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Summary. Take the nth generation of a supercritical branching random walk 
(a spatially homogeneous branching process) as a process of cluster centres 
and take independent copies of some simple point process Y as the clusters. 
Let the resulting point process be Y,. For a given sequence of real numbers 
{x,} let Y~ be centred on x,. Under certain conditions, when an appropriate 
scale change is made, the resulting point process converges in distribution 
to a non-trivial limit. 

1. Introduction 

In this paper we will consider the supercritical branching random walk (i.e. 
the spatially homogeneous supercritical branching process) on the real line 
IR[1, 6]. We will start the process from a single initial ancestor at the origin, 
though this is not crucial. Let Z (") be the point process of the positions of the nth 
generation people. We obtain Z ("+ 1) from Z (n) by clustering independent copies 
of Z (1) on each point of Z (n). 

More formally, let the translation operator Ty be defined on the continuous 
functions of compact support, Co, by 

Tyf (X) = f (x + y). 

Let the operator induced by Ty on the locally finite measures on IR, 9J~, also be 
denoted by Ty so that for any #egJl 

(Ty#) f =#(Ty f )  forall  f~C o. 

Let the positions of the nth generation people be {z.,r:r } and let Z.,r be the 
independent copy of Z (1) associated with the person at z.,.. Then 

Z ( ' + I ) = Z  Tz.,rZn,~. 
r 
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We will also associate with each person an independent copy of a simple 
point process Y, Y,,~ being the one associated with z,,r. Now define the point 
process Y, by 

y.=E Y~., Y.,, (1.1) 
r 

so that, when Z (1) is simple, we can take Z (1) = Yand then Z ("+ 1) = y,. The intro- 
duction of these Y,,r is similar to the notion of a random characteristic in the 
age-dependent branching process, [3]. Let ~(") be the a-field generated by 
{{(Z . . . .  Ym, r):r}:m= 1, 2 . . . . .  n--  1}, the o--field containing all information about 
the first n generationsl 

We are concerned with certain limiting properties of the point process Y,. 
F rom (1.1) we can see that, given ~-("), Y, is the superposition of a number,  which 
increases with n, of independent simple point processes. It is certainly plausible 
then, because of Grigelionis' theorem [2], that some suitably scaled version of 
Y, should converge to a Poisson process. We will have to expand the scale of 
Y, and so we introduce the scale operator  Sy defined on C o by 

Sy f (x) = f (xy) 

and on gJlby 

(Sy #) f = #(S,  f )  for all f s  C o. 

We are going to suppose that a sequence of real numbers {x,} is given and examine 
Tx. Y,. Specifically we will seek {K,} such that 

converges in distribution to a non-trivial limit. 
In the next section some more notation is introduced together with a heuristic 

argument leading to a formulation of the results to be proved. The final section 
contains the proofs. 

2. The Results 

As we will be expanding the scale of Y, it is not surprising that a smoothness 
condition on the intensity measure of Y is required; in fact we will assume that 

(A1) EY=v  is a finite measure with a bounded continuous density function g 
(with respect to Lebesgue measure). 

Let N be the bounded Borel subsets oflR, and let J be the bounded intervals. 
We will use A both for a set and for its indicator function I A when no confusion 
will result. Let B a be the interval ( - a ,  a), and let m be Lebesgue measure on IR. 
Now consider the intensity measure of Tx, Y, conditional on g(n)  

r 
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we need to arrange that, after rescaling, this intensity measure converges to a 
non-trivial limit. For  AeN 

T~ T~., vA  = Z  ~ g ( y - x , - z , , ~ )  m(dy) 
r r A 

= ~ (~ g ( y -  z) T~. Z ~) (dz)) m(dy). (2. l) 
A 

If we write 

~(-x)=g(x) 

then, provided that A is a small set near the origin (2.1) should be approximated 
by 

( ~ m(dy)) ( T~, Z (") ~) = (mA ) ( T~, Z (") ~,). 
A 

Hence, approximately, 

E FSK. %, Y , A [ ~  (")] = (mA) K 2 t(Tx, Z (") ~). 

This suggests that the appropriate choice for K,  is Tx. Z (") ~. It also explains 
why a condition on Tx, Z ("~ is to be expected. We will make the following as- 
sumption. 

(A2) There exists constants {k,} tending to infinity such that 

k 2  1 yxnZ(n)__+( a.s. (2.2) 

where ~ is a random measure. 

