Limiting Point Processes in the Branching Random Walk

J.D. Biggins

University of Sheffield, Dept. of Probability Statistics, Sheffield, S3 7RH, England

Summary. Take the nth generation of a supercritical branching random walk (a spatially homogeneous branching process) as a process of cluster centres and take independent copies of some simple point process Y as the clusters. Let the resulting point process be Y_{n}. For a given sequence of real numbers $\left\{x_{n}\right\}$ let Y_{n} be centred on x_{n}. Under certain conditions, when an appropriate scale change is made, the resulting point process converges in distribution to a non-trivial limit.

1. Introduction

In this paper we will consider the supercritical branching random walk (i.e. the spatially homogeneous supercritical branching process) on the real line $\mathbb{R}[1,6]$. We will start the process from a single initial ancestor at the origin, though this is not crucial. Let $Z^{(n)}$ be the point process of the positions of the nth generation people. We obtain $Z^{(n+1)}$ from $Z^{(n)}$ by clustering independent copies of $Z^{(1)}$ on each point of $Z^{(n)}$.

More formally, let the translation operator T_{y} be defined on the continuous functions of compact support, C_{0}, by

$$
T_{y} f(x)=f(x+y)
$$

Let the operator induced by T_{y} on the locally finite measures on \mathbb{R}, \mathfrak{M}, also be denoted by T_{y} so that for any $\mu \in \mathfrak{M}$

$$
\left(T_{y} \mu\right) f=\mu\left(T_{y} f\right) \quad \text { for all } f \in C_{0} .
$$

Let the positions of the nth generation people be $\left\{z_{n, r}: r\right\}$ and let $Z_{n, r}$ be the independent copy of $Z^{(1)}$ associated with the person at $z_{n, r}$. Then

$$
Z^{(n+1)}=\sum_{r} T_{z_{n, r}} Z_{n, r}
$$

We will also associate with each person an independent copy of a simple point process $Y, Y_{n, r}$ being the one associated with $z_{n, r}$. Now define the point process Y_{n} by

$$
\begin{equation*}
Y_{n}=\sum_{r} T_{z_{n, r}} Y_{n, r} \tag{1.1}
\end{equation*}
$$

so that, when $Z^{(1)}$ is simple, we can take $Z^{(1)}=Y$ and then $Z^{(n+1)}=Y_{n}$. The introduction of these $Y_{n, r}$ is similar to the notion of a random characteristic in the age-dependent branching process, [3]. Let $\mathscr{F}^{(n)}$ be the σ-field generated by $\left\{\left\{\left(Z_{m, r}, Y_{m, r}\right): r\right\}: m=1,2, \ldots, n-1\right\}$, the σ-field containing all information about the first n generations.

We are concerned with certain limiting properties of the point process Y_{n}. From (1.1) we can see that, given $\mathscr{F}^{(n)}, Y_{n}$ is the superposition of a number, which increases with n, of independent simple point processes. It is certainly plausible then, because of Grigelionis' theorem [2], that some suitably scaled version of Y_{n} should converge to a Poisson process. We will have to expand the scale of Y_{n} and so we introduce the scale operator S_{y} defined on C_{0} by

$$
S_{y} f(x)=f(x y)
$$

and on \mathfrak{M} by

$$
\left(S_{y} \mu\right) f=\mu\left(S_{y} f\right) \quad \text { for all } f \in C_{0}
$$

We are going to suppose that a sequence of real numbers $\left\{x_{n}\right\}$ is given and examine $T_{x_{n}} Y_{n}$. Specifically we will seek $\left\{K_{n}\right\}$ such that

$$
S_{K_{n}} T_{x_{n}} Y_{n}
$$

converges in distribution to a non-trivial limit.
In the next section some more notation is introduced together with a heuristic argument leading to a formulation of the results to be proved. The final section contains the proofs.

