measure of the process, that is

$$\eta_k = \sum_{j=1}^{\infty} P(Z_{n+1} = k \mid Z_n = j) \eta_j \quad (k = 1, 2, ...; n = 1, 2, ...).$$
(1.6)

It is unique (up to a multiplicative constant) in the critical case under consideration [1, Sect. II2].

Theorem. For every aperiodic critical Galton-Watson process with variance $\sigma^2 \leq +\infty$, the stationary measure satisfies

$$\eta_k \to 2/\sigma^2 \quad as \quad k \to \infty.$$
 (1.7)

This limit relation was proved by Kesten, Ney and Spitzer [6] under the additional assumption

$$E(Z_1^2 \log^+ Z_1) \equiv \sum_{k=1}^{\infty} k^2 p_k \log k < \infty.$$
(1.8)

We do not even assume that the variance is finite.

Our proof is complex analytic and is modeled after Hayman's proof of the asymptotic form of the Bieberbach conjecture for univalent functions [5, Th. 5.7]. The new feature is the unrestricted limit relation

$$(1-z) h(z) \rightarrow 2/\sigma^2$$
 as $z \rightarrow 1, z \in \mathbb{ID}$.

Its proof uses strongly the assumption that f has non-negative coefficients.

306

I want to thank C.C. Cowen for drawing my attention to the connection between analytic iteration theory and branching processes. I also want to thank H. Hering and P.E. Ney for our exchange of letters.

On the Stationary Measures of Critical Branching Processes

2. Some Auxiliary Results

Let (1.1) and (1.2) be satisfied and let h be defined by (1.4). An analytic function g is called *univalent* in a domain G if $g(z_1) \neq g(z_2)$ for distinct $z_1, z_2 \in G$.

Lemma 1. There exists $\rho > 0$ such that f and h are univalent in

$$G = \mathbb{ID} \cap \{|z - 1| < \rho\}.$$

$$(2.1)$$

Proof. By (1.1) and (1.2), the derivative f' is continuous in the closed unit disk \overline{ID} and f'(1)=1. Hence we can determine $\rho > 0$ such that $\operatorname{Re} f'(z) > 0$ for $z \in G$. Thus

$$\operatorname{Re} \frac{f(z_2) - f(z_1)}{z_2 - z_1} = \int_0^1 \operatorname{Re} f'(z_1 + (z_2 - z_1)t) dt > 0$$

for distinct $z_1, z_2 \in G$ and f is therefore univalent in G.

We obtain from $|f'(z)| \leq 1$ by integration that

$$|1-f(z)| \le |1-z|$$
 for $z \in ID$. (2.2)

It follows that $f(G) \subset G$ and thus that $f_n(G) \subset G$ for all *n*. Hence f_n is univalent in G and therefore also h, by (1.4).

Lemma 2. The derivative h' has a continuous extension to $\overline{ID} \setminus \{1\}$.

Proof. If $z \in \overline{\mathbb{ID}} \setminus \{1\}$ then, by (1.2),

$$|f(z)| \doteq \left|\sum_{k=0}^{\infty} p_k z^k\right| < \sum_{k=0}^{\infty} p_k = 1;$$
(2.3)

equality cannot hold because (p_k) is aperiodic and $p_0 > 0$. We obtain from (1.5) by differentiation that

$$h'(z) = h'(f(z))f'(z)$$
 (z \in ID). (2.4)

Since f' is continuous in $\overline{\mathbb{D}}$ and since $f(\overline{\mathbb{D}} \setminus \{1\}) \subset \mathbb{D}$ by (2.3), it follows that h' is continuous in $\overline{\mathbb{D}} \setminus \{1\}$.

Lemma 3. Let $\sigma \leq +\infty$ and $c = 2/\sigma^2$. Then

$$(1-x)h(x) \to c \quad as \quad x \to 1-0, \ x \in \mathbb{R}.$$

Proof (See [1, p. 88]). It follows from (1.5) that

$$h(f_n(z)) = h(z) + n.$$
 (2.6)

Hence we obtain that, for 0 < x < 1 and $n \to \infty$,

$$(1 - f_n(x)) h(f_n(x)) = (1 - f_n(x)) h(x) + (1 - f_n(x)) n \to c$$

because $(1 - f_n(x)) n \rightarrow c$ [1, p. 19]. It is easy to see that this implies (2.5).

We come now to our main lemma.

