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1. Introduction 

1.1 The so-called killing operation plays an important  role in the theory of 
Markov  processes and its applications. Given a Markov  process X in a space E, 
this operation enables us to construct a new Markov process K(X) on any 
rather "good"  part  D of this space. But stationarity of the process is lost under 
such a transformation. In this paper we shall study another operation Q, which 
transforms a stationary Markov process X (a Markov process under a sta- 
tionary distribution and with time parameter  set ] - 0 %  + ~ [ )  in the space E 
into a process of the same type with a state space D c E .  But unlike the initial 
process X, the process Q(X) has random birth and death times, and the 
corresponding measure in the space of paths can be infinite. To distinguish such 
processes from the traditional stationary processes, we call the latter "con- 
servative processes". The transition probabilities of the process Q(X) are equal 
to those of K(X); and the one-dimensional distributions of Q(X) and X are 
equal on D. But in contrast to K, the operation Q is invariant under time 
reversal. We are interested only in the case in which the one-dimensional 
distributions of X are concentrated on D and, therefore, are equal to those of 
Q(X). 

The main part  of the paper is devoted to the inverse problem: for a given 
stationary Markov  process Y in the space D to construct a conservative sta- 
tionary Markov  process in a space E =  D such that Q(X)= Y. It is obvious that 
for the possibility of such a construction, it is necessary for the one-dimensional 
distributions of Y to be probabili ty measures. We show that this condition is 
also sufficient. We also give a sufficient condition for X to be uniquely 
determined by Y (we do not distinguish two processes having the same finite 
dimensional distributions). 

We always use the same letter for measure and integral with respect to this 
measure. Thus, P{~},P being a probability measure and ~ being a random 
variable, denotes the mathematical  expectation of ~. 

By the expression "a  function on X", X being a measurable space, we mean 
a measurable bounded nonnegative function. 
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We denote by N(X) the collection of all measurable subsets of a Borel space 
X. Writing F ~ X  means the same as F ~ ( X )  

1.2 Let ( x t (03) ,P) (03~O, t~T=]-oo ,  +00 D be a Markov process in a space E 
= D ~ V .  Suppose that the set M = { t : x t ~ V  } is closed a.s. P, and M is local 
measurable, that is 

1.2.c~ For  each s < t the set M n ] s ,  t[ is ~]s ,  t[ x o~l~,tFmeasurable, where ~s,t[ is 
the completion with respect to the measure P of a(x,,  s < u < t). 

The complement of M is a union of a countable number of open intervals 
]7, 6[. Let us denote by W the set of all paths in D defined on all open intervals 
]c~,/3[. We associate with every co and every ]7, 6[ an element w~(03) of W defined 
by the formula w~(t)=x~,7<t<cS. Set G = a ( w ( s ) , s e T )  and for every A EG set 

P{A} = P ~  la(w~). (1.2.1) 
7 

We denote the process (w(s),P) by Q(xt ,P ) and we say that (w(s),P) is a 
subprocess of (xt,P) in D and that (xt,P) is a covering process for (w(s),P). The 
following expression for finite dimensional distributions of P follows from 
(1.2.1). 

P{w(sO~rD..., w(s,)~r,) 
= P{xs l~Ft , . . . ,  x ~ F , ,  [sl, s ,]c~m = 0}. (1.2.2) 

Formula (1.2.2) implies that if (xt,P) is Markovian or stationary then so is 
(w(s),P). If the one-dimensional distributions of (x ,P )  are concentrated on D 
then the process (w(s), P) satisfies the following relation. 

1.2.A For each s P{w(s)~D} = 1. 

In this paper we deal with (general) Markov processes with random birth 
and death times and it is worthwhile to give a precise definition of such 
processes. Let (f2, ~ )  be a measurable space and P be a a-finite measure on ~ .  
Suppose that two measurable functions ~(03) and /3(03) (~(03)</3(03)) are 
given; and suppose that for each t~T, xt(03 ) is a measurable mapping of the set 
{c~(03)<t</3(03)} into a Borel space E. We say that (x ,P )  is a (homogeneous) 
Markov process if the measure v ~ ( F ) = P { x ~ F }  is a-finite and there exists a 
transition function p such that 

P{xtl EdXl , XtzEdx2, .. . , xt ~dx , ,  c~ < tx, /3 > t,} 

= vt~(dxl)p(t 2 -  t l ,  x 1 ; dx2) . . ,  p ( t , -  t ,_ 1, x ,_  1; dx,). 

If v t does not depend on t then the process (xt,P) is stationary. 
The main results of the present paper are given by Theorems 1 and 2. 

Theorem 1. Any stationary Markov process subject to 1.2.A is a subprocess of  a 
conservative stationary Markov process. 

Let p be a transition function on D and let R be a measure on W.. We denote 
by G, the minimal a-algebra in W generated by all sets {w: w(s)eB, s<-_u, 
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BeN(D)}. We put R~S(p) if (w(s), R) is a stationary process and 

R{w(s)~BIGu}=p(s-u ,w(u) ;B) ,  s>u,  B ~ D .  

A measure R~S(p) is called a minimal element of S(p) if for every R1,R2ES(p ) 
such that R = R  1 -t-R2,R 1 and R 2 are proportional  to R. 

Theorem 2. I f  P is a minimal element of  S(p) and if (w(s), P) satisfies 1.2.A, then 
there exists only one conservative process covering (w(s), P). 

All the theory is invariant with respect to time reversal. Therefore, the 
theorem dual to Theorem 2 is also valid where the class S(p) is replaced by a 
class of processes having a fixed backward transition funtion. 

1.3 Now we give an example of a family of Markov  processes with identical 
subprocesses in D. Let E = T, V= {0} and D = T \  V. We start from a diffusion 
process Xt ~ on E which has an invariant distribution v and transition function p' 
such that p' ( t, x; F) = p'(t, - x; - F) (e.g., Ornstein-Uhlenbeck process). Suppose 
that a mirror is placed at point 0 at time s. We consider a process Xt which 
coincides with X ~ for t < s and is X ~ reflected in the mirrow for t > s. Denote the 
corresponding transition probabilities by p(s) Note that p(s) does not depend on ~ t ,  x ~ A t ,  x 

t i f f  s = - oo, or s = + co. The symmetry principle shows that v is invariant for 
Pt (s) for all s. Consider the family of Markov processes (x~, P(~)) with transition 

, X  

probabilities p(s) and one-dimensional distributions v. Let p be the transition ~ t , x  

function of the process X ~ killed at the first hitting time of 0; and let P be the 
Markov measure with the transition function p and the one-dimensional distri- 
bution v. It is easy to see that the equality (1.2.2) holds for ~=p(s) ;  and as a 
result, the right hand side of (1.2.2) does not depend on s. Therefore, the 
subprocess in D of (xt, P(~)) does not depend on s. 