2. The Results

As we will be expanding the scale of Y_{n} it is not surprising that a smoothness condition on the intensity measure of Y is required; in fact we will assume that
(A1) $\mathbf{E} Y=v$ is a finite measure with a bounded continuous density function g (with respect to Lebesgue measure).

Let \mathscr{B} be the bounded Borel subsets of \mathbb{R}, and let \mathscr{I} be the bounded intervals. We will use A both for a set and for its indicator function I_{A} when no confusion will result. Let B_{a} be the interval $(-a, a)$, and let m be Lebesgue measure on \mathbb{R}. Now consider the intensity measure of $T_{x_{n}} Y_{n}$ conditional on $\mathscr{F}^{(n)}$,

$$
\mathbf{E}\left[T_{x_{n}} Y_{n} \mid \mathscr{F}^{(n)}\right]=\sum_{r} T_{x_{n}} T_{z_{n, r}} \nu
$$

we need to arrange that, after rescaling, this intensity measure converges to a non-trivial limit. For $A \in \mathscr{B}$

$$
\begin{align*}
\sum_{r} T_{x_{n}} T_{z_{n, r}} v A & =\sum_{r} \int_{A} g\left(y-x_{n}-z_{n, r}\right) m(d y) \\
& =\int_{A}\left(\int g(y-z) T_{x_{n}} Z^{(n)}(d z)\right) m(d y) . \tag{2.1}
\end{align*}
$$

If we write

$$
\tilde{g}(-x)=g(x)
$$

then, provided that A is a small set near the origin (2.1) should be approximated by

$$
\left(\int_{A} m(d y)\right)\left(T_{x_{n}}{ }^{(n)} \tilde{g}\right)=(m A)\left(T_{x_{n}} Z^{(n)} \tilde{g}\right) .
$$

Hence, approximately,

$$
\mathbf{E}\left[S_{K_{n}} T_{x_{n}} Y_{n} A \mid \mathscr{F}^{(n)}\right]=(m A) K_{n}^{-1}\left(T_{x_{n}} Z^{(n)} \check{g}\right) .
$$

This suggests that the appropriate choice for K_{n} is $T_{x_{n}} Z^{(n)} \tilde{g}$. It also explains why a condition on $T_{x_{n}} Z^{(n)}$ is to be expected. We will make the following assumption.
(A2) There exists constants $\left\{k_{n}\right\}$ tending to infinity such that

$$
\begin{equation*}
k_{n}^{-1} T_{x_{n}} Z^{(n)} \rightarrow \zeta \text { a.s. } \tag{2.2}
\end{equation*}
$$

where ζ is a random measure.
The convergence is with respect to the vague topology on \mathfrak{M}.
It is easy to deduce from Theorem 2 of [1] that, when the conditions of that theorem hold, (2.2) holds with $x_{n}=n b$, and the sequence k_{n} can be described quite precisely as can the limit measure ζ. Theorem 1 of [5] can also be reformulated to yield a result like (2.2). Hence the assumption (A2) is certainly non-vacuous. We will also assume that

$$
\begin{equation*}
k_{n}^{-1} T_{x_{n}} Z^{(n)} \tilde{g} \rightarrow \zeta \check{g}<\infty \text { a.s. } \tag{A3}
\end{equation*}
$$

Of course if $\tilde{g} \in C_{0}$ then (A3) is implied by (A2). Furthermore if the convergence in (A2) is with respect to the weak topology on \mathfrak{M} then (A3) would not be needed.
Theorem 1. Suppose that (A1), (A2) and (A3) hold. If $h \in C_{0}$ let $K_{n}=T_{x_{n}} Z^{(n)} h$ then, given ζ,

$$
S_{K_{n}} T_{x_{n}} Y_{n} \mathscr{G} \eta
$$

on $\{\zeta h>0\}$ and there η is a Poisson process of rate $\zeta \tilde{g} / \zeta h$.
Essentially the same proof as that of Theorem 1 yields the following two results, under the same conditions

Corollary 1. If $K_{n}=T_{x_{n}} Z^{(n)} \tilde{g}$ then, given ζ,

$$
S_{K_{n}} T_{x_{n}} Y_{n} \xrightarrow{d} \eta
$$

on $\{\zeta \tilde{g}>0\}$ and there η is a Poisson process of unit rate.

