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1. Introduction

1.1 The so-called killing operation plays an important role in the theory of
Markov processes and its applications. Given a Markov process X in a space E,
this operation enables us to construct a new Markov process K(X) on any
rather “good” part D of this space. But stationarity of the process is lost under
such a transformation. In this paper we shall study another operation Q, which
transforms a stationary Markov process X (a Markov process under a sta-
tionary distribution and with time parameter set ]— 0o, + co[) in the space E
into a process of the same type with a state space D < E. But unlike the initial
process X, the process Q(X) has random birth and death times, and the
corresponding measure in the space of paths can be infinite. To distinguish such
processes from the traditional stationary processes, we call the latter “con-
servative processes”. The transition probabilities of the process Q(X) are equal
to those of K(X); and the one-dimensional distributions of Q(X) and X are
equal on D. But in contrast to K, the operation Q is invariant under time
reversal. We are interested only in the case in which the one-dimensional
distributions of X are concentrated on D and, therefore, are equal to those of
o).

The main part of the paper is devoted to the inverse problem: for a given
stationary Markov process Y in the space D to construct a conservative sta-
tionary Markov process in a space E> D such that Q(X)=7Y. It is obvious that
for the possibility of such a construction, it is necessary for the one-dimensional
distributions of Y to be probability measures. We show that this condition is
also sufficient. We also give a sufficient condition for X to be uniquely
determined by Y (we do not distinguish two processes having the same finite
dimensional distributions).

We always use the same letter for measure and integral with respect to this
measure. Thus, P{£},P being a probability measure and ¢ being a random
variable, denotes the mathematical expectation of ¢&.

By the expression “a function on X", X being a measurable space, we mean
a measurable bounded nonnegative function.
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We denote by #(X) the collection of all measurable subsets of a Borel space
X. Writing I' < X means the same as I'e Z(X)

1.2 Let (x(w), P)(weQ, teT=]~ 0, +oo[) be a Markov process in a space E

=DuUV. Suppose that the set M={r:x,eV} is closed as. P, and M is local
measurable, that is

1.2. For each s<t the set Mn]s, [ is #]s,t[ x &, ;-measurable, where #  is
the completion with respect to the measure P of o(x,,s<u <1).

The complement of M is a union of a countable number of open intervals
1y, 0[. Let us denote by W the set of all paths in D defined on all open intervals
Ja, B[. We associate with every w and every ]y, d[ an element wi(w) of W defined
by the formula wi(t)=x,,y <t <d. Set G=0{w(s),s€T) and for every AeG set

P{A}=P Y 1,(w)). (1.2.1)

We denote the process (w(s),P) by Q(x,,F) and we say that (w(s),P) is a
subprocess of (x,,P) in D and that (x,,P) is a covering process for (w(s),P). The
following expression for finite dimensional distributions of P follows from
(1.2.1).

P{w(s,)ely,...,w(s,)el}}

=P{x,ell,....x, el,,[s1,5,]nM=0}. (1.2.2)

Formula (1.2.2) implies that if (x,,P) is Markovian or stationary then so is
(w(s),P). If the one-dimensional distributions of (x,,P) are concentrated on D
then the process (w(s), P) satisfies the following relation.

1.2.A For each s P{w(s)eD}=1.

In this paper we deal with (general) Markov processes with random birth
and death times and it is worthwhile to give a precise definition of such
processes. Let (€2, %) be a measurable space and P be a ¢-finite measure on &.
Suppose that two measurable functions a(w) and f(w) (a(w)<p(w)) are
given; and suppose that for each teT, x,(w) is a measurable mapping of the set
{a(w)<t<P(w)} into a Borel space E. We say that (x,,P) is a (homogeneous)
Markov process if the measure v,(I")=P{x,eI'} 1s o-finite and there exists a
transition function p such that

P{x, edx,,x,,€dx,, ..., x, €dx,,a<t;,f>1,}
=v, (dx)plt,—ty,xy;dx,) ... p(t,—t, 1, %,_y;dx,).

If v, does not depend on ¢ then the process (x,, P) is stationary.
The main results of the present paper are given by Theorems 1 and 2.

Theorem 1. Any stationary Markov process subject to 1.2.A is a subprocess of a
conservative stationary Markov process.

Let p be a transition function on D and let R be a measure on W. We denote
by G, the minimal c-algebra in W generated by all sets {w:w(s)eB, s=<u,
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Be#(D)}. We put ReS(p) if (w(s),R) is a stationary process and
R{w(s)eB|G,} =p(s—u,w(u); B), s>u, BcD.

A measure ReS(p) is called a minimal element of S(p) if for every R,,R,eS(p)
such that R=R, +R,,R, and R, are proportional to R.

Theorem 2. If P is a minimal element of S(p) and if (w(s),P) satisfies 1.2.A, then
there exists only one conservative process covering (w(s), P).

All the theory is invariant with respect to time reversal. Therefore, the
theorem dual to Theorem 2 is also valid where the class S(p) is replaced by a
class of processes having a fixed backward transition funtion.

1.3 Now we give an example of a family of Markov processes with identical
subprocesses in D. Let E=T, V={0} and D=T~V. We start from a diffusion
process X on E which has an invariant distribution v and transition function p’
such that p'(t,x; I =p'(t, —x; —I') (e.g., Ornstein-Uhlenbeck process). Suppose
that a mirror is placed at point 0 at time s. We consider a process X, which
coincides with X? for t<s and is X? reflected in the mirrow for t>s. Denote the
corresponding transition probabilities by B Note that B%) does not depend on
t iff s= — o0, or s= 4 o0. The symmetry principle shows that v is invariant for
B for all 5. Consider the family of Markov processes (x,,P®) with transition
probabilitics P and one-dimensional distributions v. Let p be the transition
function of the process X? killed at the first hitting time of 0; and let P be the
Markov measure with the transition function p and the one-dimensional distri-
bution v. It is easy to see that the equality (1.2.2) holds for P=P¥; and as a
result, the right hand side of (1.2.2) does not depend on s. Therefore, the
subprocess in D of (x,, P®) does not depend on s.

