Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1981

Weak Convergence to the Law of Two-Parameter Continuous Processes

David Nualart

Universitat de Barcelona, Facultat de Matemàtiques, Departament d'Estadistica, Gran Via 585, Barcelona 7, Espanya

Introduction

Let C(S) be the space of real valued continuous functions on a compact metric space (S, d), and let X be a C(S)-valued random variable. Sufficient conditions for the central limit theorem to hold for X can be given in terms of the ε -entropy of S with respect to some continuous distances associated to X; see Giné [4], Dudley [2] and Jain and Marcus [6].

If X and Y are independent C(S)-valued random variables in some (Ω, \mathscr{F}, P) , we are going to use these results to state sufficient conditions for the central limit theorem to hold for the $C(S^2)$ -valued random variable corresponding to the process $\{X(s)Y(t); (s, t) \in S^2\}$. This variable will be denoted by X * Y.

As an application we discuss in Sect. 2 the convergence to the law of a twoparameter Wiener process.

Section 1

In a metric space S with metric ρ , we denote by $N_{\rho}(S, \varepsilon)$ the minimal number of balls or radius ε which cover S, and the ε -entropy of S is defined as $H_{\rho}(S, \varepsilon) = \log N_{\rho}(S, \varepsilon)$.

If X is a zero mean C(S)-valued random variable such that $\sup_{s\in S} E(X^2(s)) < \infty$ we can consider the metric τ on S given by $\tau(s, t) = [E(|X(s) - X(t)|^2)]^{1/2}$ and we will say that X has subgaussian increments (see $[6^t)$ if there exists a positive constant A such that

$$E[\exp(\lambda(X(s) - X(t))] \leq \exp(A\lambda^2\tau(s, t)^2), \tag{1.1}$$

for all s, $t \in S$, $\lambda \in R$.

Using basically the results of Jain and Marcus [6] we can state the following

Theorem 1.1. Let (S, d) be a compact metric space and let X be a zero mean square integrable C(S)-valued random variable. Consider the following conditions on X:

(a) There exists a nonnegative square integrable random variable M_1 and a continuous metric ρ_1 on S such that, given s, $t \in S$, $\omega \in \Omega$

$$|X(s,\omega) - X(t,\omega)| \le M_1(\omega) \rho_1(s,t) \tag{1.2}$$

$$\int_{0}^{1} H_{\rho_{1}}^{1/2}(S, u) \, du < \infty.$$
(1.3)

(b) X has subgaussian increments and the metric τ_1 associated to the covariance of X is continuous and verifies

$$\int_{0}^{1} H_{\tau_{1}}^{1/2}(S, u) \, du < \infty.$$
(1.4)

Then, if X and Y are zero mean, square integrable C(S)-valued independent

random variables satisfying one of these properties, X * Y verifies the central limit theorem on $C(S^2)$.

Proof. Denote by ρ_2 , τ_2 the metrics and by M_2 the random variable corresponding to Y in conditions (a) and (b).

If (a) holds for X and Y, the theorem is an immediate consequence of Theorem 1 of [6]. Indeed, X * Y also verifies condition (a) on $C(S^2)$, with metric $(\rho_1 \vee \rho_2)((s, t), (s', t')) = \max \{\rho_1(s, s'), \rho_2(t, t')\}$ and nonnegative random variable $\sup |X(s)| \cdot M_2(\omega) + \sup |Y(s)| \cdot M_1(\omega)$.

Under condition (b) the proof follows from Lemma 1 of [6] using an argument similar to the proof of Theorem 2 of [6].

In fact, let $(\Omega_1 \times \Omega_2, \mathscr{F}_1 \times \mathscr{F}_2, P_1 \times P_2)$ be a product probability space such that $\{X^n, n \ge 1\}$, a sequence of independent copies of X, is defined on $(\Omega_1, \mathscr{F}_1, P_1)$, and a sequence $\{Y^n, n \ge 1\}$ of independent copies of Y is defined on $(\Omega_2, \mathscr{F}_2, P_2)$. Denote by E_1 and E_2 the expectations with respect to P_1 and P_2 respectively.

The random variables $||X|| = \sup_{s} |X(s)|$ and $||Y|| = \sup_{s} |Y(s)|$ are square integrable (see Sect. 6.1 of [3] adapted to random variables with subgaussian increments and satisfying (1.4)), and we can suppose without loss of generality that $E(||X||^2) = 1$ and $E(||Y||^2) = 1$.