Corollary 2

$$
S_{k_{n}} T_{x_{n}} Y_{n} \xrightarrow{d} \eta
$$

where η is a mixed Poisson process, with random rate $\zeta \check{g}$.
It is notationally more complicated but, in fact, more natural to take Y to be a marked point process on \mathbb{R}. We still assume that Y is a simple point process on \mathbb{R} but now we also assume that each point has associated with it a mark, a label, drawn from some mark space. We will consider the mark space to be $\{1,2,3, \ldots\}=\mathbb{N}$ in Theorem 2. Let X_{k} be the point process, on \mathbb{R}, formed by considering only those points of Y with the mark k. Let us replace (A1) by (A1)' (A1) holds and, for each $k \in \mathbb{N}, \mathbf{E} X_{k}$ has a continuous density g_{k} on \mathbb{R}. Theorem 2. Suppose that (A1)', (A2) and (A3) hold. Let $K_{n}=T_{x_{n}} Z^{(n)} \tilde{g}$ then, given ζ,

$$
\left(S_{k_{n}} T_{x_{n}} Y_{n}\right) \xrightarrow{d} \eta
$$

where, on $\{\zeta \tilde{g}>0\}, \eta$ is a Poisson process of rate one. The points of η have marks in \mathbb{N}, chosen independently, with a mark k occurring with probability $\zeta \tilde{g}_{k} / \zeta \tilde{g}$.

We can consider $Z^{(1)}$ to be a marked simple point process with marks, corresponding to the multiplicity of the points, in \mathbb{N}. Viewed in this way it is easy to apply Theorem 2 to $S_{k_{n}} T_{x_{n}} Z^{(n+1)}$.

3. The Proofs

Notice that

$$
S_{K_{n}} T_{x_{n}} Y_{n}=\sum_{r} S_{K_{n}} T_{x_{n}} T_{z_{n, r}} Y_{n, r}=\sum_{r} \gamma_{n, r}
$$

where, given $\mathscr{F}^{(n)},\left\{\gamma_{n, r}: r\right\}$ are independent simple point processes. It is fairly clear that $\left\{\gamma_{n, r}\right\}$ form a null array. To prove this observe that, for $a>0$,

$$
\begin{aligned}
\sup \left\{\mathbf{P}\left(T_{x} Y B_{a}>0\right): x\right\} & \leqq \sup \left\{\mathbf{E} T_{x} Y B_{a}: x\right\} \\
& =\sup \left\{T_{x} v B_{a}: x\right\} \leqq 2\|g\| a
\end{aligned}
$$

where $\|g\|=\sup \{|g(x)|: x \in \mathbb{R}\}$. By (A2) $K_{n} \rightarrow \infty$ almost surely on $\{\zeta h>0\}$ and so

$$
\sup _{r} P\left(\gamma_{n, r} B_{a}>0 \mid \mathscr{F}^{(n)}\right) \leqq 2\|g\| \frac{a}{K_{n}} \rightarrow 0 \text { a.s. on }\{\zeta h>0\}
$$