Let v, be the restriction of v on J0,cof and v,=v—v,. (Note that both v,
and v, are excessive with respect to p.) Let P, i=1,2, be the Markov measure
with the transition function p and the one-dimensional distribution v,. The
measure P in our example is the sum of P, and P,, and (in the case of
Ornstein-Uhlenbeck’s process) both P, and P, are minimal elements of S(p).

2. Reduction to the Case of Finite « and f

2.1 We consider a measure PeS(p), subject to 1.2.A and we try to find a
covering process for (w(s), P).

Each PeS(p) is a barycenter of a probability measure concentrated on the
minimal elements of S(p). For each minimal element R either

au=—00 ae R,
or

a>—co ae R
(See [1].) Thus P can be represented in the form

P=P,+P,, @.1.1)
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where P, P,eS(p) and
P {a= — 0} =0, (2.1.2)

P, {o=—o0}=0. (2.1.3)
Put
V(D) =Piwel}, i=1,2;
A, =v(D), i=1,2.

Lemma 2.1.1. The measures v* and v* are singular.

Proof. 1°. For the stationary measure P,
P, {(w(t)eD} =P, {a<t<f} =P, {t<p} (2.1.4)

does not depend on ¢. Thus
P {f=c0}=0. (2.1.5)

The relation dual to (2.1.4) shows that (2.1.5) implies (2.1.2) and hence (2.1.2) and
(2.1.5) are equivalent. Therefore

P,{f=00}=0. (2.1.6)

(If (2.1.6) is not true, then the measure P;{A}=P,{4; f=o00} is a stationary one,
which satisfies (2.1.5) and therefore satisfies (2.1.2); and we come to a con-
tradiction with (2.1.3).)

2°. The formula (2.1.5) implies
P, {w(s)eD} =P {w(s)eD,w(s+1)eD} = | v'(dx)p(t,x; D)=v'(D).
D

Thus
pt,x;D)=1 ae. v. 2.1.7)

On the other hand (2.1.6) implies

P, {(w(s)eD,w(s+1)eD} =P, {a<s, fs+1t}
= [v?(dx)p(t,x; D) >0 as t > 0.
Thus
p(t,x; D)—>0 as t—oo ae v2 (2.1.8)

Comparing (2.1.7) and (2.1.8), we obtain the statement of the lemma.

2.2 Consider the measures A7 'P; and A; 'P,. They both belong to S(p) and
satisfy 1.2.A.

The process X, =(w(s),A; 1 P;) is a covering process for X,. Suppose we
construct a covering process X, for (w(s),A; * P,). The one-dimensional distri-
butions of X, and X, are respectively A7 ! v! and 45! v2, which are singular. The
mixture of X, and X, with the coefficients A; and 4, is a stationary Markov
process (as a mixture of two stationary Markov processes with singular one-
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dimensional distributions). It is easy to see that this mixture is a covering
process fo (w(s), P).

In the sequel we shall consider only measures P for which P{f=w0}=P{a=
—o0}=0.

3. Construction of a Covering Process

3.1 In this section we construct a process (x,,P), given its subprocess (w(s), P).
The state space for (x,,P) is a union of D and a one point set V.
Suppose now that the process (x,, P) is constructed. Let

M(w)={t: x{w)=V}.
Applying (1.2.1) to the function g(w)=f(a(w), B(w)), f being a function on Tx T,
t -
e PY f(0.0)=P{f(= B)}. (3.1.1)

Denote by I(t)=]L,, t,[ the interval contiguous to M which contains the point ¢.
The set M is translation invariant, i.e. for each finite set ¢,,1,,...,t, and for each
t the joint distribution of I(¢, 1), I(t, +1),...,I(t,+t) coincides with that of I(t,),
It,),.... I(t,).

Suppose that the strong Markov property holds for (x,,P) at least for all
stopping times 7,. Denote by ‘w="'w(®) the part of the path x,(w) over the
interval I(¢). The paths *w and 'w are conditionally independent on the set *w='w
given (7,,x_ ). But x_=V; therefore for s>¢ ‘'w and *w are conditionally inde-
pendent given 7,. Inasmuch as t,=p(*w) and L,=a('w); the conditional inde-
pendence of *w and *w holds when 7, L,, 7, and L, are all fixed, s=t.

There exists a function m(x, y; 4), x<yeT, A€G, such that

P{'wed|L,,1}=m(L, 1,;A) as. P

(m can be chosen independently from ¢ because ‘w=°w on the set
{tr,>}u{L,<s},s>1). It follows from (1.2.1) that

P{weAla, f} =m(x, B; A).

That gives us a clue to constructing (x,, P). First we construct a translation
invariant Markov set M, satisfying (3.1.1) and then we “plug” into its contiguous
intervals ]y, o[ trajectories w} in such a way that M being fixed, they are all
conditionally independent with distribution equal to m(y,d; —).

3.2 To construct the required set M, consider the one-dimensional distribution of
our process
wWI)=P{w(s)el}.

The measure v is a probability measure on D and it is p-null excessive (p being
the transition function of (w(s),P)). It was proved in [1] that v can be repre-
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sented in the form w©
V()= | v{(I'ds,

0

where V* is an entrance law for p. Denote by P* a Markov measure on G with
the transition function p and the one-dimensional distributions v* (we put v*=0
for s<0, so =0 P*-a.e.). Denote by P} the t-shift of measure P*, that is

P*{w(s))el,...,ws)el} =P*{w(s, —el},...,w(s,—t)el,}. (3.2.1)

For every AeG we can write

P{A}= ? P*{A}dL. (3.2.2)

Now put
II(Iry=P*{pel}.