C. Pommerenke

Lemma 4. Let $\sigma < \infty$ and $c = 2/\sigma^2$. Then

$$(1-z) h(z) \rightarrow c \quad as \quad z \rightarrow 1, z \in \mathbb{ID}.$$
 (2.7)

Proof. (a) We show first that (1-z)h(z) has the angular limit c at 1. If ψ is univalent and ± 0 in ID then [5, Th. 5.1]

$$\left|\frac{\psi'(s)}{\psi(s)}\right| \leq \frac{4}{1-|s|^2} \quad (s \in \mathbb{ID}).$$

$$(2.8)$$

Let the univalent function φ map \mathbb{D} onto G such that $\varphi(1)=1$ and $\varphi(\xi)$ is real for real ξ . Then $1-\varphi(s)$ and $\psi(s)=h(\varphi(s))$ are univalent and ± 0 in \mathbb{D} (if ρ is sufficiently small). Hence $g(s)=(1-\varphi(s))\psi(s)$ ($s\in\mathbb{D}$) satisfies

$$(1-|s|^2) \left| \frac{g'(s)}{g(s)} \right| \leq \frac{(1-|s|^2) |\varphi'(s)|}{|1-\varphi(s)|} + \frac{(1-|s|^2) |\psi'(s)|}{|\psi(s)|} \leq 8$$

by (2.8). We conclude that g is a normal function [7, Sect. 9.1].

Since $g(\xi) = (1 - \varphi(\xi)) h(\varphi(\xi)) \rightarrow c$ as $\xi \rightarrow 1 - 0$ by Lemma 3, it follows from a result on normal functions [7, Th. 9.3] that g has the angular limit c at 1. Since φ is analytic at 1 and $\varphi'(1) \neq 0$ (by the reflection principle), we conclude that

$$(1-z)h(z) \rightarrow c$$
 as $z \rightarrow 1$, $|\arg(1-z)| < \alpha$ (2.9)

for each $\alpha < \pi/2$.

(b) We set

$$w \equiv u + iv = \frac{1}{1-z}, \quad F(w) = \frac{1}{1-f(z)}, \quad H(w) = h(z).$$
 (2.10)

Then F and H are analytic in the halfplane $\{u+iv: u>\frac{1}{2}\}$. The iterates F_n are given by $F_n(w)=1/(1-f_n(z))$. Hence it follows from (2.2) that

$$|F_{n+1}(w)| = |F(F_n(w))| \ge |F_n(w)| \qquad (u > \frac{1}{2}).$$
(2.11)

Integration by parts shows that, for $z \in \mathbb{ID}$,

$$\frac{f(z)-z}{(1-z)^2} = \int_0^1 (1-t) f''(1-(1-z)t) dt.$$
(2.12)

Since $\sigma < \infty$ we see from (1.3) that f'' is continuous in \overline{ID} . Hence it follows from (2.12) that

$$\frac{f(z) - z}{(1 - z)^2} \to \frac{1}{2} f''(1) = \frac{\sigma^2}{2} = \frac{1}{c} \quad (z \to 1)$$
(2.13)

and thus, by (2.10),

$$F(w) - w = \frac{f(z) - z}{(1 - z)^2} \frac{1 - z}{1 - f(z)} \to \frac{1}{c} \quad (|w| \to \infty, \ u > \frac{1}{2}).$$

308

On the Stationary Measures of Critical Branching Processes

Hence we conclude from (2.11) that

$$\frac{1}{n}(F_n(w) - w) = \frac{1}{n} \sum_{\nu=0}^{n-1} [F(F_\nu(w)) - F_\nu(w)] \to \frac{1}{c} \quad (|w| \to \infty)$$
(2.14)

uniformly in *n*. Hence there exists *R* such that $|F_n(w) - w - n/c| < n/(2c)$ for |w| > R, u > 1/2, $n \in \mathbb{N}$ and thus

$$\frac{|\operatorname{Im} F_n(w)|}{\operatorname{Re} F_n(w)} < \frac{|v| + n/(2c)}{n/(2c)} = 2c \frac{|v|}{n} + 1.$$
(2.15)

(c) We assume now |w| > R and $|v| \ge u \ge 1$. Setting n = [|v|] we obtain from (2.15) that

$$\frac{|\mathrm{Im}\,F_n(w)|}{\mathrm{Re}\,F_n(w)} < 2c\,\frac{n+1}{n} + 1 \le 4c+1.$$
(2.16)

It follows from (2.10) and (2.9) that, in particular,

$$\frac{H(w)}{w} \rightarrow c \quad \text{as} \quad |w| \rightarrow \infty, \quad \frac{|v|}{u} \leq 4c + 1.$$
(2.17)