Let v I be the restriction of v on ]0, oo[ and v 2 = v - v  1. (Note that both v 1 
and v 2 are excessive with respect to p.) Let Pi, i=  1,2, be the Markov measure 
with the transition function p and the one-dimensional distribution vi. The 
measure P in our example is the sum of P1 and P2, and (in the case of 
Ornstein-Uhlenbeck's process) both P1 and P2 are minimal elements of S(p). 

2. Reduction to the Case of Finite ~ and 

2.1 We consider a measure PeS(p), subject to 1.2.A and we try to find a 
covering process for (w(s), P). 

Each PeS(p) is a barycenter of a probability measure concentrated on the 
minimal elements of S(p). For each minimal element R either 

or 
~ = - o o  a.e. R, 

c ~ > - o o  a .e .R .  

(See [1].) Thus P can be represented in the form 

P=P~  +P2, (2.1.1) 
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where I71, P2eS(P) and 
P ~ { ~ +  - ~}--0, (2 .1 .2)  

P2{~= - oo} =0.  (2.1.3) 
Put  

v'(r)=P~{w(t)er), i=1,2; 
2 i = v i (D) ,  i = 1, 2. 

L e m m a  2.1.1. The measures v ~ and v z are singular. 

Proof. 1 ~ For  the s tat ionary measure  P1 

Pi{w( t )eD} = P l { e  < t </3} = P l i t  </3} (2.1.4) 

does not  depend on t. Thus  
P l { f l .  oo} =0.  (2.1.5) 

The relation dual  to (2.1.4) shows that  (2.1.5) implies (2.1.2) and hence (2.1.2) and 
(2.1.5) are equivalent. Therefore  

Pz{fl= oo} =0. (2.1.6) 

(If (2.1.6) is not  true, then the measure  P;{A} =Pz{A;  f l=  ~ }  is a s tat ionary one, 
which satisfies (2.1.5) and therefore satisfies (2.1.2); and we come to a con- 
t radict ion with (2.1.3),) 

2 o . The  formula (2.1.5) implies 

el  {w(s)eD} --- P1 {w(s)eD, w(s + t)eD} = S V1 (dx)p(t,  X; D) = v i (D). 
D 

Thus 
p ( t , x ; D ) = l  a.e. v 1. (2.1.7) 

On the other  hand  (2.1.6) implies 

P2 {w(s)eD, w(s + t)eD} = P2 {e < s, fl * s + t} 

=SvZ(dx)p( t ,x;D)--+O as t ~ o o .  

Thus 

p(t ,x;  D ) ~ O  as t ~ o o  a.e. v z. (2.1.8) 

Compar ing  (2.1.7) and (2.1.8), we obtain the s ta tement  of the lemma. 

2.2 Consider  the measures 2 i - lP t  and 221P2.  They both  belong to S(p) and 
satisfy 1.2.A. 

The process X i = ( w ( s ) , 2 [ l P i )  is a covering process for X 1. Suppose we 
construct  a covering process X 2 for (w(s), 2 2 j P2). The one-dimensional  distri- 
but ions of X~ and X 2 are respectively 2 i- 1 vi and 2 21 v 2, which are singular. The 
mixture  of X1 and X z with the coefficients 21 and 22 is a s tat ionary Markov  
process (as a mixture  of two s ta t ionary Markov  processes with singular one- 
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dimensional distributions). It is easy to see that this mixture is a covering 
process fo (w(s), P). 

In the sequel we shall consider only measures P for which P{f i= oo} =P{c~= 
- oo}=0. 

3. Construction of a Covering Process 

3.1 In this section we construct a process (xt,P), given its subprocess (w(s),P). 
The state space for (xt,P) is a union of D and a one point set V. 

Suppose now that the process (xt, P) is constructed. Let 

M(~o) = {t: x,(co)= V}. 

Applying (1.2.1) to the function g(w)=f(c~(w), fl(w)), f being a function on T x  T, 
we get 

P ~ f(y, 6) = P { f(e,  fl)}. (3.1.1) 
Y 

Denote by I(t) =]Lt, zt[ the interval contiguous to M which contains the point t. 
The set M is translation invariant, i.e. for each finite set t~, t 2 ,  . . . ,  t n and for each 
t the joint distribution of I(t I + t), I ( t  2 -k t ) , . . . ,  I(t, + t) coincides with that of I(tl), 
I(t2) , ...,I(t,). 

Suppose that the strong Markov property holds for (xt,P) at least for all 
stopping times zt. Denote by ~w=tw(o) the part of the path xt(c0 ) over the 
interval I(t). The paths Sw and tw are conditionally independent on the set Sw # tw 
given (zt,x~). But x~t= V; therefore for s>t  tw and Sw are conditionally inde- 
pendent given Zr Inasmuch as L=fl('w) and Lt=e(tw); the conditional inde- 
pendence of Sw and tw holds when L,Ls,  Z~ and L t are all fixed, s4=t. 

There exists a function m(x,y; A), x<y~T ,  AeG, such that 

P{tw6AlLt, z~} =m(Lt, zt; A) a.s. P 

(m can be chosen independently from t because tw=Sw on the set 
{L>t}u{L t<s} , s> t ) .  It follows from (1.2.1) that 

P{w~Alcqfl} =m(c~, fl; A). 

That gives us a clue to constructing (xt,P). First we construct a translation 
invariant Markov set M, satisfying (3.1.1) and then we "plug" into its contiguous 
intervals ]7, 6[ trajectories w; in such a way that M being fixed, they are all 
conditionally independent with distribution equal to m(?, 6; - ) .  

3.2 To construct the required set M, consider the one-dimensional distribution of 
our process 

v(F) = P{w(s)eF}. 

The measure v is a probability measure on D and it is p-null excessive (p being 
the transition function of (w(s),P)). It was proved in [1] that v can be repre- 
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sented in the form 
v(r)  = ~ v*(r) ds, 

0 

where v S is an ent rance  law for p. Deno te  by P* a M a r k o v  measure  on G with 
the t ransi t ion funct ion p and the one-d imens iona l  dis tr ibut ions v s (we put  W--0  
for s < 0, so e = 0 P*-a.e.). Deno te  by P* the t-shift of  measure  P*, that  is 

Pt* {w(s j e F 1 ,  ...,w(s,)eF,} = P *  {w(s 1 -t)eF1, ...,w(s,-t)eF,}. (3.2.1) 

Fo r  every A eG we can write 

N o w  put  

P{A}= 7 Pt*{AIdt. (3.2.2) 
- o o  

m v ) = p * { 8 e c } .  