In view of (3.2.1) P*{f>s} =P*{f>s—1} and we have
1= v(D)=P{w(0)eD} = | P;“{w(b)eD} di= [ P*{B>0}dt
= ofw PH{f>—1} dt=O§P*{[3>u} du:o(jjn(]u, oo[) du. (3.2.3)
The relation (3.2.3) is equivalent to
Ix (dx)=1. (3.2.4)

Therefore II satisfies the conditions of Theorem 1 in [2] and we can construct a
(0, IT)-generated translation invariant closed Markov set M (for definitions and
properties see [2]). Let (@, %, P) be a sample space for M and let ]y, §[ denote as
usual the intervals contiguous to M.

Lemma 3.2.1. For any function f in Tx T
P} f(7,0)=P{f(xB)}. (3.2.5)

Proof. Due to (3.2.2) the right side of (3.2.5) may be rewritten as
*f — *
TR @y di= | RS 526
In view of (3.2.1)

PH{g(B)} =P*{g(B+1)} = g(x+1) H(dx);

and the right side of (3.2.6) is equal to

o0

§ {(S) St r+y) H(dy)} dt. (3.2.7)

— o0
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Theorem 1 in [2] yields

BY f(,)=c | {ogf(t,tﬂ)ﬂ(dy)}dt, (3.2.8)

where ¢ is given by (1.5) in [2]. By virtue of (3.2.4) c=1 and (3.2.7) is equal to
(3.2.8).

3.3 Unfortunately the function m(x,y; —), which represents the conditional
distribution of w} given y=x, d=y, cannot be obtained as a kernel from Tx T
into W, but only as a quasi kernel (as defined below). That is why to justify the
definition of measure P given by (3.3.3) we need Theorem 3.3.1.

Let (X,.«/) and (Y, %) be two measurable spaces and Q be a measure on /.
We say that n(x;I), xeX, I'e% is a stochastic Q-quasi kernel from X into Y
if the following conditions are satisfied:

3.3.0 for any I'e# n(-;I) is of -measurable;
3.3.8 for Q-almost all xeX n(x;Y)=1;

3.3.y If I is a sequence of disjoint sets then

n(x; | N)=X n(x; 1)
for Q-almost all xeX. , k

Note that if Q is any measure on the product X x Y and a o-finite measure Q on
X is a projection of Q on X then the function n(x; 4) which is a Radon-
Nikodym derivative of Q(dx x A) with respect to Q(dx) is a stochastic Q-quasi
kernel from X into Y.

Lemma 3.3.1. Suppose that X,,X, and Y are measurable spaces and Q, is a
measure on X,. If & is a mapping of X, into X, such that £~1(Q,) is absolutely
continuous with respect to Q,, then for every stochastic Q ,-quasi kernel n from X ,
to Y the function n(&(x); A) is a stochastic quasi kernel from X | into Y.

The proof of this lemma is trivial.

We need the following theorem. (The writing (Y, Z®) means the countable
product of the space (Y, %)).

Theorem 3.3.1. Let (X, /) and (Y, #B) be two measurable spaces and Q be a finite
measure on &. If ny,n,, ... is a sequence of stochastic Q-quasi kernels from X into
Y, then there exists a measure Q on (X x Y®, of x B%) such that for any n

QU Iy x ... xIxYxYx..)={n(x;I})...n(x; I,) Q(dx), Adest, [,eA.
A4

The proof of this theorem does not differ from the proof of the Kolmogorov
theorem.

Consider now a measure N on T2 x W

N(I' x A x A)=P{ael',fecd,we A}, TI,AcT, AcG;
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and let N(B)=N(B x W), B= T2. It is obvious that N is concentrated on the set
{(x,): x,yeT,x<y} and

N(Q—oo,t[ xJt,c0)=P{a<t, B>t} =P{w(t)eD} =1,

so N is a o-finite measure on T'* and there exists a stochastic N-quasi kernel
m(x, y; A) which is a Radon-Nikodym derivative of N(dx x dy x A) with respect
to N{dx,dy).

Letr,,7,,...,7,,... be a sequence of all rational numbers. Denote

x(k)=x(k, &)=L, (®);

y(k)=y(k, @)=r,(®);
z(k) = z(k, &) = (x(k, ®), y(k, @),

where L, and 7, are defined relative to M as in Sect. 3.1.

Lemma 3.3.2. For every k
m(@; A)=m(z(k); 4)

is a stochastic P-quasi kernel from § into W.
Proof. By virtue of Lemma 3.3.1 it is only necessary to check that

3.3.1 For any A< T? of N-measure zero
P{z(k)e 4} =0.
The formula (1.3) in [2] shows that for any (0, IT)-generated M for every ¢
P{teM}=0; (3.3.1)
and thus x(k)<r, < y(k) a.s. P. Therefore
P{z(k)ed} =P{z(k)e 4, x(k)<r, < y(k)}
=P g L s 140 5)§1~>§ 14(7,9). (3.3.2)

In view of (3.2.5) the right side of (3.3.2) is equal to

P{(x, f)e 4} = N(4)=0.
Put
Q=0xW>,  F=F xG*.

Theorem 3.3.1 provides the existence of a measure P on (Q, #) such that

P{AXB xB,x..xB,xWxWx...}
=[n,(®, B)ny(®,B,)...n(®,B)P(d®), Ae#, BeG. (3.3.3)
A

Now we define the process x,(w). As it was mentioned the state space of x, is
equal to DUV, where V is a singleton. Put
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k(ty=inf{m: x(m)<t < y(m)},

Vi teM(@)

xt(w)zxt(d)bwl>w27"'5wk’"‘):{W (t) OtherWise
k(t) .