Since $H(w) = H(F_n(w)) - n$ by (2.10) and (1.5), we obtain

$$\frac{H(w)}{w} = \left(\frac{H(F_n(w))}{F_n(w)} \frac{F_n(w) - w}{n} - 1\right) \frac{n}{w} + \frac{H(F_n(w))}{F_n(w)}$$

We let now $|w| \to \infty$; note that *n* depends on *w*. It follows from (2.16) and (2.17) that $H(F_n(w))/F_n(w) \to c$ and from (2.14) that $(F_n(w)-w)/n \to 1/c$. Since $|n/w| \le (|v|+1)/|w| \le 2$ we conclude that

$$H(w)/w \to c$$
 as $|w| \to \infty$ (2.18)

if $|v| \ge u$. The case $|v| \le u$ follows from (2.17). Thus (2.18) always holds, and by (2.10) this is equivalent to the assertion (2.7).

3. Proof of the Theorem

(a) Let first $\sigma < \infty$ and thus $c = 2/\sigma^2 > 0$. We set

$$g(z) = h(z) - \frac{c}{1-z}$$
 (z \in ID). (3.1)

Since $g'(z) = \sum_{k=0}^{\infty} (k+1)(\eta_{k+1}-c) z^k$ we see that, for 0 < r < 1,

$$(k+1)(\eta_{k+1}-c) = \frac{1}{2\pi r^k} \int_{-\pi}^{\pi} g'(re^{it}) e^{-ikt} dt \qquad (k=0,\,1,\,\ldots).$$
(3.2)

C. Pommerenke

We set

$$r_k = \frac{k-1}{k+1}, \quad r'_k = \frac{k}{k+1} \quad (k=2, 3, \ldots).$$
 (3.3)

Since $r_k^{k-1} \ge e^{-2}$ we obtain from (3.2) that

$$|\eta_{k+1} - c| \leq 2 \int_{r_k}^{r'_k} \int_{-\pi}^{\pi} |g'(re^{it})| \, r \, dt \, dr.$$
(3.4)

(b) Let $0 < \varepsilon < 1$ be given and let $\lambda = 1/\varepsilon^2$. We denote by K_1, K_2, \ldots constants independent of ε and k. Let ρ be as in Lemma 1. Then

$$G_k = \{ z : r_k < |z| < r'_k, \, \lambda/k < |\arg z| < \rho \} \subset G$$
(3.5)

for $k > k_1(\varepsilon)$. It follows from Lemma 4 that

$$|h(z)| \leq \frac{K_1}{|1-z|} \leq \frac{K_2 k}{\lambda} \qquad (z \in G_k).$$

$$(3.6)$$

Let $k > k_1$. We obtain from the Schwarz inequality that

$$(\iint_{G_k} |h'(z)| \, dx \, dy)^2 \leq \iint_{G_k} |h(z)|^{-\frac{3}{2}} |h'(z)|^2 \, dx \, dy \iint_{G_k} |h(z)|^{\frac{3}{2}} \, dx \, dy, \tag{3.7}$$

and since $G_k \subset G$ the univalent substitution w = h(z) shows that the first righthand integral is (see (3.6))

$$= \iint_{h(G_k)} |w|^{-\frac{3}{2}} du \, dv \leq \iint_{|w| \leq K_2 k/\lambda} |w|^{-\frac{3}{2}} du \, dv = K_3(k/\lambda)^{\frac{1}{2}}.$$

Since $|1 - re^{it}| \ge \sqrt{r} |1 - e^{it}|$, the second right-hand integral in (3.7) is, by (3.6),

$$\leq K_4 \int_{r_k}^{r_k} \int_{\lambda/k}^{\rho} |1 - e^{it}|^{-\frac{3}{2}} dt \, dr \leq \frac{K_5}{k+1} \left(\frac{k}{\lambda}\right)^{\frac{1}{2}} < K_5(k\lambda)^{-\frac{1}{2}}$$

because of (3.3). Hence we obtain from (3.7) that

$$\int_{r_k}^{r_k} \int_{\lambda/k}^{\rho} |h'(re^{it})| \, r \, dt \, dr \leq K_6 \, \lambda^{-\frac{1}{2}} = K_6 \, \varepsilon.$$
(3.8)

The integral over $[\rho, \pi]$ instead of $[\lambda/k, \rho]$ is $\leq K_7 k^{-1}$ by Lemma 2 and (3.3). Furthermore

$$\int_{r_k}^{r_k} \int_{\lambda/k}^{\pi} \frac{c}{|1-re^{it}|^2} r dt dr \leq \frac{c}{k+1} \int_{\lambda/k}^{\pi} \frac{1}{|1-e^{it}|^2} dt \leq \frac{K_8}{\lambda} \leq K_8 \varepsilon.$$

Hence we see from (3.1) and (3.8) that, for $k > k_1(\varepsilon)$,

$$\int_{r_k}^{r'_k} \int_{\lambda/k}^{2\pi-\lambda/k} |g'(re^{it})| \, r \, dt \, dr \leq K_9 \, \varepsilon + K_{10} \, k^{-1} \tag{3.9}$$

because the range $[\pi, 2\pi - \lambda/k]$ can be treated in a similar way.