In view of (3.2.1) Pt*{fl>s} =P*{fi>s-t}  and we have 

l=v(D)=P{w(O)eD}= ~ Pt*{w(O)ED}dt= S Pt*{fi>O}dt 
- ~ o  - o o  

o o  

= ~ e * { 8 > - t } a t = S e * { 8 > u } a u = f / 7 ( ] u ,  ooE)a,,. (3.2.3) 
- m  0 0 

The relat ion (3.2.3) is equivalent  to 

oo 

I x Fl(dx)= 1. (3.2.4) 
o 

Therefore  17 satisfies the condi t ions of  T h e o r e m  1 in [2] and we can construct  a 
(0 , / / ) -genera ted  t ransla t ion invar iant  closed M a r k o v  set M (for definitions and 
proper t ies  see [2]). Let  (~, ~,~, P) be a sample  space for M and let ]?, 6[ denote  as 
usual the intervals cont iguous to M. 

L e m m a  3.2.1. For any function f in Tx T 

~, f (y ,  6) = P{ f (~ ,  8)}. (3.2.5) 
Y 

Proof Due  to (3.2.2) the right side of  (3.2.5) may  be rewrit ten as 

Pt* {f(~, 8)} dt = ~ P,*{/(t, 8)} dt. 
(3.2.6) - o o  oo 

In view of (3.2.1) 

P2 {g(8)} = P* {g(8 + t)} = J g(x + t) n(dx); 

and the right side of  (3.2.6) is equal  to 

- o o  

(3.2.7) 
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Theorem 1 in [-2] yields 

[~ ~ f ( 7 ,  ~) = c f ( t , t+y ) I I (dy )  dr, (3.2.8) 
- - 0 3  

where c is given by (1.5) in [-2]. By virtue of (3.2.4) c = 1 and (3.2.7) is equal to 
(3.2.8). 

3.3 Unfortunately the function m ( x , y ; - ) ,  which represents the conditional 
distribution of w~ given ~,=x, 6=y,  cannot be obtained as a kernel from Tx  T 
into W, but only as a quasi kernel (as defined below). That is why to justify the 
definition of measure P given by (3.3.3) we need Theorem 3.3.1. 

Let ( X , d )  and (Y,,~) be two measurable spaces and Q be a measure on d .  
We say that n(x; F), xEX,  F e N  is a stochastic Q-quasi kernel from X into Y 
if the following conditions are satisfied: 

3.3.e for any F e ~  n(. ; F) is d-measurable; 
3.3.fl for Q-almost all x e X  n(x; Y)---l; 

3.3.7 I f  F i is a sequence of disjoint sets then 

n(x ; U Z n(x ; 
for Q-almost all x e X .  k k 

Note that if O is any measure on the product X x Y and a o--finite measure Q on 
X is a projection of Q on X then the function n(x; A) which is a Radon- 
Nikodym derivative of Q(dx x A) with respect to Q(dx) is a stochastic Q-quasi 
kernel from X into Y 

Lemma 3.3.1. Suppose that X 1 , X  2 and Y are measurable spaces and Qi is a 
measure on X i. I f  ~ is a mapping of X 1 into X 2 such that ~-1(Q2) is absolutely 
continuous with respect to Q1, then for every stochastic Qz-quasi kernel n from X 2 
to Y the function n(~(x); A) is a stochastic quasi kernel from X a into Y. 

The proof of this lemma is trivial. 

We need the following theorem. (The writing (Y03, N~) means the countable 
product of the space (Y,, N)). 

Theorem 3.3.1. Let ( X , d )  and (Y,,N) be two measurable spaces and Q be a finite 
measure on d .  I f  nl, n2,.., is a sequence of stochastic Q-quasi kernels from X into 
Y,, then there exists a measure Q on (X x Y03 ,d  x~03) such that for any n 

Q ( A x F l x . . . x F ,  x Y x Y x . . . ) = S n ( x ; F ~ ) . . . n ( x ; F , ) Q ( d x ) ,  A e d ,  FiEf .  
A 

The proof of this theorem does not differ from the proof of the Kolmogorov 
theorem. 

Consider now a measure .~ on T 2 x W 
E 

N(FxA• fl~A,w~A}, F,A~T, A~G; 
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and let N(B) = N(B x W), B c T 2. It  is obvious  that  N is concent ra ted  on the set 
{(x,y): x, yET, x<y}  and 

X(]  - co, t [  x It ,  co D = P{c~ < t, fl > t} = P{w(t)~D} = 1; 

so N is a o--finite measure  on T z and there exists a s tochast ic  N-quas i  kernel  
m(x,y; A) which is a R a d o n - N i k o d y m  derivat ive of  N(dx x dy x A) with respect  
to N(dx, dy). 

Let  r l ,  r2 , . . .  , rk, . . ,  be a sequence of  all ra t ional  numbers .  Deno te  

x(k) = x(k, &) = Lr~(&); 

y(k) = y(k, c~) = ~rk(~); 

z(k ) = z(k, co): (x(k, co), y(k, Co)), 

where L, and  z, are defined relative to M as in Sect. 3.1. 

L e m m a  3.3.2. For every k 
nk(&; A)=m(z(k); A) 

is a stochastic P-quasi kernel from ~2 into W. 

Proof. By virtue of  L e m m a  3.3.1 it is only necessary to check that  

3.3.1 Fo r  any A c T 2 of  N - m e a s u r e  zero 

15{z(k)~d} =0 .  

The formula  (1.3) in [2] shows that  for any (0 , / / ) -genera ted  M for every t 

15{teM} = 0 ;  (3.3.1) 

and thus x(k)< rk< y(k) a . s .P .  Therefore  

15 {z(k)e A } = [J {z(k)e A, x(k) < r k < y(k)} 

= P  ~ 1, < ~k<a la(7, 6) <15 ~, la(7, c5). (3.3.2) 

In view of  (3.2.5) the right side of  (3.3.2) is equal  to 

P{(c~, fl)eA} = N ( A ) = 0 .  
Put  

f a = ~ x W  ~176 , , ~ = ~ x G  ~176 

T h e o r e m  3.3.1 provides  the existence of a measure  P on (f2, ~,~) such that  

P { A •  1 x B 2 x . . .  •215 W• W• 

=~nx(&,Ba)n2(&,B2)...nk(&,Bk)15(d&), A e # ,  B~eG. (3.3.3) 
A 

N o w  we define the process  x,(o)). As it was men t ioned  the state space of x t is 
equal  to DwV, where V is a singleton. Put  
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k(t) = inf{m: x(m) < t < y(m)}, 

fV if t~M(&) 
x,(co) = x,((5, w l ,  w 2 , . . . ,  wk, . . .)  = l wk(,)(t ) otherwise. 