In the next section we shall show that (x,, P) is the desired process.

4. Proof of Theorem 1

4.1 For the proof of Theorem 1 it is sufficient to show that (x,, P) constructed
in the previous section is a stationary Markov process and its subprocess in D is
(w(s), P). N

The following lemma shows the fundamental relation between the measure P
(the distribution of the random set M) and the measure P. The fact that (w(s), P)
is a subprocess of (x,,P) is a simple consequence of this lemma.

Lemma 4.1.1. For any functions f and g on T and any AeG
f’zy:f(y)g(é)m(y, 0; A)=P{f(0) g(B) 14}. (4.1.1)
Proof. We can apply Lemma 3.1 to the left side of (4.1.1) and obtain
P Zvjf () g(0)m(y, 65 A)=[ f(x) g(y) m(x, y; A)P{(e P)e(dx, dy)}

= f(x)g(y)mlx, y; A) N(dx,dy), (4.12)
where N is the measure defined in Sect. 3.3. Since m(x,y; 4) is the Radon-
Nikodym derivative of N with respect to N, the right side of (4.1.2) may be
rewritten as o

§f(x)g(y) Ly(w) N(dx,dy,dw)=P{f () g(B) 1},
and that is equal to right side of (4.1.1).
Corollary. The process (x,,P) is a covering for (w(s), P).
Proof. Take AeG and calculate

PY 1,w)=PY m(y,5; A)=P(A).

Denote by v the n-dimensional distributions of (x,, P)

titz...tn
Vo =P{x,,...,x, )el'}, I'<E"
The Markov property of (x,, P) follows from

Lemma 4.1.2. Fix t, <t,<...<t,. For any I, E there exists a function g on E
such that for any I',I,,...,I, |<E

v, oIy x..xT)
= j‘ vtl...tn,l(dxla '--zdxn—l)g(xn—l)' (413)

IFix..xTp-y
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Proof. In view of (3.3.1) P{x,eV'} =0 for any t and it is sufficient to prove (4.1.3)
only for I < D.

Let J be a set of k tiwo-dimensional integer-valued vectors
{571 (asf2)s -o-5(goti)}- We say that J is a k-partition of n if

=i, <i,<...<i,Sn, 15j,<j,<...<j,=n,
ip1=j,+1, (=12, k-1

We denote by &(n, k) the set of all k-partitions of n and by S(k) the union of
S(n, k) over all n. Let U(n, k) be the subset of S(n, k) containing all JeS(n, k)
whose k-th vector is equal to (n,n) and B(n, k) be the compliment of U(n, k) in
S(n, k). It is obvious that

U, ky={Ju{nn}: JeSn—1,k—1)} 4.14)
Denote
A;={o: x (wel}, A={w:w()el}.
Let >* stand for the sum taken over all y.y,,...,7, such that
71<7,<...<%,. We denote by ), the sum over all J={(i,,j,),.... ()} €
&(n, k). The symbol ), ,, stands for the sum over all Jel(n, k) and Y, , stands

for the sum over all JeB(n, k).
We have

Vo oA X Dy xT)=P{4, 4, ... 4,}
:k;nZ(mk) YKP{A A, .. A,y <t <t,<..<t; <5,

Vo<t <o <t <05, 7, <t <...<t, <8}
k
:p{kz S S5 0,5 Ay Ay Ajf)}
<n f=1
i){,; Yn zk...}+15{k; S 2k (4.1.5)

Denote the first and the second summand in the right side of (4.1.5) by Z, and
Z, respectively. Let P, be the transition probabilities of a (0, IT)-process y, and P
be the transition probabilities of the process y¥ which is equal to —y,. Let @
denote the set of the discontinuities of a process with independent increments.
Put

I

w(x):1x<tnf’x{z Iytv<tn<y,m(yt—’yt; An)}'

te@
For J:{(ibjl)’ (i27j2)7 7(lq7]q)}ee(q) put a(‘])=tjq; and
g;(x9y):m(x,y;AigAi;+1"'Ajg)’ X,yET;
J _ DX J (1% 1% J (1% % J(o% %
@ (x)_1x>a(J)P {Zgl(yspys1—)g2(ysz7ysz—)"'gq(ysqaysq—)}’

where the sum under P* is taken over all sequences sy, s,, ...,5,€0 such that
§,>5,>...>5,. (We put €(0)=0 and ¢’(x)=1 for JeS(0).)
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Applying successively (4.1.1) and Lemma 6.8 in [2] we get
. k
ZP{kg Z(’n.k)zk Bl g7 40 5)}
k
{ Z Z(n lk)z Z yaéaA U K(YJa }

V>V

{ Z Z(n —1,k) Zklp(ék) H gf(? £ z)}

k<n-1

?{z Y Tonin Xt 2 m.5; An Ay, A,,_l)ww)-}jlg;(v,,é»}

P{ni Y Xome 1k>Z<p’(v)m(v,5,A - n_l)l#(é)} (4.1.6)

m=1k<m-1

Lemma 4.1.1 and the Markov property of (w(s), P) provide that the right side of
(4.1.6) is equal to

n—1

Z Z(m 1k)P{(P (O‘)lAmAm+1 n_1g1(W(tn_1)} (4.1.7)

m=1k<m-1

g1t N=P{(B) 1, _ Iwlt,_y)}

A similar computation yields

where

n—1

Z,= Z Z Z(m 1k)P{(P (fx)lAmAmH An- 1gz(W(tn D (4.1.8)

m=1k=m—-1

where g,(w(,_)=P{w(t,)elw(,_,)}. Adding (4.1.7) and (4.1.8) we obtain
4.13) with g=g, +g,.