310

(c) Since $(1-z)g(z)\to 0$ as $z\to 1$ by (3.1) and Lemma 4, we can find $k_2 = k_2(\varepsilon) > k_1$ such that

$$|(1-z)g(z)| < \varepsilon^3$$
 for $|\arg z| \leq \frac{\lambda}{k}$, $r_k \leq |z| \leq r'_k$.

Hence it follows from the Cauchy integral formula for the derivative that

$$\left| \frac{d}{dz} \left[(1-z) g(z) \right] \right| < K_{10} \varepsilon^3 / (1-r'_k) = K_{10} (k+1) \varepsilon^3$$

for $|\arg z| \leq \lambda/k$ and $r_k \leq |z| \leq r'_k$ hence

$$|(1-z)^{2} g'(z)| = \left| (1-z) g(z) + (1-z) \frac{d}{dz} [(1-z) g(z)] \right| < \varepsilon^{3}$$
$$+ K_{11} \frac{\lambda}{k} (k+1) \varepsilon^{3} < K_{12} \varepsilon$$

because $\lambda = \varepsilon^{-2}$. Therefore we see that, for $k > k_2$,

$$\int_{r_k}^{r'_k} \int_{-\lambda/k}^{\lambda/k} |g'(re^{it})| r dt dr \leq \int_{r_k}^{r'_k} \int_{-\pi}^{\pi} \frac{K_{12}\varepsilon}{|1-re^{it}|^2} dt dr$$
$$= K_{12} \int_{r_k}^{r'_k} \frac{2\pi\varepsilon}{1-r^2} dr \leq 2\pi K_{12}\varepsilon.$$

Hence we conclude from (3.4) and (3.9) that

$$|\eta_{k+1} - c| \leq K_{13} \varepsilon + 2K_{10} k^{-1} \qquad (k > k_2(\varepsilon)).$$

This proves $\eta_k \rightarrow c \ (k \rightarrow \infty)$ for the case $\sigma < \infty$.

(d) Let now $\sigma = \infty$ and thus c = 0. Since $\eta_k \ge 0$ by (1.1) and (1.4), we obtain from Lemma 3 that

$$|h(z)| \le h(|z|) = o\left(\frac{1}{1-|z|}\right) \quad (|z| \to 1).$$
 (3.10)

It is well-known that (3.10) implies

$$\eta_k \to 0 \quad \text{as} \quad k \to \infty \tag{3.11}$$

in the case that h is univalent in ID; compare [7, Th. 5.3].

In our case we use the standard proof of (3.11) in the domain $G = \mathbb{ID} \cap \{|z - 1| < \rho\}$ where h is univalent, and we make trivial estimates in $\mathbb{ID} \setminus G$ where h' is bounded, by Lemma 2.

References

- 1. Athreya, K.B., Ney, P.E.: Branching processes. Berlin-Heidelberg-New York: Springer 1972
- Baker, I.N., Pommerenke, Ch.: On the iteration of analytic functions in a halfplane II. J. London Math. Soc. (2) 20, 255-258 (1979)

- 3. Cowen, C.C.: Iteration and the solution of functional equations for functions analytic in the unit disk. To appear
- 4. Harris, T.E.: The theory of branching processes. Berlin-Göttingen-Heidelberg: Springer 1963
- 5. Hayman, W.K.: Multivalent functions. Cambridge University Press 1958
- Kesten, H., Ney, P., Spitzer, F.: The Galton-Watson process with mean one and finite variance. Theor. Probability Appl. 11, 513-540 (1966)
- 7. Pommerenke, Ch.: Univalent functions. Göttingen: Vandenhoeck & Ruprecht 1975
- 8. Pommerenke, Ch.: On the iteration of analytic functions in a halfplane I. J. London Math. Soc. (2) 19, 439-447 (1979)
- 9. Seneta, E.: The Galton-Watson process with mean one. J. Appl. Probability 4, 489-495 (1967)
- 10. Valiron, G.: Fonctions analytiques. Paris: Presse Univ. de France 1954

Received March 20, 1980