In the next section we shall show that (xt,P) is the desired process. 

283 

4. Proof  of  Theorem 1 

4.1 For the proof of Theorem 1 it is sufficient to show that (xt,P) constructed 
in the previous section is a stationary Markov process and its subprocess in D is 
(w(s),P). 

The following lemma shows the fundamental relation between the measure [~ 
(the distribution of the random set M) and the measure P. The fact that (w(s), P) 
is a subprocess of (x~, P) is a simple consequence of this lemma. 

Lemma 4.1.1. For any functions f and g on T and any A~G 

fJ ~, f(7) g(6) m(7, 6; A) = P {f(a) g(fl) 1A}. (4.1.l) 
3' 

Proof. We can apply Lemma 3.2.1 to the left side of (4.1.1) and obtain 

~ f(7) g(3) m(7 , 6; A) = S f (x )  g(y) re(x, y; A) P{(c~, fl) 6(dx, dy)} 
7 

= ~ f (x )  g(y) m(x, y; A) N(dx, dy), (4.1.2) 

where N is the measure defined in Sect. 3.3. Since m(x,y;A)  is the Radon- 
Nikodym derivative of N with respect to N, the right side of (4.1.2) may be 
rewritten as 

f (x )  g(y) 1A(W ) N(dx, dy, dw) = P{f(~) g(fl) 1A}, 

and that is equal to right side of (4.1.1). 

Corollary. The process (x t, P) is a covering for (w(s), P). 

Proof Take A~G and calculate 

P ~  1A(w~)=f~m(y,  5; A) =P(A). 
7 7 

Denote by vt~2...t" the n-dimensional distributions of (x~,P) 

vt~...t,(r)-=e{(xtl , . . . ,xt,)EF}, _FEE'. 

The Markov property of (x t, P) follows from 

Lemma 4.1.2. Fix t I < t z < ... <t, .  For any F, c E  there exists a function g on E 
such that for any F 1, F 2 . . . . .  F,_ 1 = E 

~ , , . . . d r ~  x . . .  x iv)  

= ~ ~),l...f., I(MXl, ...,dxn__l)g(X?t__l)* ( 4 . 1 . 3 )  
ffI x . , . x r n - 1  
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Proof In view of (3.3.1) P{xteV } =0 for any t and it is sufficient to prove (4.1.3) 
only for F i ~ D. 

Let J be a set of k two-dimensional integer-valued vectors 
{(il,jl),(i2,J2), ...,(ik,Jk)}. We say that J is a k-partition of n if 

l= i l  <i2 <... <ik <=n, l <=jl <ja <... <jk=n, 

i e + l = j t + l ,  ( = l , 2 , . . . , k -  1. 

We denote by ~(n,k) the set of all k-partitions of n and by ~(k) the union of 
~(n,k) over all n. Let ~I(n,k) be the subset of ~(n,k) containing all Je~(n,k)  
whose k-th vector is equal to (n,n) and fB(n,k) be the compliment of !I(n,k) in 
~(n,k). It is obvious that 

Denote 

~i(n, k)= {Jw{(n, n)}: J e t ( n -  1, k -  1)} (4.1.4) 

/~, = {co: x,,(co)er,}, A, = {w: w(t,)er~}. 

Let ~k stand for the sum taken over all "Yl,gz,--.,?k such that 
7, <7z < . . .  <Yk- We denote by ~(, ,k)the sum over all J =  {(iDJl),'",(ik,Jk)}e 
| The symbol ZI,, k) stands for the sum over all Jell(n,k) and Z'('~ k)stands 
for the sum over all JefB(n,k). 

We have 

Vtll* . . . .  t.(~r~l x & x .. .  x & ) = P { A 1 A  2 . . .  J,,} 

= ~ Z(,.~)Z~P{A,A~ ... ~,, ~, < t ~  < t ~ < . . .  < t j ,  < ~ 1 ,  
k < n  

Y2  < t i 2 <  "'"  < tj2 < ~2, " " ,  Yk  < t i k  < " '"  <t,  < 6k} 

= P[k__<, t ~ ~,(,.k) ~ kt= ~ ~m(y~,c~t;A~A~+~ . ..Aj~)} 

t k tt =~'{ Z Z(,.~)Z ...} +P{ Z Z , ~ ) Z  ~...}. 
k < n  k<-_n 

(4.1.5) 

For J = {(il,Jl), (i2,j2), ..., (iq,jq)} e ~(q) put a(J) = tjq; and 

gJ (x , y )=m(x , y ;A i tA i t+ l  ...Aje), x, yeT; 

~0J(x)= - x  J , , J , , . lx>,(s)P {2gl(Ysl,Ysl-)g2(Ysz,Ys2-) "" gq(Ys,,J * Ysq-)},* 

where the sum under px is taken over all sequences s~,s2 .... ,sqeO such that 
s 1 >s  2 > ... >sq. (We put 6 (0)=0  and ~oJ(x) = - 1 for Je~(O).) 

Denote the first and the second summand in the right side of (4.1.5) by Zt  and 
Z 2 respectively. Let [~y be the transition probabilities of a (0,//)-process Yt and PY 
be the transition probabilities of the process y* which is equal to -Yv Let O 
denote the set of the discontinuities of a process with independent increments. 
Put 

r  lx<, [~x{ ~ 1,t - <,,<,m(yt_,yt; A,)}. 
teO 
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Applying successively (4.1.1) and Lemma 6.8 in 1-2] we get 

Z I = P  (,,k)Z g J(7 t,6 ~) 
= ~ ' = 1  

:P{k<n_2 12(n--l,k) 2k2y>yk m(7' 6 ; An)e=~Ii g J(~) y, t~ g)} 

~V{ 22(n-l'k) 2k~'l((~k)~IJ } k < = n - X  ff=l g v~(~ ~' ~ v~) 

=P{m~=lk<~m-12(m-l"k) 2k 2,>.~km("(5; aman+l ""An-1) l~t((~)" ~'=lgJ( ')"~"~g) 

=ethel.m= 1 k<=m -21Z(m-I'k,2q)J(~J)gn(~)'(~;Am'''An-1)@((~)}''/ (4.1.6' 

Lemma 4.1.1 and the Markov property of (w(s),P) provide that the right side of 
(4.1.6) is equal to 

where 

n-1 
~ ~.(,.- 1, k) P {(,~ 1A=A . . . . . .  A._~gt(w(t.-1)} m= l k<=m--1 

g, (w(t._ ,)) = P { g,(fi) la >,._ ,]w(t,_ ,)}. 