4.2 Now we prove that (x,,P) is a stationary process. Because (x,, P) is Markov
it is sufficient to prove that (x,,P) has stationary two-dimensional distributions.
Consider

F{XSEF, xtEA} =F{Zly<s<t<é 1F(xs) lA(xt)}
v

+—P{ Z 1v1<s<61<l<62 1F(xs) 1A(Xt)}' (421)

v1<72

In view of Lemma 4.1.1 and the stationarity of P the first term in the right side
of (4.2.1) is equal to

P{w(s)el',w(t)e 4} =P{w(s+a)eI',w(t+a)e4}. (4.2.2)
Denote

A, ={w:wis)el'}, B,={w:w(s+a)el};
={w:w(t)ed}, B,={w:w(+a)ed}, acT

The second term in the right sife of (4.2.1) is equal to
P{m(z(s); A m(z(t); A3); 2(5) % 2(1)} .
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Here z(r) is a two-dimensional vector (L,,7,). Since P is a stationary measure
m(x,y; A)=m(x+a,y+a;B;) for N ae. (x,y)

In view of 3.3.A .
m(z(s); A)=m(z(s)+a; B;) as. P.

(The writing z+a for z=(x,y) means (x+a,y+a).) Similarly for m{z(t); A,).
Owing to the fact that the set M is translation invariant, we get

S

P{m(z(s); A)m(z(1); A,); 2(s) % 2(1)}
{

z(
=P{m(z(s)+a; B,)m(z(t) +a; B,); z(t) + z(s)}
=P{m(z(s+a); B,) m(z(t+a); B,); z(s + @)+ z(t + a)} (4.2.3)

Combining (4.2.3) and (4.2.2) we obtain the stationarity of the left side of (4.2.1).

Remark. All the proofs remain valid if W is not the set of all paths in D with
random birth and death times, but if W is some subset of this set (say the set of
all right-continuous, continuous, etc. paths). The construction of x, shows that
the trajectories of a covering process may be obtained from the trajectories of its.
subprocesses.

5. Theorem of Uniqueness

5.1 The rest of the paper is devoted to the proof of Theorem 2.

We suppose that (x,(w), P), e, is a Markov process with a state space E
= DUV, whose subprocess in D is the process (w(s), P) subject to the conditions
of the Theorem 2. We shall prove that the two-dimensional distributions of
(x,, P) are uniquely determined by (w(s), P). Since (x,, P) is Markov, all its finite-
dimensional distributions can be calculated from the two-dimensional ones and
are uniquely determined by (w(s), P). Let P* be the measure defined in Sect. 3.2,
In Sect. 5.3 we prove Theorem 2 for the case of finite P* The rest of the paper
is devoted to the case of infinite P*,

In Sect. 5.4 we investigate the properties of a local time &, of the process x,
corresponding to the set V. Then we evaluate the expression (1.2.1) in terms of
the local time £, and the shifts of measure P* (Lemma 5.5.2). This expression is
similar to the main result of [3]. Using this formula, we prove that the inverse
function y, for the function ¢, is a process with independent increments; and we
calculate the characteristics of this process from P* (Sect. 5.6). Using this fact,
we find the expression for the two-dimensional distributions of (x,, P), which
involves only the measure P, shifts of the measure P* and the transition
probabilities of y,; therefore this expresison ultimately depends only on (w(s), P).

By G,, we denote the o-field in W of all sets 4 such that An{a<t}eG,.
Denote

Z,

=0(x

Qi

=g(x,s<t), F'=5(x

A, F,, A=\ F
2 u

u>t s>

\
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(The bar over ¢ means the completion of the corresponding o-field with respect
to the measure P.)
We don’t suppose that x, has any regularity properties but we assume that

5.1L.A The set M={({t,w):x(w)eV} in TxQ is progressively measurable with
respect to the filtration o/, and sf°.

(Without an assumption of such type the relation (1.2.1) can be senseless.
Note also that for a closed set M 5.1.A is a consequence of 1.2.c.) We also don’t
assume that the process (x,,P) has a transition function. Nevertheless for f a
function on D we write p(s, x; ,f) for a function on D such that

pis, xg; 6, f)=P{f(x)x.} as. P. (5.1.1)

{Since for each sp(s,x; t,f) is defined by (5.1.1) only up to the measure v we may
not define p for xeV; therefore the definition of p is meaningful.)

The process (w(s), P) has a homogeneous transition function p and we can
construct transition probabilitics of P, that is the family of probability Markov
measures P, _on G*=¢(w(t),t>s) such that P, {w(t)eI'} =p(t—s,x;I). Put

al=r,+=lii1tlfu:inf{u:u>t,xueV}. (5.1.2)

Note that
P .olgB)}=P{gB) 1, [wt)} ae P;

P, {g}=P{g(a)lx} as. P. (5.1.3)

A real-valued process & w),teT, weQ is called well measurable if it is
measurable with respect to the o-field in Tx Q gencrated by right-continuous
processes #,(w) adapted to ./, (see [4] for detailes).

By R-lim g(s), g being a function on T we mean the limit of g over the set of
rational numbers. The letter m will denote the Lebesgue measure on T,

and

5.2 If P is a minimal element of S(p) then cither

P{a+ — o0} =P{B+ + o0} =0, (5.2.1)
or
P{o=— o0} =P{f=00} =0, (5.2.2)

If P satisfies (5.2.1) then Theorem 2 is trivial. The measure P is a probability
one and the only covering process for (w(s), P} is (w(s), P) itself.

So, we shall consider the case in which P is subject to (5.2.2). In this case P is
represented in the form (3.2.2) with P* given by (3.2.1). By [1] P* is an extreme
measure in the class of all Markov measures with the transition function p.

The following lemma is crucial in he proof of Theorem 2.

