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Summary. Take the nth generation of a supercritical branching random walk
(a spatially homogeneous branching process) as a process of cluster centres
and take independent copies of some simple point process Y as the clusters.
Let the resulting point process be Y,. For a given sequence of real numbers
{x,} let ¥, be centred on x,. Under certain conditions, when an appropriate
scale change is made, the resulting point process converges in distribution
to a non-trivial limit.

1. Introduction

In this paper we will consider the supercritical branching random walk (i.e.
the spatially homogeneous supercritical branching process) on the real line
R[1,6]. We will start the process from a single initial ancestor at the origin,
though this is not crucial. Let Z™ be the point process of the positions of the nth
generation people. We obtain Z®*Y) from Z™ by clustering independent copies
of Z® on each point of Z™.

More formally, let the translation operator T, be defined on the continuous
functions of compact support, C, by

Lf(x¥)=f(x+y).

Let the operator induced by T, on the locally finite measures on IR, 9, also be
denoted by T, so that for any uet

(T, f=(T, f) forall feC,.

Let the positions of the nth generation people be {z,,:r} and let Z, , be the
independent copy of Z‘V associated with the person at z, ,. Then

z 1)=Z 1, .2,
r
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We will also associate with each person an independent copy of a simple
point process Y, Y, , being the one associated with z, ,. Now define the point
process Y, by

Yn=z T;n,rYn,r (11)
so that, when Z™ is simple, we can take Z(')=Y and then Z®*Y =Y. The intro-
duction of these ¥, , is similar to the notion of a random characteristic in the
age-dependent branching process, [3]. Let #™ be the o-field generated by
HZ,, s Yo )rym=1,2,...,n—1}, the o-field containing all information about
the first n generations.

We are concerned with certain limiting properties of the point process Y,.
From (1.1) we can see that, given #™, Y, is the superposition of a number, which
increases with #n, of independent simple point processes. It is certainly plausible
then, because of Grigelionis’ theorem [2], that some suitably scaled version of
Y, should converge to a Poisson process. We will have to expand the scale of
Y, and so we introduce the scale operator S, defined on C,, by

S, f(x)=f(xy)
and on I by

S, ) f=uS, f) forall feC,.

We are going to suppose that a sequence of real numbers {x,} is given and examine
T, Y,. Specifically we will seek {K,} such that

SK,l Txn Y;l

converges in distribution to a non-trivial limit.

In the next section some more notation is introduced together with a heuristic
argument leading to a formulation of the results to be proved. The final section
contains the proofs.

2. The Results

As we will be expanding the scale of ¥, it is not surprising that a smoothness
condition on the intensity measure of Yis required; in fact we will assume that

(A1) EY=v is a finite measure with a bounded continuous density function g
(with respect to Lebesgue measure).

Let 4 be the bounded Borel subsets of IR, and let .# be the bounded intervals.
We will use A both for a set and for its indicator function I, when no confusion
will result. Let B, be the interval (—a, a), and let m be Lebesgue measure on IR.
Now consider the intensity measure of T,_Y, conditional on #®,

E[L, Y|#"=}T,L,,v;
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we need to arrange that, after rescaling, this intensity measure converges to a
non-trivial limit. For A%

Z Txn’Tz",VVA:Z j. g(y_xn_zn,r) m(dy)
v r A

= [ (Ja—2) T3, 2 (d2)) m(dy) @.1)

If we write
g(—x)=glx)

then, provided that A4 is a small set near the origin (2.1) should be approximated
by

(£ m(dy)(T,, Z" g)=(mA)(T,, Z™ §).

Hence, approximately,
E[Sg, T, YL A|FP]=(mA) K; (T, Z" 3).

This suggests that the appropriate choice for K, is T, Z™ g. It also explains
why a condition on T, Z™ is to be expected. We will make the following as-
sumption.

(A2) There exists constants {k,} tending to infinity such that

k! T, ZW 5t as. (2.2)
where { is a random measure.

The convergence is with respect to the vague topology on .

It is easy to deduce from Theorem 2 of [1] that, when the conditions of that
theorem hold, (2.2) holds with x,=nb, and the sequence k, can be described
quite precisely as can the limit measure {. Theorem 1 of [ 5] can also be reformulated
to yield a result like (2.2). Hence the assumption (A 2) is certainly non-vacuous. We
will also assume that

(A3) k' T, Z™3—>(g<o0 as.

Of course if g€C,, then (A 3) is implied by (A 2). Furthermore if the convergence
in (A 2) is with respect to the weak topology on 9 then (A 3) would not be needed.

Theorem 1. Suppose that (A1), (A2) and (A3) hold. If heC, let K,=T, Z™ h
then, given {,

Sk, I, Y, 50
on {{h>0} and there n is a Poisson process of rate {g/(h.

Essentially the same proof as that of Theorem 1 yields the following two
results, under the same conditions
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Corollary 1. If K, =T, Z™ g then, given {,
Sk, T, Ya
on {{3>>0} and there n is a Poisson process of unit rate.

Corollary 2
S, T, Y51

where 1 is a mixed Poisson process, with random rate (3.

It is notationally more complicated but, in fact, more natural to take Y to
be a marked point process on IR. We still assume that Yis a simple point process
on IR but now we also assume that each point has associated with it a mark,
a label, drawn from some mark space. We will consider the mark space to be
{1,2,3,...} =N in Theorem 2. Let X, be the point process, on R, formed by
considering only those points of ¥ with the mark k. Let us replace (A1) by

(A1) (A1) holds and, for each kelN, EX, has a continuous density g, on .
Theorem 2. Suppose that (A1), (A2) and (A3) hold. Let K, =T, Z™ g then, given {,

Sk, T

X,

)50
where, on {{g>0}, n is a Poisson process of rate one. The points of n have marks

in N, chosen independently, with a mark k occurring with probability {%,/(§.