A similar computation yields 

n-1 
z 2 =  F, . . . . . .  m=lk<=m-1 

(4.1.7) 

(4.1.8) 

where g2(w(t,_O)=P{w(t,)eF,[w(l,_l)}. Adding (4.1.7) and (4.1.8) we obtain 
(4.1.3) with g = g l  +g2. 

4.2 Now we prove that (x t, P) is a stationary process. Because (xt, P) is Markov 
it is sufficient to prove that (xt,P) has stationary two-dimensional distributions. 

Consider 

P{XsEF, xt~A} =P{~l~<s<t<a lr(xs) l~(x,)} 
V 

+P{  ~ 1,,<,<al<,<a= lr(xs) 1A(X,) }. (4.2.1) 
~l<Y2 

In view of Lemma 4.1.1 and the stationarity of P the first term in the right side 
of (4.2.1) is equal to 

P {w(s)~ F, w( t)e A } = P{w(s +a)eF ,  w( t + a)e A }. (4.2.2) 
Denote 

A 1 ={w: w(s)~F}, B 1 ={w: w(s+a)eF}; 
A2={w: w(t)~A), Bz= {w: w(t+a)~A}, 

The second term in the right sife of (4.2.1) is equal to 

acT. 

P{m(z(s); A1)m(z(t); A2); z(s)=i=z(t)}. 
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Here z(t) is a two-dimensional vector (L t, zt). Since P is a stationary measure 

m(x,y;A1)=m(x+a,y+a;B1) for N a.e.(x,y) 

In view of 3.3.A 
m(z(s); A1)=m(z(s)+a;B1) a .s .P .  

(The writing z+a for z=(x,y) means (x+a,y+a).) Similarly for m(z(t);A2). 
Owing to the fact that the set M is translation invariant, we get 

P{m(z(s); A1) m(z(t); A2); z ( s )  :# z(t)} 

= ~' {m(z(s) + a; B1) m(z(t) + a; B2); z(t) 4: z(s)} 

=P{m(z(s+a); B1)m(z(t+a); B2); z(s+a)*z(t+a)} (4.2.3) 

Combining (4.2.3) and (4.2.2) we obtain the stationarity of the left side of (4.2.1). 

Remark. All the proofs remain valid if W is not the set of all paths in D with 
random birth and death times, but if W is some subset of this set (say the set of 
all right-continuous, continuous, etc. paths). The construction of x t shows that 
the trajectories of a covering process may be obtained from the trajectories of its. 
subprocesses. 

5. Theorem of Uniqueness 

5.1 The rest of the paper is devoted to the proof of Theorem 2. 
We suppose that (xt(co),P), cosf2, is a Markov process with a state space E 

=DwV, whose subprocess in D is the process (w(s),P) subject to the conditions 
of the Theorem 2. We shall prove that the two-dimensional distributions of 
(xt,P) are uniquely determined by (w(s),P). Since (xt,P) is Markov, all its finite- 
dimensional distributions can be calculated from the two-dimensional ones and 
are uniquely determined by (w(s), P). Let P* be the measure defined in Sect. 3.2. 
In Sect. 5.3 we prove Theorem 2 for the case of finite P*. The rest of the paper 
is devoted to the case of infinite P*. 

In Sect. 5.4 we investigate the properties of a local time is of the process x t 
corresponding to the set V. Then we evaluate the expression (1.2.1) in terms of 
the local time is and the shifts of measure P* (Lemma 5.5.2). This expression is 
similar to the main result of [3]. Using this formula, we prove that the inverse 
function Yt for the function is is a process with independent increments; and we 
calculate the characteristics of this process from P* (Sect. 5.6). Using this fact, 
we find the expression for the two-dimensional distributions of (xt,P), which 
involves only the measure P, shifts of the measure P* and the transition 
probabilities of Yt; therefore this expresison ultimately depends only on (w(s), P). 

By G~+ we denote the a-field in W of all sets A such that A~{o~<t}EG t. 
Denote 

~ = ~ ( x ~ , s < t ) ,  ~'=~(x.,u>__t), 

~ , =  A g,,, d ' = A ~  s. 
u>t s>t 
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(The bar over a means the completion of the corresponding o--field with respect 
to the measure P.) 

We don' t  suppose that x t has any regularity properties but we assume that 

5.1.A The set M={(t ,  co):xt(co)6V } in Tx (2  is progressively measurable with 
respect to the filtration d t and d t .  

(Without an assumption of such type the relation (1.2.1) can be senseless. 
Note also that for a closed set M 5.1.A is a consequence of 1.2.cQ We also don't  
assume that the process (xt, P) has a transition function. Nevertheless for f a 
function on D we write ~(s,x; t , f )  for a function on D such that 

p(S, Xs; t , f )=P{f(xt) lxs} a . s .P .  (5.1.1) 

(Since for each s~(s,x; t , f )  is defined by (5.1.1) only up to the measure v we may 
not define ~ for x~ V; therefore the definition of p is meaningful.) 

The process (w(s),P) has a homogeneous transition function p and we can 
construct transition probabilities of P, that is the family of Wobability Markov 
measures P~,x on GS=o-(w(t), t>s) such that Ps, x{w(t)er} = p ( t - s ,  x; F). Put 

o-~ = ~ + = lira ~, = inf{u: u > t, x,  ~ V}. (5.1.2) 
uSt 

Note that 

Pt, wlt){g(fi)}=P{g(fl) lp>tlw(t)} a.e. P; 
and 

Pt, x, {g(fi)}=P {g(o-t)lxt} a . s .P .  (5.1.3) 

A real-valued process ~t(co),t~T, co~? is called well measurable if it is 
measurable with respect to the o--field in T x O generated by right-continuous 
processes th(e) ) adapted to d t (see [4] for detailes). 

By R-lim g(s), g being a function on T we mean the limit of g over the set of 
rational numbers. The letter m will denote the Lebesgue measure on T. 

5.2 If P is a minimal element of S(p) then either 

P { ~ #  - o0} = P { 3 #  + oo} =0,  
or  

(5.2.1) 

P { a =  - oe} = P { f i =  oo} =0. (5.2.2) 

If  P satisfies (5.2.1) then Theorem 2 is trivial. The measure P is a probability 
one and the only covering process for (w(s), P) is (w(s), P) itself. 