Lemma 5.2.1. Let g(t,x) be a function on D for each teT. The following three
conditions are equivalent.

5.2.A R-limg(r, x,(w)) exists for all y a.s. P.
rly
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5.2B R-lim g(r, w(r)) exists a.e. P.

rla
52.C For m-almost all t,

R-limg{r,w(r)) exists a.e. P¥,
rit

Moreover if 5.2.A holds, then there exists a function h®(s) on T such that

R-limg(r,x,)=h%(y) for all y as.P. (5.2.3)

rly
The function h® is determined uniquely up to the measure m by the process (w(s), P).
Proof. Set i .
A={w: R-lim g(r, w(r)) does not exist}.
rly
By (1.2.1)
P{4}=P)1,(w}
¥
=P{#7: R-lim g(r,x,) does not exist}. (5.2.4)
rly

The expression (5.2.4) shows the equivalence of 5.2.A and 5.2.B. Owing to the
fact that P satisfies (3.2.2) and that P*{a=t} =0, the equivalence of 5.2.B and
5.2.C holds.

The function i
w)=(1—1,w) R-llfn g(r,w()

is G, ,-measurable. Since the measure P* is extreme, ¢ is a constant P*-almost
everywhere (see [17]). Denote this constant by h%(t). By 5.2.C P*{A4}=0 for m-
almost all r and we can write

Py R-lifn g(r,x,)=h¥(y)} =P {R-lifn g(r, w(r)) =+ h*(@)}

= [ P*{R-lim g(r, w(r)) = h&(t)} dt =0.
rit
That proves (5.2.3).

5.3 We consider the case in which
P*{W} < 0. (5.3.1)

We prove that the set M in this case is a.s. discrete (Lemma 5.3.1). Lemmas 5.3.2,
5.3.3 and 5.3.4 show that the strong Markov property holds for the stopping
times T which belongs to M and that the corresponding conditional distri-
butions can be computed from the measures P. Lemma 5.5 gives us an
expression for the two-dimensional distributions of (x,, P), which depends only
on P.

Lemma 5.3.1. If (5.3.1) holds then for any finite interval Js,t[ the number y such
that ye]ls,t[ is finite a.s. P, the set M= {t: x,eV} is a.s. P discrete. Moreover

M={t:t=y}={t:t=3} as. P. (5.3.2)
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Proof. The second and the third statements of the lemma follow trivially from
the first one. To prove the first consider

Plyipe(s 0} =P ¥ 1,(wj)=P{s<a<t}

s<y<t

TP W du=(t—5) PH{W} < oo,

Lemma 5.3.2. If f is function on T then there exists a function n/ on T such that

¥ Xr

RImP.__{f(By=n'(y) forall y as.P. (5.3.3)
rly
If ¢ is a function on D then for any teT there exists a function {, , on T such that
R-lim p(r,x,; 1,£)={, ,y). as. P (5.34)
rly

The functions n/ and {, , are determined uniquely up to the measure m by the
process (w(s), P).

Proof. The function
g(s,x)=P, {f(B)}, seT, xeD (535)

is p-excessive. In addition, for any u
sup B {g(t, w@))}} B {f(B)} = [Sug JEIRF{W}<oo.
t s€

Therefore

R-limg(r,w(r)) exists a.e. P*.

rla

Applying Lemma 5.2.1 we obtain (5.3.3) with #/ equal to ke, g given by (5.3.5).
The proof of (5.3.4) is similar.
Put

i=0, 0" l=¢_,=inf{uiu>c"ueV}, m=23,.... (5.3.6)

Lemma 5.3.3. For any seT and any function g on D and any function fon T

P{g(x) f (o7 )y =Pla(x)n’(a})}- (5.37)
Proof. Let
T=g"*t1;
"=k27" if (k—1)27"<gl<k27" (5.3.8)

The assumption 5.1.A provides that ¢, o™, t" are stopping times with respect
to .«7,. The stopping time " takes only rational values. So we can write

P{g(x,) f(o7 )} = lim P{g(x,) f(x) Ln_ .}

n— o0

=lim P{g(x,) 1,._, (=", %)}, (5.3.9)

n— oo
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where £(s, x) is a function on Tx D defined for each s up to measure v such that

E.x)=P{f(o)lx} as. P.
By (5.1.3)
$(s,x)=P, {f(B)} for v-almost all x.

Since "} o7 and of coincides with some 7y, we can apply (5.3.3) to (5.3.9) and
obtain

P{g(x,) f(o7" )} = lim P{g(x) P... .. {f(B)}} =P{g(x)n’ (a7}

h— o0

The following lemma completes the proof of the Theorem 2 in the case when
(5.3.1) holds.

Lemma 5.34. Fix s,teT. Define

90(x; A)=p(S,x; L, A)?
0,0c; A)=F, {m(B)}, xeD, A<D,
TCI(M) = Cz, 1, (u)a
T u)y=n""""(u), uel]
Then

P{x.el xecd}= i [ v(dx) 0,(x; A4). (5.3.10)

k=0T

Proof. Since the set M is discrete

P{x,el,xcd}= Y P{xel, xed, $(Mn]s,t[)=k)}. (5.3.11)
[4]

k=

Prove that k-th additive in (5.3.11) is equal to that of (5.3.10). For k=0 it is
obvious. Let k>0 and let ¢™ and " be given by (5.3.6) and (5.3.8) respectively.
Then

P{x,el,x,ed, #(MnJs,t[)=k}

=P{x.el xed, o <t<o"+}

=lim P{xel,x,ed,t"<t,0,.>t}

b idive]

= lim P{1,.(x) p(=", x; t, A)}. (5.3.12)

H— 0O

Applying Lemma 5.3.2 we see that (5.3.12) is equal to

P{1:(x)(, 4 (@b} (5.3.13)
If k=1 then (5.3.13) is equal to
P{1p(x) P G, 1 (B} =P{1(x) 0,(x,, 4)}.