The convergence is with respect to the vague topology on ~JJl. 
It is easy to deduce from Theorem 2 of [1] that, when the conditions of that 

theorem hold, (2.2) holds with x ,=nb ,  and the sequence k, can be described 
quite precisely as can the limit measure ~. Theorem 1 of [5] can also be reformulated 
to yield a result like (2.2). Hence the assumption (A2) is certainly non-vacuous. We 
will also assume that 

(A3) k2 1 Tx Z ~ " ) ~ <  oe a.s. 

Of course if ~EC o then (A 3) is implied by (A2). Furthermore if the convergence 
in (A2) is with respect to the weak topology on 9)l then (A3) would not be needed. 

Theorem 1. Suppose that (A1), (A2) and (A3) hold. I f  heC o let K ,=Tx  Z(")h 
then, given ~, 

on {(h > 0} and there t 1 is a Poisson process of rate (~/(h. 

Essentially the same proof as that of Theorem 1 yields the following two 
results, under the same conditions 
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Corollary 1. I f  K , =  Tx, Z<") ~ then, given (, 

on {(~>0} and there t 1 is a Poisson process of  unit rate. 

Corollary 2 

Sk. T~. Y -4, t l 

where t 1 is a mixed Poisson process, with random rate ~ .  

It is notationally more complicated but, in fact, more natural to take Y to 
be a marked point process on IR. We still assume that Yis a simple point process 
on IR but now we also assume that each point has associated with it a mark, 
a label, drawn from some mark space. We will consider the mark space to be 
{1, 2, 3 .... } = N  in Theorem 2. Let X k be the point process, on IR, formed by 
considering only those points of Y with the mark k. Let us replace (A1) by 

(A1)' (A1) holds and, for each k e N ,  E X  k has a continuous density gk on IR. 

Theorem 2. Suppose that (A 1)', (A2) and (A 3) hold. Let  K ,  = T~, Z (") ~, then, given (, 

( Sk, T~. Y,) ~ rl 

where, on {ff~>0}, ~/ is a Poisson process of rate one. The points of tl have marks 
in N,  chosen independently, with a mark k occurring with probability ~,k/~g,. 

We can consider Z ~) to be a marked simple point process with marks, corre- 
sponding to the multiplicity of the points, in N. Viewed in this way it is easy 
to apply Theorem 2 to Sk. Tx. Z ~+ ~). 

3. The Proofs 

Notice that 

SK~176176 g.,.=Z ~.,r 
r r 

where, given ~("), {y,,r:r} are independent simple point processes. It is fairly 
clear that {Y,,r} form a null array. To prove this observe that, for a>0 ,  

sup {P (T x YB a > 0) :x} =< sup {ETx YB a :x} 

= sup {T~ vBa:x}<211g][a 

where llg [I =sup{lg(x)l:x~lR}. By (A2) K,--roe almost surely on {~h>0} and 
s o  

a 
s u p P ( y , , r B , > O l ~ ( " ) ) < Z l [ g l l ~ O  a.s. on {(h>0}. 

In the remainder of this section a.s. will mean a.s. on {(h > 0}. By Corollary 10.10 
of I-4] it now suffices to show that 
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for As J ,  and that 

m ~(n)~g ,  mA a.s. 
r 

E [Y., ~ B I{~.,.. > 1} I N(n)] ~ 0  a.s. 
r 

for BEM. We will establish that 

(3.1) 

(3.2) 

(3.3) 

(in the vague topology) but first we will show that this implies both (3.1) and 
(3.2) here. 

Suppose that, for some ~>0, no two points of Yare within e of one another. 
For any Borel set A c B. 

E [Y,,r A [ff(")] = ~ P(7,,r A > 0]ff  (")) 
r r 

+ ~ E [(Y,,r A - 1) I{ ~,.,a > 1} [ff(")]. (3.4) 
r 

When K 2 1 a__<e there is at most one point of ~n,, in A, and so, because Kn-~o % 
we can see that when (3.3) holds so does (3.2) and then, from (3.4), (3.1) holds 
also. A fairly simple truncation argument now shows that (3.1) and (3.2) hold in 
general. Let Y~ be obtained from Yby deleting all points within s of one another. 
All quantities in the process based on Y~ rather than Ywill be denoted by a super- 
script e. We have for A~J  