So, we shall consider the case in which P is subject to (5.2.2). In this case P is 
represented in the form (3.2.2) with It* given by (3.2.1). By [1] Pt* is an extreme 
measure in the class of all Markov measures with the transition function p. 

The following lemma is crucial in he proof  of Theorem 2. 

Lemma 5.2.1. Let g(t,x) be a function on D for each t~T. The following three 
conditions are equivalent. 

5.2.A R-lim g(r, xr(o~)) exists for all 7 a.s .P.  
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5.2.B R-lira g(r, w(r)) exists a.e.P.  

5.2.C For m-almost all t, 

R-lim g(r, w(r)) exists a.e. Pt*. 
rSt 

Moreover if 5.2.A holds, then there exists a function hg(s) o n  T such that 

R-lira g(r, x~) = hg(7) for all 7 a.s.P. (5.2.3) 

The function h g is determined uniquely up to the measure m by the process (w(s), P). 

Proof Set 
A = {w: R-lim g(r, w(r)) does not exist}. 

r$~,, 

By (1.2.1) 

P{A} =P~IA(W~) 

= P { ~ 7" R-lira g(r, Xr) does not exist}. (5.2.4) 
r ; 7  

The expression (5.2.4) shows the equivalence of 5.2.A and 5.2.B. Owing to the 
fact that P satisfies (3.2.2) and that P f f { ~ t } = 0 ,  the equivalence of 5.2.B and 
5.2.C holds. 

The function 
~(w) = (1 - 1A(W)) R-lira g(r, w(r)) 

r $ ~  

is G,+-measurabte. Since the measure P~* is extreme, ~ is a constant Pt*-almost 
everywhere (see [1-1). Denote this constant by hg(t). By 5.2.C P,*{A} =0  for m- 
almost all t and we can write 

m 

P{~7: R-lim g(r, x,) * hg(7)} = P {R-lim g(r, w(r)) ~= hg(e)} 

= ~ Pff {R-lim g(r, w(r)) =t= hg(t)} dt = O. 
rSt 

That proves (5.2.3). 

5.3 We consider the case in which 

P*{W} < oo. (5.3.1) 

We prove that the set M in this case is a.s. discrete (Lemma 5.3.1). Lemmas 5.3.2, 
5.3.3 and 5.3.4 show that the strong Markov property holds for the stopping 
times ~ which belongs to M and that the corresponding conditional distri- 
butions can be computed from the measures P*. Lemma 5.5 gives us an 
expression for the two-dimensional distributions of (xt,P), which depends only 
on P. 

Lemma 5.3.1. I f  (5.3.1) holds then for any finite interval ]s, t[  the number 7 such 
that 7~]s, t[- is finite a.s. P, the set M = {t:xt~ V} is a.s. P discrete. Moreover 

M = { t : t = V } = { t : t = f i }  a . s .P .  (5.3.2) 
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Proof The second and the third statements of the lemma follow trivially from 
the first one. To prove the first consider 

P { ~ y : T e ( s , t ) } = P  ~ lw(w~)=P{s<e<t}  
S < ] ~ < t  

-i - P * { W } d u = ( t - s ) P * { W } < ~ .  
s 

Lemma 5.3.2. I f  f is function on T then there exists a function ~f on T such that 

R-limP~.~,{f(fl)}=~ff(V) for all 7 a.s .P.  (5.3.3) 
r ~ v  

I f  ~ is a function on D then for any t e T  there exists a function (t,t on T such that 

R - l i m p ( r , x ~ ;  t , Y ) = ~ t  ' e(7). a.s. P (5.3.4) 
r,L~, 

The functions tl f and ~t, ~ are determined uniquely up to the measure m by the 
process (w(s), P). 

Proof The function 
g(s, x) = P~, ~ { f(~)}, 

is p-excessive. In addition, for any u 

Therefore 

ssT, x sD  (5.3.5) 

sup P* {g(t, w(t))} < P* { f(fl)} < [-sup f(s)]  P* { W} < oo. 
t s e T  

R-lim g(r, w(r)) exists a.e. P*. 

Applying Lemma 5.2.1 we obtain (5.3.3) with tff equal to h g, g given by (5.3.5). 
The proof of (5.3.4) is similar. 
Put 

o-~1 = o's, o,~m+ 1 -  0,~ = i n f { u : -  ~ u>o,~,ueV},~ m = 2, 3, .... (5.3.6) 

Lemma 5.3.3. For any se T and any function g on D and any function f on T 

- -  m +  P{g(x~)f(o,s 1)} = P  {g(x~) r/f(o,~)}. (5.3.7) 

Proof Let 
o ' m +  1 .  

zn=k2  -", if (k-1)2-"__<o,~<k2-".  (5.3.8) 

m ~.n The assumption 5.1.A provides that o's,o's, are stopping times with respect 
to su~t. The stopping time z" takes only rational values. So we can write 

p{g(xs)f(o,7+ 1)} = lim P{g(x~)f(z) 1~,<~} 
n ~ o o  

= lim P{g(Xs) 1~ <~ ~(-c", x~,)}, (5.3.9) 
n ~ o 9  
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where ~(s,x) is a function on T x  D defined for each s up to measure v such that 

~(S, Xs)=P{f(G)lG} a.s. ~. 

By (5.1.3) 

~(s,x)=P,,x{f(fi) } for v-almost all x. 

Since z"~,a'~ and am coincides with some 7, we can apply (5.3.3) to (5.3.9) and 
obtain 

P{g(x~) f(a"] + a)} = lim P{g(G) P~,,~,{f(B)}} =P (g (G )  qz(a~")} �9 

The following lemma completes the proof of the Theorem 2 in the case when 
(5.3.1) holds. 

Lemma 5.3.4. Fix s, teT. Define 

0o(X; A)=p(s,x; t, A), 
O,(x; A)=e~,~{7~,(fl)}, xeD, A=D, 

~. (u)=~  . . . .  (u), 

Then 
ucT, 

~{Xs~r,x~eA} = ~ [. v(dx)G(x; zO. 
k = O F  

Proof Since the set M is discrete 

(5.3.10) 

P{x,~F, xtsA}= ~ P{GeF, xtEA, #(Mc~]s, tD=k}. (5.3.11) 
k = O  

Prove that k-th additive in (5.3.11) is equal to that of (5.3.10). For  k = 0  it is 
obvious. Let k > 0  and let a"  and z" be given by (5.3.6) and (5.3.8) respectively. 
Then 

P{x,~F, xteA, ~ (M~]s, t D = k} 

=P{x,er ,  xt~A, o~ < t < O~s + ~} 
= lira P{G~F, xt~A,z'<t,G,>t } 

n ~ o o  

= lira P{lr(G)p(z",x~,; t,A)}. (5.3.12) 
n ~ c o  

Applying Lemma 5.3.2 we see that (5.3.12) is equal to 

P{ lr(xs) ~t, l ~(a~)} �9 (5.3.13) 

If k =  1 then (5.3.13) is equal to 

P{lr(x,)  P,,x,{(t, l~(fi)}} =P{lr(xs) Oa(xs, A)}. 