For k>1 we must apply k—1 times (5.3.12) and we obtain that (5.3.13) is equal

to —
P{11(x) 6,(x;; 4)} = [ v(dx) O,(x; A).
r
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5.4 From now on we consider the case
P*{W}=co. (5.4.1)
Lemma 5.4.1. If (5.4.1) holds then, for each s,

s

R-limP, ,,{—7}=0 ae. P (5.42)
rls

Proof. Let s=0. The function
h(x)=h(r,x)=P, {f—r} (54.3)
is p-excessive. In addition

sup P*{A(u, w(u))} =sup P* {(B-w 1, JSP*{f}=1.

u>0
The last equality is due to (3.2.4). Therefore
&=R-lim h(r, w(r))
rlO
exists a.e. P*. Since ¢ is G, -measurable and P* is an extreme Markov measure

then £ =¢=constant for P* a.e. w (see [1]). Suppose ¢>0. In view of (5.4.1) there
exists r> 0 such that P{h(r, w(r))>¢/2} >4/¢ we have

P{f}2P*{(B—1) 1, =P*{h(r,w()} 26/2-4/e=2;

and we come to a contradiction with P*{f}=1.
Put

M= {t:x,eV, and for some >0, x,EV for all se]t,t+£]}
={t:t=vy for some y}
Lemma 5.4.2. For each stopping time n with respect to <,

P{neM}=0.
Proof. For seT put

£(s)=k27" if (k—1)2""<s<k2~". (5.4.4)

Put A={yeM~} and y,=7(n). Applying (5.1.3), Lemma 5.4.1 and Lemma 5.2.1
we get

P{(o,—n)1,}=1im P{1,P{c, —n,|,}

= lim P{1,, lim h(y,, x, )} =O0.

Since g,—#>0 on 4, P{4}=0.

Corollary. The set M is nowhere dense and does not contain isolated points a.s. P.
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Proof. By [4], Ch. VI, T9 the set of isolated points is a countable union of graphs
of stopping times. Since P{teM}=P{x,eV}=0, by virtue of Fubini’s theorem
m(M)=0 as. P.

Put &= Y (- s=z0

O<yss

By [4], Ch. 5 there exists a dual well measurable projection &, of &, with respect
to o7,.

Lemma 5.4.3. The process £,,s 20 is a continuous process which increases iff se M.

Proof. 1°. By the construction ¢, is right-continuous. By T30, Ch. V in [4] for
any well measurable (,

F{T Czd@}=f’{z Ctd€}=F{Z (6=} (5.4.5)

Let # be an arbitrary stopping time. By Lemma 5.4.2 P{y=7y for some 7} =0.
Applying (5.4.5) to {,=1,_,, we get P{¢, —¢, }=0.By T30,Ch. IVin [4] {isa
continuous increasing process.

2°. By virtue of 5.1.A and T4, Ch. VI in [4] M is a well measurable set. Take
{,=1;_4(t) and apply (5.4.5):

F{I L u(®) df:} =F{21T\M(V) (0—7)}=0.

Therefore, ¢, does not increase on T~ M. The set N of increasing point of &
(called in [4] the support of &) is a well measurable set. To prove that N
contains M we must prove that for each stopping time # and for each ¢>0
$pre— 6, >0 as on {yeM}. Put p=inf{t: t>n, >}, A={neM, ¢ >n}; set

=11 and apply (5.4.5).

n<t<q@
—_ @ —
O:P{lAjdé,}=P{1A Y (6= (5.4.6)
L n<y<e¢
By Corollary of Lemma 5.4.2, m(M)=0 a.s.; therefore on the set A
Y (6-9=ze—n>0 as. P. (5.4.7)
n<y<e

Comparing (5.4.6) and (5.4.7), we see that P{4}=0.

5.5 Here we express (1.2.1) in terms of the functional ¢ and the measures P;*.
Consider h(x) defined by (5.4.3). Note that since f>s a.c. P,  then h(x)>0 for
all xeD.

Lemma 5.5.1. For each function f on D such that f/h is bounded and for all y
R-limp(t+r,x,; )/h(x,) =B { f(w(®)} as. P.
rly
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Proof. Put g(u,x)=p(u, x; f)/h(x). By Lemma 5.2.1 it is enough to prove that for

all s
R-limg(t —r, w(r)) =P*{ f(w(t))} as. P¥ (5.5.1)
rls

Let s=0. Put p*(s,x; dy)=h(x)"" p(s,x; dy) h(y); put 9,(I')=P*{1(w(u)) h(w(u))}.
Let Q be a Markov measure with transition function p" and one-dimensional
distributions ¥,. By [1] Q is an extreme measure; Q{W}=P*{f}=1; and

R-lifr()lph(t—r,w(r);f/h)=Q{f/h(w(t))} as. Q. (5.3.2)

Note that for any AeG,,Q{4, f>e} =P*{1,1,_, h(w(e))}. Therefore the relation
(5.5.2) is true a.s. P* Since Q {f/h(w(1))} =P*{f(w())} and p"(u, x; f/h)=g(u, x),
we get (5.5.1).

Now recall that G° is a ¢-field in W gencrated by the sets {w(s)el'},s>0.