Let $\eta > 0$ given. By the strong law of large numbers there exists n_0 , $\Omega_{1\eta} \subset \Omega_1$ with $P_1(\Omega_{1\eta}) \ge 1 - \eta$ and $\Omega_{2\eta} \subset \Omega_2$ with $P_2(\Omega_{2\eta}) \ge 1 - \eta$ such that for all $\omega_1 \in \Omega_{1\eta}$, $\omega_2 \in \Omega_{2\eta}$ and $n \ge n_0$

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \|X^{i}(\omega_{1})\|^{2} \leq 2, \quad \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \|Y^{i}(\omega_{2})\|^{2} \leq 2.$$
(1.5)

Set $\Omega_{\eta} = \Omega_{1\eta} \times \Omega_{2\eta} \subset \Omega$. For each $\lambda > 0$, $n \ge n_0$, and z = (s, t), z' = (s', t') in S^2 , we have

Weak Convergence to the Law of Two-Parameter Continuous Processes

$$\begin{split} &P\left\{\Omega_{\eta} \cap \left(\frac{1}{\sqrt{n}}\left|\sum_{i=1}^{n} X^{i}(s) Y^{i}(t) - X^{i}(s') Y^{i}(t')\right| > 6A\lambda\right)\right\}\\ &\leq P\left\{\Omega_{\eta} \cap \left(\frac{1}{\sqrt{n}}\left|\sum_{i=1}^{n} X^{i}(s)(Y^{i}(t) - Y^{i}(t'))\right| > 3A\lambda\right)\right\}\\ &+ P\left\{\Omega_{\eta} \cap \left(\frac{1}{\sqrt{n}}\left|\sum_{i=1}^{n} Y^{i}(t')(X^{i}(s) - X^{i}(s'))\right| > 3A\lambda\right)\right\}\\ &\leq 2\int_{\Omega_{1\eta}} e^{-3A\lambda\beta} E_{2}\left(\exp\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n} X^{i}(s)(Y^{i}(t) - Y^{i}(t'))\beta\right)dP_{1}\right.\\ &+ 2\int_{\Omega_{2\eta}} e^{-3A\lambda\beta} E_{1}\left(\exp\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n} Y^{i}(t')(X^{i}(s) - X^{i}(s'))\beta\right)dP_{2}\right.\\ &\leq 2e^{-3A\lambda\beta}(\exp\left(2A\beta^{2}\tau_{2}(t,t')^{2}\right) + \exp\left(2A\beta^{2}\tau_{1}(s,s')^{2}\right)\\ &\leq 4e^{-3A\lambda\beta}\exp\left(2A\beta^{2}(\tau_{1}\vee\tau_{2})(z,z')^{2}\right), \end{split}$$

taking $\beta = \lambda/(\tau_1 \vee \tau_2)(z, z')^2$. Now the function $\phi(x) = 4e^{-x^2/36A^2}$ verifies on Ω_η the hypotheses of Lemma 1 of [6] applied to the process $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X^{i}(s) Y^{i}(t)$, $(s, t) \in S^{2}$ and the metric $\tau_{1} \vee \tau_{2}$ on S^2 .

Thus, given $\varepsilon > 0$, $\eta > 0$, there exists n_0 , $\delta > 0$ such that

$$P\left\{\sup_{\substack{d(s,s') \leq \delta \\ d(t,t') \leq \delta}} \frac{1}{\sqrt{n}} \left| \sum_{i=1}^{n} X^{i}(s) Y^{i}(t) - X^{i}(s') Y^{i}(t') \right| > \varepsilon \right\} < \eta + P(\Omega_{\eta}^{c}) \leq 3\eta$$

for every $n \ge n_0$, and the proof of the theorem follows easily. \Box

Note. In Theorem 1.1 the condition

$$\int_{0}^{1} H_{\tau}^{1/2}(S, u) \, du < \infty \tag{1.6}$$

where τ represents one of the metrics ρ_1 , ρ_2 , τ_1 , or τ_2 , can be replaced by the following hypothesis:

There exists a probability measure λ on S (provided with the τ -Borel sigmafield) such that

$$\lim_{\varepsilon \downarrow 0} \sup_{s \in S} \int_{0}^{\varepsilon} \sqrt{\log \frac{1}{\lambda\{t: \rho(s, t) < u\}}} du = 0.$$
(1.7)

This condition implies property (1.6) of the metric entropy (see [3], Corollary 6.2.4).

Under hypothesis (1.7) the proof of Theorem 1.1 would follow the same lines that the preceding arguments, but using Proposition 1.1 of [5] instead of Lemma 1 of [6].

Section 2

A two-parameter Wiener process $\{W(s, t); (s, t) \in [0, 1]^2\}$ is a Gaussian, zero mean process with the covariance function

$$E[W(s_1, t_1) W(s_2, t_2)] = (s_1 \wedge s_2)(t_1 \wedge t_2).$$

It is well-known (see [1]) that there exists a version of W with continuous paths. Then, the results of Sect. 1 lead to the following convergence to the law of W:

Proposition 2.1. Let $\{X^n(t); t \in [0,1], n \in N\}$ and $\{Y^n(t); t \in [0,1], n \in N\}$ be two independent infinite dimensional Brownian motions. Then the sequence of two-parameter continuous processes

$$Z_{n}(s,t) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X^{i}(s) Y^{i}(t)$$

converges weakly to a two-parameter Wiener process.

This result can be used to provide some estimates for the distribution of F(W) where F is a continuous functional on $C([0,1]^2)$.

For instance, the well-known upper bound for the tail distribution of the maximum of W(s,t) (see [7]) can be obtained by the limit of the following sequence of inequalities.