For  k >  1 we must apply k - l  times (5.3.12) and we obtain that (5.3.13) is equal 
to 

P{lr(x,) Ok(x,; A)} = ~ v(dx) G(x; A). 
F 
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5.4 F r o m  now on we consider the case 

P*{W} = oe. (5.4.1) 

L e m m a  5.4.1. If(5.4.1) holds then, for each s, 

R-l im Pr, w(r) { f l -  r} = 0 a.e. P*. (5.4.2) 
r + s  

Proof Let  s = 0. The  function 

h(x) = h(r, x) = Pr, x {fl - r} (5.4.3) 

is p-excessive. In addi t ion 

sup P* {h(u, w(u))} = s u p  P* { ( f l -  u) l~>u) < P *  (fl) = 1. 
u > 0  u > 0  

The last equali ty is due to (3.2.4). Therefore  

= R-l im h(r, w(r)) 
r+O 

exists a.e. P*. Since ~ is G~+-measurable  and P* is an extreme M a r k o v  measure  
then ~ = e = c o n s t a n t  for P* a.e. w (see [-1]). Suppose  e > 0 .  In view of (5.4.1) there 
exists r > 0  such that  P{h(r, w(r))>e/2} > 4/e we have 

P* {fl} > P* { ( f l -  r) 1~ > ~} = P* {h (r, w(r))} > e/2.4/e  = 2; 

and we come to a contradic t ion with P* {fl} = 1. 
Put  

M ~ =  {t:xtEV, and for some e > 0 ,  xs~V for all sE]t , t+e]} 

= { t ' t = y  for some 7} 

L e m m a  5.4.2. For each stopping time q with respect to d t 

P{~EM ~} =0. 
Proof For  s e T  put  

# , ( s ) = k 2 - " ,  if ( k -  1 ) 2 - " < s < k 2 - " .  (5.4.4) 

Put  A = { t t E M  ~} and t/, = (,(r/). Applying (5.1.3), L e m m a  5.4.1 and L e m m a  5.2.1 
we get 

P{(a ,  - q) 1A} = l im P{1A P { % , -  t/ , ld,} 
n ~ c o  

= lira P{1 A lira h(tt, ,x,.)} =0 .  
n ~ o o  n ~ a o  

Since o - , - r / > 0  on A, P{A} =0.  

Corollary.  The set M is nowhere dense and does not contain isolated points a.s. P. 
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Proof By [4], Ch. VI, T9 the set of isolated points is a countable union of graphs 
of stopping times. Since P{t eM} = P {x t s V} = 0, by virtue of Fubini's theorem 
re(M)=0 a.s.P. 

Put ~'s = Z (6 - 7), s > 0. 
O < 7 < s  

By [4], Ch. 5 there exists a dual well measurable projection is of (~ with respect 
to d , .  

Lemma 5.4.3. The process ~s,s > 0 is a continuous process which increases iff s6M. 

Proof 1 ~ By the construction is is right-continuous. By T30, Ch. V in [4] for 
any well measurable ~ 

Let q be an arbitrary stopping time. By Lemma 5.4.2 P{q=7  for some 7} =0. 
Applying (5.4.5) to ~,= It= ., we get P { ~ , - i , _ }  =0. By T30, Ch. IV in [4] i is a 
continuous increasing process. 

2 ~ By virtue of 5.1.A and T4, Ch. VI in [4] M is a well measurable set. Take 
~t = 1T~M(t) and apply (5.4.5): 

Therefore, it does not increase on T \  M. The set N of increasing point of i 
(called in [4] the support of i) is a well measurable set. To prove that N 
contains M we must prove that for each stopping time t/ and for each e>0  
~ + ~ - ~ > 0  a.s. on {t/~M}. Put q~=inf{t" t>t/ ,  i t > i , } ,  A = { q ~ M ,  q~>t/}; set 
~t= 1 a 1,<t< ~ and apply (5.4.5). 

0 = P  1A dit =P{1A ~ (~5--7)}. (5.4.6) 
q<y<~o 

By Corollary of Lemma 5.4.2, re(M)=0 a.s.; therefore on the set A 

Z ( 6 - 7 ) > ~ ~  a .s .P .  (5.4.7) 
t / < y  < r 

Comparing (5.4.6) and (5.4.7), we see that P{A} = 0. 

5.5 Here we express (1.2.1) in terms of the functional i and the measures Pt*. 
Consider h(x) defined by (5.4.3). Note that since/~ > s a.e. Ps, x then h(x)> 0 for 

all x~D. 

Lemma 5.5.1. For each function f on D such that f /h  is bounded and for all 7 

R-lim p(t + r, xr; f)/h(xr) = P~ {f(w(t))} a.s.P. 
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Proof Put g(u ,x )=p(u ,x ; f ) /h (x) .  By Lemma 5.2.1 it is enough to prove that for 
all s 

R- l img( t - r , w ( r ) )=P*{ f (w ( t ) ) }  a.s. P*. (5.5.1) 
r,Ls 

Let s = 0. Put ph(s, X ; dy) = h(x) - 1 p(s, x; dy) h(y); put '),(F) = P* { lr(w(u)) h(w(u))}. 
Let Q be a Markov measure with transition function ph and one-dimensional 
distributions ~,. By [1] Q is an extreme measure; Q{W}=P*{f l}= 1; and 

R - l i m p h ( t - r , w ( r ) ; f / h ) = Q { f / h ( w ( t ) ) }  a .s .Q.  (5.5.2) 
r $ 0  

Note that for any A e G~, Q {A, fl > e} = P* { 1A 1~ >~ h(w(e))}. Therefore the relation 
(5.5.2) is true a.s. P*. Since Q {f/h(w(t))} =P* {f(w(t))} and ph(u, X; f /h)=g(u ,  x), 
we get (5.5.1). 

Now recall that G o is a a-field in W generated by the sets {w(s)aF},s>O. 