In the remainder of this section a.s. will mean a.s. on $\{\zeta h>0\}$. By Corollary 10.10 of [4] it now suffices to show that

$$
\begin{equation*}
\sum_{r} \mathbf{P}\left(\gamma_{n, r} A>0 \mid \mathscr{F}^{(n)}\right) \rightarrow \frac{\zeta \tilde{g}}{\zeta h} m A \text { a.s. } \tag{3.1}
\end{equation*}
$$

for $A \in \mathscr{I}$, and that

$$
\begin{equation*}
\sum_{r} \mathbf{E}\left[\gamma_{n, r} B I_{\left\{\gamma_{n, r} B>1\right\}} \mid \mathscr{F}^{(n)}\right] \rightarrow 0 \text { a.s. } \tag{3.2}
\end{equation*}
$$

for $B \in \mathscr{B}$. We will establish that

$$
\begin{equation*}
v_{n}=\sum_{r} \mathbf{E}\left[\gamma_{n, r} \mid \mathscr{F}^{(n)}\right] \rightarrow \frac{\zeta \tilde{g}}{\zeta h} m \text { a.s. } \tag{3.3}
\end{equation*}
$$

(in the vague topology) but first we will show that this implies both (3.1) and (3.2) here.

Suppose that, for some $\varepsilon>0$, no two points of Y are within ε of one another. For any Borel set $A \subset B_{a}$

$$
\begin{align*}
\sum_{r} \mathbf{E}\left[\gamma_{n, r} A \mid \mathscr{F}^{(n)}\right]= & \sum_{r} \mathbf{P}\left(\gamma_{n, r} A>0 \mid \mathscr{F}^{(n)}\right) \\
& +\sum_{r} \mathbf{E}\left[\left(\gamma_{n, r} A-1\right) I_{\left\{\gamma_{n, r} A>1\right\}} \mid \mathscr{F}^{(n)}\right] . \tag{3.4}
\end{align*}
$$

When $K_{n}^{-1} a \leqq \varepsilon$ there is at most one point of $\gamma_{n, r}$ in A, and so, because $K_{n} \rightarrow \infty$, we can see that when (3.3) holds so does (3.2) and then, from (3.4), (3.1) holds also. A fairly simple truncation argument now shows that (3.1) and (3.2) hold in general. Let Y^{ε} be obtained from Y by deleting all points within ε of one another. All quantities in the process based on Y^{ε} rather than Y will be denoted by a superscript ε. We have for $A \in \mathscr{I}$

$$
\begin{align*}
\sum_{r} \mathbf{E}\left[\gamma_{n, r} A \mid \mathscr{F}^{(n)}\right]= & \sum_{r} \mathbf{P}\left(\gamma_{n, r} A>0 \mid \mathscr{F}^{(n)}\right)+\sum_{r} \mathbf{E}\left[\left(\gamma_{n, r} A-1\right) I_{\left\{\gamma_{n, r} A>1\right\}} \mid \mathscr{F}^{(n)}\right] \\
& \geqq \sum_{r} \mathbf{P}\left(\gamma_{n, r} A>0 \mid \mathscr{F}^{(n)}\right) \geqq \sum_{r} \mathbf{P}\left(\gamma_{n, r}^{\varepsilon} A>0 \mid \mathscr{F}^{(n)}\right) \rightarrow \frac{\zeta \mathscr{g}^{\varepsilon}}{\zeta h} m A \text { a.s. } \tag{3.5}
\end{align*}
$$

Hence, using (3.3),

$$
\begin{aligned}
\frac{\zeta \tilde{g}}{\zeta h} m A & \geqq \lim _{n} \sup \sum_{r} \mathbf{P}\left(\gamma_{n, r} A>0 \mid \mathscr{F}^{(n)}\right) \\
& \geqq \lim _{n} \inf \sum_{r} \mathbf{P}\left(\gamma_{n, r} A>0 \mid \mathscr{F}^{(n)}\right) \geqq \frac{\zeta \tilde{g}^{\varepsilon}}{\zeta h} m A,
\end{aligned}
$$

and, letting $\varepsilon \downarrow 0, \zeta \tilde{g}^{\varepsilon} \uparrow \zeta g$ so that (3.1) holds. Now

$$
\mathbf{E}\left[\gamma_{n, r} A I_{\left\{\gamma_{n, r} A>1\right\}} \mid \mathscr{F}^{(n)}\right] \leqq 2 \mathbf{E}\left[\left(\gamma_{n, r} A-1\right) I_{\left\{\gamma_{n, r} A>1\right\}} \mid \mathscr{F}^{(n)}\right]
$$

and so (3.3) and (3.1), together with (3.5), suffice to establish (3.2).
It only remains to establish (3.3). Let

$$
\delta(\dot{\varepsilon}, a)=\sup _{|x| \leqq a} \sup _{|y| \leqq \varepsilon}|\tilde{g}(x+y)-\tilde{g}(x)| .
$$