We can consider Z’ to be a marked simple point process with marks, corre-
sponding to the multiplicity of the points, in IN. Viewed in this way it is easy
to apply Theorem 2 to S, T, Z®*%.

3. The Proofs

Notice that
SK,,l ’I;cn }fnzz SK—,. T;cn ’Tzn’r Y;t,r=z ’yn,r

where, given #®, {y, ,:r} are independent simple point processes. It is fairly
clear that {y,,} form a null array. To prove this observe that, for a>0,
sup{P (T, YB,>0):x} <sup{ET, YB,:x}
=sup{T, vB,:x} =2 gla
where || g| =sup{|g{x)|:xeR}. By (A2) K,— o0 almost surely on {{h>0} and
)

a
K

In the remainder of this section a.s. will mean a.s. on {{h>0}. By Corollary 10.10
of [4] it now suffices to show that

sup P(y, , B,>0|#™)<2|g|——0as.on {{h>0}.

n
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Z P(y,, A >0|,9:<">)a S nd as. (3.1)

for Ae.#, and that
Z Ely,,Bl,, 5~ 1}lﬁ(")]—>0 a.s. (3.2)

for BeZ. We will establish that

= El \F ] Emas (33)

(in the vague topology) but first we will show that this implies both (3.1) and
(3.2) here.

Suppose that, for some ¢>0, no two points of Yare within ¢ of one another.
For any Borel set A < B,

Y E[y,, AIF®]=Y P(y,, A>0F®)
+Y E[@,, A=D1, 4oyl FP] (3:4)

When K, ' a<e there is at most one point of y, , in 4, and so, because K,— oo,
we can see that when (3.3) holds so does (3.2) and then, from (3.4), (3.1) holds
also. A fairly simple truncation argument now shows that (3.1) and (3.2) hold in
general. Let Y® be obtained from Y by deleting all points within ¢ of one another.
All quantities in the process based on Y*rather than Y will be denoted by a super-
script e. We have for Ae.#

Z E[yn,y A‘f(n)] :z P(yn,r A >0|yﬂ("))+z E[(yn,r A— 1) I{'}’n.rA> 1}|g;(n)]

>Y P(y,, A>0[F2Y P, A> 0|y<">)—>%; mAd as. (3.5)

Hence, using (3.3),

(g

h mA >lim supZP(y,, LA >0|F ™)

g

>lim 1nf ZP (Y, A>0|F M) 2 2= o mA,

and, letting ¢ | 0, {°1 g so that (3.1) holds. Now
Ely,, ALy, a5 gl FPIS2E[0,, A=D1y, 40| F "]

and so (3.3) and (3.1), together with (3.5), suffice to establish (3.2).
It only remains to establish (3.3). Let

8(e, @)= sup sup |g(x+y)— &)l

Ix|<aly|ze
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As g is continuous and so uniformly continuous on compact sets we have, for any
a>0,

d(e,a)[0asel0.
Let A° denote the complement of the set A.

Lemma. For uelt, |y|<¢g, <e and a>0
IT, ug — pg1<d(ey, a+e) uB,, ,+2ugB;.
Proof.

| T, 1g — p8l =1§ (B (x + ) — B(x)) p(dx)| < [I8(x +y) — &(x) | uldx)
< [ B+ - g uda)+ (B +y)+2(x) mdx)

B,,
§5(£1,a+s) uB, . . +2ugB;.

B
Bi..

Now for feC,
Vof =By, f1F ]
=2 [ f (a2, 4+ %) K,) g(x) m(dx)

= f(xy+2+x) K,) g(x) m(dx) Z® (dz)
=[§ (K, y) gy —x,—2) Z" (dz) m(dy)
={f(K, T_, T, Z® ) m(dy). (3.6)

—Y "Xn

We will show that, for any feC,,

v, f— éhmf|—>0as (3.7
as n— oo, which is equivalent to (3.3). Note first that
Z(")g xn Z(n)g Cg
v f_— f‘ nf T Z(n)h f +| f| T Z(n)h C—h

where the final term tends to zero as n tends to infinity; using (3.6) and the de-
finition of K, the other term on the right of this inequality can be written as

\§ S (KuNT_, T, Z" g — T, Z" §) m(dy)]. (3-8)

Let a be sufficiently large that | f|< || f || B,. Now fix ¢>0. For n sufficiently
large |y| < a/K, <& and so, using the lemma (3.8) is less than

SIS (K )06 -

m|f]
K,

gB:} m(dy)

a+e

< ( a—l»s)T ZMB,,.+2T, Z™ 3B}

7 2{3B¢
—>m|fl{ “?zﬂJrth “}.
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Here q is arbitrary and (g B;—0 as a—co. This completes the proof of (3.7) and
hence of Theorem 1.

Only obvious modifications are needed in this proof to prove Corollaries 1
and 2.

Essentially the same proof works in proving Theorem 2. Here Y, and also sk
must be regarded as a point process on R x N, rather than R. The proof above
that it suffices to establish (3.3) is essentially the same; it depends only on the
assumptions that Yis simple as a point process on.R and that g is bounded and
continuous. Notice that (3.3) involves measures not 'on R but on IR xIN. If we
write functions and measures on R x N in co-ordinate form we must prove that

: ELg,

Y fim X S,

i=1 i—=1 &8
for keN and f;eC. This follows in much the same way as (3.7) did. This proves
that Sy T, Y, converges to a Poisson process on IR x N with its rate on Rx{i}
given by {g,/(g, which is equivalent to the assertion of the theorem.
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