Lemma 5.5.2. For any G°-measurable function F(w) and any process {(w), well
measurable with respect to <,

P{ ZO L, F(w))} =?{T {,P*{F} dét}. (5.5.3)
Proof. Tt suffices to prove (5.5.3) for
F(w)=f,(w(t ) fow(t2)) ... fillw(ty)),

where 0<t,<...<t,, f; is a function on D such that f/h is bounded. Put 4

L

={xEV for all se[t,,t,]} and

g(x) =F{f1(xt1) "'fk(xzk) 1A|xt1 =x}
=P{fi(w(t,)... u(wt)w(t,)=x}.
Set y,=¢,(7). Then

P{} ( Fw)}= P{Z Ol cuea FOWE))

y>0

—hmP{chlwwh(x DO =X, 50 (554)

h— o0

Applying (5.5.1), we see that the limit in (5.5.4) is equal to
P{Z PHEw(e )} (0—)) =P{ Z LPHFY (G-} (5.5.5)

Since {(w)=P*{F}{(w) is a function well measurable with respect to .7, we
can apply the formula (5.4.5) to { . Doing so, we get that (5.5.5) is equal to (5.5.3).

5.6 In this section we consider the inverse to the process &, and prove that this
inverse is a process with independent increments.
Denote

y,=inf{t: &, >u}.
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Lemma 5.6.1. For any function F(t) on T

b =}
fF(t)dft: J‘ 1a<ys<bF(ys)ds'

To prove this lemma it is sufficient to change variables in the Lebesgue
integral.

Lemma 5.6.2. The process y, is a right-continuous strictly increasing process of

pure jump type, i.e.,
= Z (yt_yt—)‘ (561)

S<t=u

Proof. The right-continuity of y, follows immediately from its definition. By
virtue of Lemma 5.4.3 £, is a continuous increasing process; hence for all u ¢,
=u. Consequently y, >y, if u>t. Since y, is an increasing process, for any

u>s>0
yu_ys._Z_ z (yt—yz-)‘ (562)

s<t=u

Take a(U)=¢,,. By Lemma 543 y,y =0y Since ¢, does not increase for
seT~ M; we have

Y 0=z Y i) (5.6.3)

O<y<oy tSa(l)

We know (see Lemma 5.4.2, section 2°) that m(M)=0; therefore

Vawy—Yo=0y—0o= ). (6—Y). (5.6.4)

O<y<oy

The relations (5.6.4) and (5.6.3) yield

Yoy Vo = > W=, (5.6.5)

t=a(U)

Comparing (5.6.2) and (5.6.5), we see that (5.6.1) holds for all s<u=Za(U).
Since a(U)— o0 as U— oo, we get (5.6.1) for all s and w.

Lemma 5.6.3. The process (v,,P) is a (0, II)-process with II(I')=P*{Berl}.
Moreover y,—y, is independent on .o, .

Proof. Let f be a function on T'and let 4 (s, u) stand for the sum f(y,—y,_) taken
over all te]s,u] such that y,>y,_. By Lemma 5.6.2

A5, 0)=YFOG-N1, <, _,. (5.6.6)
Y

Take Aed,, {=1,1
Lemma 5.5.2, we get

F{lA (s, w)} = {ZéyF(Wa)}
P{J CtP*{F}dC =P{1,§1, ., PH{f(B—0)}d(}
= { )Idéz}=(u—s)ﬂ(f)F{A}. (5.6.7)

Fw))=f(6—y). Applying successively (5.6.6) and

Ye Sty
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Formula (5.6.7) shows that for each f A,(s,u) is independent of ./, and
P{4 75, u)} =(u—s)II(f). This implies the statement of the lemma.

5.7 ln this section we derive the formula for two-dimensional distributions of
(x,, P). We show that they can be calculated from the characteristics of (w(s), P).

Lemma 5.7.1. Let f’y stand for the transition probabilities of (0, IT)-process. If f(t)

is a function on t and A€o, , then
F{IA gf(t)dit}ﬁs{lw(%)}, (.71
where .
o()= f’y{g SO dt} (5.72)

The proof of this lemma follows from Lemmas 5.6.1 and 5.6.3 and the equality
00=Yo-

Lemma 5.7.2. Put f(t)=1,_,P¥{w(u)ed}, A<D. Let ¢(y) be defined by (5.7.2).
Then for '<D

Pix.eLx,e4} =P{w(s)e wwed} +P{1,(x) o(B). (57.3)
Proof. We prove (5.7.3) for s=0 and u>0.

P{x,el x,e4}=P{x,elx,e4,[0,u]nM=0}
+P{x,el;x,e4,[0,u]nM*0}. (5.7.4)

The first summand in the right side of (5.7.4) is equal to

PO L ols 1 w(0) 1,(w(@)} =P{w(0)el, w(u)e4}. (5.7.5)
Y
Put A={x,el}, {,=1,_,. The second summand in the right side of (5.7.4) can be
written as
P{l, Y 1wy, b =P{l, ¥ L,1,0030))- (5.7.6)
y>0 v>0

Applying successively (5.5.3) and (5.7.1) we get that (5.7.6) is equal to

P{1r(xo)Py ., {0 (B)}} = ;[V(dX) Py, (@)
=P{L,(wO) P, ., {0(B)}} =P {1(w(0) o(B)}- (5.7.7)

Adding (5.7.5) to (5.7.7) we get (5.7.3).
Lemma 5.7.2 implies easily Theorem 2.

I would like to thank E. Dynkin for both his advice and his moral support.



296 M.I. Taksar
References

1. Dynkin, E.B.: Minimal Excessive Measures and Functions. Trans. Amer. Math. Soc. 258, no. 1,
217-244 (1980)

2. Taksar, M.L: Regenerative Sets on Real Line. Séminaire de Probabilités XIV, Universit¢ de
Strasbourg. Lecture Notes in Math. 784. Berlin Heidelberg New York: Springer 1980

3. Taksar, M.I.: A Formula for Wanderings of a Regular Markov Process. English translation in:
Theory Probab. Appl. XXI, 818-824 (1976)

4. Dellacherie, C.: Capacités et processus stochastique. Berlin-Heidelberg-New York: Springer 1972

Received August 6, 1979; in revised form August 5, 1980