As g is continuous and so uniformly continuous on compact sets we have, for any $a>0$,

$$
\delta(\varepsilon, a) \downarrow 0 \text { as } \varepsilon \downarrow 0 .
$$

Let A^{c} denote the complement of the set A.
Lemma. For $\mu \in \mathfrak{M},|y| \leqq \varepsilon_{1}<\varepsilon$ and $a>0$

$$
\left|T_{y} \mu \tilde{g}-\mu \tilde{g}\right| \leqq \delta\left(\varepsilon_{1}, a+\varepsilon\right) \mu B_{a+\varepsilon}+2 \mu \tilde{g} B_{a}^{c}
$$

Proof.

$$
\begin{aligned}
\left|T_{y} \mu \tilde{g}-\mu \tilde{g}\right| & =\left|\int(\tilde{g}(x+y)-\tilde{g}(x)) \mu(d x)\right| \leqq \int|\tilde{g}(x+y)-\tilde{g}(x)| \mu(d x) \\
& \leqq \int_{B_{a+\varepsilon}}|\tilde{g}(x+y)-\tilde{g}(x)| \mu(d x)+\int_{B_{s+\varepsilon}^{c}}(\tilde{g}(x+y)+\tilde{g}(x)) \mu(d x) \\
& \leqq \delta\left(\varepsilon_{1}, a+\varepsilon\right) \mu B_{a+\varepsilon}+2 \mu \tilde{g} B_{a}^{c} .
\end{aligned}
$$

Now for $f \in C_{0}$

$$
\begin{align*}
v_{n} f & =\mathbf{E}\left[\sum_{r} \gamma_{n, r} f \mid \mathscr{F}^{(n)}\right] \\
& =\sum_{r} \int f\left(\left(x_{n}+z_{n, r}+x\right) K_{n}\right) g(x) m(d x) \\
& =\iint f\left(\left(x_{n}+z+x\right) K_{n}\right) g(x) m(d x) Z^{(n)}(d z) \\
& =\iint f\left(K_{n} y\right) g\left(y-x_{n}-z\right) Z^{(n)}(d z) m(d y) \\
& =\int f\left(K_{n} y\right)\left(T_{-y} T_{x_{n}} Z^{(n)} \tilde{g}\right) m(d y) . \tag{3.6}
\end{align*}
$$

We will show that, for any $f \in C_{0}$,

$$
\begin{equation*}
\left|v_{n} f-\frac{\zeta \tilde{g}}{\zeta h} m f\right| \rightarrow 0 \text { a.s. } \tag{3.7}
\end{equation*}
$$

as $n \rightarrow \infty$, which is equivalent to (3.3). Note first that

$$
\left|v_{n} f-\frac{\zeta \tilde{g}}{\zeta h} m f\right| \leqq\left|v_{n} f-\frac{T_{x_{n}} Z^{(n)} \tilde{g}}{T_{x_{n}} Z^{(n)} h} m f\right|+|m f|\left|\frac{T_{x_{n}} Z^{(n)} \tilde{g}}{T_{x_{n}} Z^{(n)} h}-\frac{\zeta \tilde{g}}{\zeta h}\right|
$$

where the final term tends to zero as n tends to infinity; using (3.6) and the definition of K_{n} the other term on the right of this inequality can be written as

$$
\begin{equation*}
\left|\int f\left(K_{n} y\right)\left(T_{-y} T_{x_{n}} Z^{(n)} \tilde{g}-T_{x_{n}} Z^{(n)} \tilde{g}\right) m(d y)\right| \tag{3.8}
\end{equation*}
$$