Lemma 5.5.2. For any G~ function F(w) and any process ~t(co), well 
measurable with respect to d t 

P{ ~ (,F(w~)}=P (tPt*{F}d~t . (5.5.3) 
y > 0  

Proof It suffices to prove (5.5.3) for 

F(w) =fl(w(t O) f E(w(t2)) ... fk(w(tk)), 

where O < t x < . . . < t  k, f,. is a function on D such that f ]h  is bounded. Put A 
= {x~ V for all s e It 1, tk] } and 

g(x) = P{f l  (xt~) ". . fk(xtk) l a[xtl = x} 

= P{ f l (w ( t l ) . . .  fk(w(tk))iw(ta) = x}. 

Set 7, = (,(7)- Then 

P{ ~ ~,F(w~)} =P{ ~ ~, l~,<t 1 <,,~<,~F(w])} 
7 > 0  y>O 

= lira P{ ~ ~ l~,,<tl<,k<~h(x~,)-l(fi--V,)p(t~--V,,x~,; g)} .  (5.5.4) 

Applying (5.5.1), we see that the limit in (5.5.4) is equal to 

P { ~  ( ,P*(g(w(t0)}(6-7)}=P{ 2 (, P~* {F} (6 - 7)}. (5.5.5) 
7 > 0  y>O 

Since ~t(co)=Pt*{F} ~t(~o) is a function well measurable with respect to dr,  we 
can apply the formula (5.4.5) to (,. Doing so, we get that (5.5.5) is equal to (5.5.3). 

5.6 In this section we consider the inverse to the process {, and prove that this 
inverse is a process with independent increments. 

Denote 
yu=inf{t: ~,>u}. 
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Lemma 5.6.1. For any function F(t) on T 

i F(t)d~t= ~ la<,,<bF(y,)ds" 
a --oa 

To prove this lemma it is sufficient to change variables in the Lebesgue 
integral. 

Lemma 5.6.2. The process Ys is a right-continuous strictly increasing process of 
pure jump type, i.e., 

Y , -Ys  = ~ (Y,-Yt-). (5.6.1) 
s<t<-_u 

Proof The right-continuity of ys follows immediately from its definition. By 
virtue of Lemma 5.4.3 ~s is a continuous increasing process; hence for all u ~yu 
=u. Consequently Y,>Yt if u> t .  Since Ys is an increasing process, for any 
u>s>_O 

- Y , -Ys  > - ~ (Y,-Yt-). (5.6.2) 
s<t<=u 

Take a (U)=~ ,  . By Lemma 5.4.3 ya~v)=~v. Since 4, does not increase for 
s ~ T ' , M ;  we have 

( 3 - 7 )  > ~ (Yt-Yt-). (5.6.3) 
O < ~ , < a v  t<a(U)  

We know (see Lemma 5.4.2, section 2 ~ that re(M)=0; therefore 

Y,(v)-Yo = ~ v -  ~o = ~ (6 -  7). (5.6.4) 
O < y < ~ r y  

The relations (5.6.4) and (5.6.3) yield 

Ya~v)-Yo < ~ (Y~-Y,-). (5.6.5) 
t<a(U)  

Comparing (5.6.2) and (5.6.5), we see that (5.6.1) holds for all s<u<a(U). 
Since a(U)-~oo as U---, o% we get (5.6.1) for all s and u. 

Lemma 5.6.3. The process (y~,P) is a (O, 17)-process with /7(F)=P*{fi~F}.  
Moreover Yt-Y~ is independent on ~y .  

Proof L e t f b e  a function on Tand let Ai(s, u) stand for the s u m f ( y  t - y t _ )  taken 
over all t~]s, u] such that y t > y t .  By Lemma 5.6.2 

A f(s, u) = ~ f  ( 6 -  7) l y , ~  <y. (5.6.6) 
V 

Take AEsdy~, ~t=lA ly~t<y~, F(w~)=f (3 -  7). Applying successively (5.6.6) and 
Lemma 5.5.2, we get 

P{1AAf(s , u)} = P { ~  (,f(w~)} 
7 

= P  {j'(,P* {F} d(, = P {  1A~ lv,__< , <yP*  { f ( f l -  ~)} d(,} 

= P  1A/7(f) ~ d~, ----(u--s)//(f)P{A}. (5.6.7) 
Ys ) 
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Formula (5.6.7) shows that for each f Af(s,u ) is independent of dy  s and 
P {As(s, u)} = (u-  s)H(f). This implies the statement of the lemma. 

5.7 In this section we derive the formula for two-dimensional distributions of 
(xt,P). We show that they can be calculated from the characteristics of (w(s), P). 

Lemma 5.7.1. Let Py stand for the transition probabilities of (0, H)-process. I f  f (t) 
is a function on t and A~Sr then 

P {1A i f (t)d~}=P {1AcP(ao)}, (5.7.1) 

where 

(P (Y)= [~'{i f(y,)dt}. (5.7.2) 

7he proof of this lemma follows from Lemmas 5.6.1 and 5.6.3 and the equality 
~ = Yo. 

Lemma 5.7.2. Put f(t)=lt<uP*{w(u)~A}, A cU. Let (p(y) be defined by (5.7.2). 
Then for F c D 

P{xseF, x,~A}=P{w(s)6F, w(u)~A}+P{lr(xs)~o(fl)}. (5.7.3) 

Proof We prove (5.7.3) for s = 0  and u>0.  

P {xoeF, x,~A} = P {xo~F, Xu~A , [0, u]r~m=0} 

+P{xo~F,x,~A , [-0, u]nm4=r (5.7.4) 

The first summand in the right side of (5.7.4) is equal to 

P{~l,<ola>,lr(w(O))lA(w(t))}=P{w(O)~F,w(u)EA}. (5.7.5) 

Put A = {x0EF}, ~t= lt< .. The second summand in the right side of (5.7.4) can be 
written as 

P{1A ~ 1A(W~(U))1,<,<~}=P{1A ~ ~,I~(w~(u))}. (5.7.6) 
7 > 0  7 > 0  

Applying successively (5.5.3) and (5.7.1) we get that (5.7.6) is equal to 

P { l r  (xo)Po,~o {~o(fl)}} = ~ v(dx) Po,~(go(fi)) 
F 

= e { lr(w (0)) Po. ~o {q)(fl)}} = P { lr(w(0)) (P (fi)}- (5.7.7) 

Adding (5.7.5) to (5.7.7) we get (5.7.3). 
Lemma 5.7.2 implies easily Theorem 2. 

I would like to thank E. Dynkin for both his advice and his moral support. 
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