Proposition 2.2.

$$P\{\sup_{s,t\in[0,1]}Z_n(s,t)>\lambda\} \le 4P\{Z_n(1,1)>\lambda\}.$$

Proof. As before let $(\Omega_1 \times \Omega_2, \mathscr{F}_1 \times \mathscr{F}_2, P_1 \times P_2)$ be a product probability space such that two independent infinite dimensional Brownian motions $\{X^n(t); t \in [0,1], n \in N\}$ and $\{Y^n(t); t \in [0,1], n \in N\}$ are defined on $(\Omega_1, \mathscr{F}_1, P_1)$ and $(\Omega_2, \mathscr{F}_2, P_2)$ respectively.

Define

 $S(\omega_1, \omega_2) = \inf \{s \ge 0: \text{ there exists } t \in [0, 1] \text{ such that } Z_n(s, t; \omega_1, \omega_2) > \lambda \},\$

and

$$T(\omega_1, \omega_2) = \inf \{t \ge 0: Z_n(S(\omega_1, \omega_2), t; \omega_1, \omega_2) > \lambda\},\$$

where S=1 and T=1 if the above sets are empty.

S and T are stopping times with respect to the increasing family $\{\mathscr{F}_1(s) \times \mathscr{F}_2; s \ge 0\}$, where $\{\mathscr{F}_1(s); s \ge 0\}$ is the natural right continuous filtration associated to the *n*-dimensional Brownian motion $\{X^1(t), \ldots, X^n(t); t \in [0, 1]\}$.

Then, using the classical reflection principle, we have

$$P\{\sup_{s,t\in[0,1]} Z_n(s,t) > \lambda\}$$

= $E_2(P_1\{Z_n(1,T) > \lambda\} + P_1\{\sup_{s,t\in[0,1]} Z_n(s,t) > \lambda, Z_n(1,T) \le \lambda\})$

Weak Convergence to the Law of Two-Parameter Continuous Processes

$$= E_2(P_1 \{Z_n(1,T) > \lambda\} + P_1 \{Z_n(S,T) \ge \lambda, Z_n(1,T) \le \lambda\})$$

= $2E_2(P_1 \{Z_n(1,T) > \lambda\}) \le 2E_2(P_1 \{\sup_{t \in [0,1]} Z_n(1,t) > \lambda\})$
= $2E_1(P_2 \{\sup_{t \in [0,1]} Z_n(1,t) > \lambda\}) = 4E_1(P_2 \{Z_n(1,1) > \lambda\})$
= $4P \{Z_n(1,1) > \lambda\}.$

Finally we can state the following version of the functional law of the iterated logarithm which is implied by the central limit theorem in the case of C(S)-valued square integrable random variables (see [8]).

Proposition 2.3. Let $\{X^n(t); t \in [0,1], n \in N\}$ and $\{Y^n(t); t \in [0,1], n \in N\}$ be two independent infinite dimensional Brownian motions. Then, for almost every $\omega \in \Omega$ the set of limit points of

$$\sum_{i=1}^{n} \frac{X^{i}(s,\omega) Y^{i}(t,\omega)}{\sqrt{2n \log \log n}}$$

is equicontinuous in $C([0,1]^2)$ and coincides with the family of all absolutely continuous functions h defined on $[0,1]^2$ which vanishes along the axes and satisfy

$$\int_{0}^{1} \int_{0}^{1} \left(\frac{\partial^2 h}{\partial s \, \partial t} \right)^2 \, ds \, dt \leq 1.$$

In fact, this family of functions is the unit closed ball of the reproducing Kernel Hilbert space of a two-parameter Wiener process.

Acknowledgments. I would like express my gratitude to B. Heinkel for his valuable remarks concerning the use of hypothesis (1.7) in Theorem 1.1. I am also grateful to E. Giné for his helpful advice.

References

- 1. Dudley, R.M.: Sample functions of the Gaussian processes. Ann. Probab. 1, 66-103 (1973)
- 2. Dudley, R.M.: Metric entropy and the Central Limit Theorem in C(S). Ann. Inst. Fourier, 24, 49-60 (1974)
- Fernique, X.M.: Regularité des trajectoires des fonctions aléatoires Gaussiennes. Lec. Notes in Math. 480, 1-96. Berlin-Heidelberg-New York: Springer 1974
- 4. Giné, E.: On the Central Limit Theorem for sample continuous processes. Ann. Probability, 2, 629-641 (1974)
- 5. Heinkel, B.: Mesures majorantes et théorème de la limite centrale dans C(S). Z. Wahrscheinlichkeitstheorie verw. Gebiete 38, 339-351 (1977)
- 6. Jain, N.C., Marcus, M.B.: Central Limit Theorems for C(S)-valued random variables. Journal of Functional Analysis, 19, 216-231 (1975)
- 7. Orey, S., Pruitt, W.E.: Sample functions of the N-parameter Wiener process. Ann. Probability, 1, 138-163 (1973)
- 8. Pisier, G.: Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach. Séminaire Maurey-Schwarz. Ecole Politechnique, Palaiseau 1975

Received March 3, 1980; in revised form August 5, 1980