Let a be sufficiently large that $|f| \leqq\|f\| B_{a}$. Now fix $\varepsilon>0$. For n sufficiently large $|y| \leqq a / K_{n}<\varepsilon$ and so, using the lemma (3.8) is less than

$$
\begin{aligned}
& \int\left|f\left(K_{n} y\right)\right|\left\{\delta\left(\frac{a}{K_{n}}, a+\varepsilon\right) T_{x_{n}} Z^{(n)} B_{a+\varepsilon}+2 T_{x_{n}} Z^{(n)} \tilde{g} B_{a}^{c}\right\} m(d y) \\
& \quad \leqq \frac{m|f|}{K_{n}}\left\{\delta\left(\frac{a}{K_{n}}, a+\varepsilon\right) T_{x_{n}} Z^{(n)} B_{a+\varepsilon}+2 T_{x_{n}} Z^{(n)} \tilde{g} B_{a}^{c}\right\} \\
& \quad \rightarrow m|f|\left\{0 . \frac{\zeta B_{a+\varepsilon}}{\zeta h}+\frac{2 \zeta \tilde{g} B_{a}^{c}}{\zeta h}\right\} .
\end{aligned}
$$

Here a is arbitrary and $\zeta \tilde{g} B_{a}^{c} \rightarrow 0$ as $a \rightarrow \infty$. This completes the proof of (3.7) and hence of Theorem 1.

Only obvious modifications are needed in this proof to prove Corollaries 1 and 2.

Essentially the same proof works in proving Theorem 2. Here Y, and also $\left\{\gamma_{n, r}\right\}$, must be regarded as a point process on $\mathbb{R} \times \mathbb{N}$, rather than \mathbb{R}. The proof above that it suffices to establish (3.3) is essentially the same; it depends only on the assumptions that Y is simple as a point process on \mathbb{R} and that g is bounded and continuous. Notice that (3.3) involves measures not on \mathbb{R} but on $\mathbb{R} \times \mathbb{N}$. If we write functions and measures on $\mathbb{R} \times \mathbb{N}$ in co-ordinate form we must prove that

$$
\sum_{i=1}^{k}\left(v_{n}\right)_{i} f_{i} \rightarrow \sum_{i=1}^{k} \frac{\zeta \tilde{g}_{i}}{\zeta \tilde{g}} m f_{i}
$$

for $k \in N$ and $f_{i} \in C_{0}$. This follows in much the same way as (3.7) did. This proves that $S_{K_{n}} T_{x_{n}} Y_{n}$ converges to a Poisson process on $\mathbb{R} \times \mathbb{N}$ with its rate on $\mathbb{R} \times\{i\}$ given by $\zeta \tilde{g}_{i} / \zeta \tilde{g}$, which is equivalent to the assertion of the theorem.

Acknowledgement. I would like to thank one of the referees of an earlier version of this paper; his penctrating comments lead to considerable improvements.

References

1. Biggins, J.D.: Growth rates in the branching random walk. Z. Wahrscheinlichkeitstheorie verw. verw. Gebiete. 48, 17-34 (1979)
2. Grigelionis, B.: On the convergence of sums of random step processes to a Poisson process. Theor. Probab. Appl. 8, 172-182 (1963)
3. Jagers, P.: Branching Processes with Biological Applications. London: Wiley (1975)
4. Kallenberg, O.: Random measures. London: Academic Press 1976
5. Kaplan, N., Asmussen, S.: Branching random walks II. Stochastic Processes Appl. 4, 15-31 (1976)
6. Matthes, K.. Kerstan, J., Mecke, J.: Infinitely Divisible Point Processes. New York: Wiley 1978

Received November 2, 1978; in revised form September 20, 1980