E [7,,~ A] y(n) ] = ~ P (7,,~ A > 01~ -(n)) + ~ S [(7.,~ A --1) I{~.,rA>l>l~(") ] 
r r r 

01~(n)~-~ ~g~ (3.5) >~P(Tn, rA>OI~("))>~P('f, ,~A> , ~ m A a . s .  
r r 

Hence, using (3.3), 

~hh mA > limnsu p ~ P(7., ~ A > 0 ] J  (n)) 

~~~ 
> lim inf ~ P(y.,. A > 0 [ ~  (n)) > ~ mA, 

n r g n  

and, letting ~$0, ~ffT~g so that (3.1)holds. Now 

E[Y., r A I{~., ~ A > 1}] ~( ' )]  < 2 E [(7., ~ A - 1) I ~ ( . )n  ( ~ m . A  > 1} ~" A 

and so (3.3) and (3.1), together with (3.5), suffice to establish (3.2). 
It only remains to establish (3.3). Let 

6(g',a)= sup sup [~,(x+y)-~,(x)[. 
]xl <=a ]y] < e 
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As g is cont inuous and so uniformly cont inuous on compact  sets we have, for any 
a > 0 ,  

8(e, a)$0 as e$0. 

Let  A ~ denote  the complement  of the set A. 

Lemma.  For #697l, [y l~e  I < 8  and a > 0  

iT, # ~ -  #~1 < ~(e~, a + e) #Ba+~ + 2MB;. 

Proof 

I Ty #~ - #~l = I j'(~(x + y) - ~(x)) #(dx)l < j" I ~(x + y) - ~(x)l#(dx) 

(~(~ + y) + ~(x)) #(d~) <= ~ I~(x + y ) -~ (x ) lu (&)+  
Bo+~ 

=< 6(ea, a + e) #B~+~ + 2#gB~. 

Now for f ~  C o 

v . f  = E [~ 7.,~ f l ~ (")] 
r 

= Z ~ f ((x. + z.,~ + x) K.)  g(x) m(dx) 
r 

= SS f ( ( x ,  + z + x) K,) g(x) m(dx) Z("~ (dz) 

= S~f(K. y) g (y -  x. - z) Z ('0 (dz) m(dy) 

= S f (K, y)(T_ , T~,. Z (") ~) m(dy). (3.6) 

---+m]fl{O. (Ba+~ , 2~,B~) 

We will show that, for any fsCo, 

~gmf ~O iv. J - ~  j a.s. (3.7) 

as n--* o% which is equivalent  to (3.3). No te  first that  

v , f  - ~ m f  < v , f  Tx Z(,)h mf  +lmfl Tx Z(,)h ~hh 

where the final term tends to zero as n tends to infinity; using (3.6) and the de- 
finition of  K ,  the other  term on the right of this inequali ty can be written as 

[Sf(K.y)(T_y Tx Z (") ~ -  Tx Z (") ~) m(dy)l. (3.8) 

Let  a be sufficiently large that  i f [ <  ] lf  il Ba- Now fix e>0 .  For  n sufficiently 
large ]Yl < a/K. < e and so, using the lemma (3.8) is less than 

S l f (K.  Y)I { 6 ( ~ - ,  a + a) Tx. Z (") B.+~ + 2 T~. Z (") ~,B~} m(dy) 

= K. ~ , a + e  T~ Z(")Ba+~+2Tx Z("~,B~} 
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Here a is arbi t rary  and (~B~-~0 as a--, oe. This completes the proof  of (3.7) and 
hence of Theorem 1. 

Only obvious modif icat ions are needed in this proof  to prove Corollaries 1 
and  2. 

Essentially the same proof  works in proving Theorem 2. Here Y, and also {)',,r}, 
must  be regarded as a point  process on IR x N, rather than IR. The proof  above 
that  it suffices to establish (3.3) is essentially the same; it depends only on the 
assumpt ions  that  Yis simple as a point  process on .N  and that g is bounded  and 
cont inuous.  Notice that (3.3) involves measures not  'on IR but  on IR x N. If we 
write funct ions and measures on IR x N in co-ordinate  form we must  prove that 

k k 

for ken and f~eC o. This follows in much the same way as (3.7) did. This proves 
that SK, Tx, Y, converges to a Poisson process on IR x N with its rate on IRx{i} 
given by (gi/(g, which is equivalent  to the assertion of the theorem. 
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penetrating comments lead to considerable improvements. 
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