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Introduction 

Let C(S) be the space of real valued continuous functions on a compact  metric 
space (S, d), and let X be a C(S)-valued random variable. Sufficient conditions 
for the central limit theorem to hold for X can be given in terms of the e-entropy 
of S with respect to some continuous distances associated to X;  see Gin6 [4], 
Dudley [2] and Jain and Marcus [6]. 

If  X and Y are independent C(S)-valued random variables in some (f2, ~ P), 
we are going to use these results to state sufficient conditions for the central 
limit theorem to hold for the C(S2)-valued random variable corresponding to 
the process {X(s)Y(t); (s, t)~S2}. This variable will be denoted by X ,  Y. 

As an application we discuss in Sect. 2 the convergence to the law of a two- 
parameter  Wiener process. 

Section 1 

In a metric space S with metric p, we denote by Np(S, e) the minimal number  of 
balls or radius e which cover S, and the e-entropy of S is defined as Ho(S, e) 
= log N o (S, e). 

If X is a zero mean C(S)-valued random variable such that sup E(X2(s))< oo 
sEN 

we can consider the metric z on S given by -c(s, t )= [E(IX(s)-X(t)12)] 1/2 and we 
will say that X has subgaussian increments (see [6 t) if there exists a positive 
constant A such that 

E [exp (2 (X (s) - X (t))] < exp (A 22 z (s, t)2), (1.1) 

for all s, teS, 2~R. 
Using basically the results of Jain and Marcus [6] we can state the following 
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Theorem 1.1. Let (S, d) be a compact metric space and let X be a zero mean square 
integrable C(S)-valued random variable. Consider the following conditions on X:  

(a) There exists a nonnegative square integrable random variable M 1 and a 
continuous metric Pl on S such that, given s, t~S, coeE2 

IX (s, co) - X (t, co)[ N M1 (co) P l (s, t) (1.2) 
1 

H~I z (S, u) du < oe. (1.3) 
o 

(b) X has subgaussian increments and the metric z 1 associated to the co- 
variance of X is continuous and verifies 

1 

Hr u)du< oQ. 
0 (1.4) 

Then, if X and Y are zero mean, square integrable C(S)-valued independent 

random variables satisfying one of these properties, X * Y verifies the central limit 
theorem on C($2). 

Proof. Denote by P2, % the metrics and by M z the random variable correspond- 
ing to Y in conditions (a) and (b). 

If (a) holds for X and Y, the theorem is an immediate consequence of 
Theorem 1 of [6]. Indeed, X * Y also verifies condition (a) on C($2), with metric 
(Pl v p2)((s, t), (s', t ' ) )=max {pl(s, s'), pz(t, t')} and nonnegative random variable 
sup IX(s)]. M2(co ) + sup I Y(s)l" Ml(co), 

s s 

Under condition (b) the proof follows from Lemma 1 of [6] using an 
argument similar to the proof of Theorem 2 of [6]. 

In fact, let (f21 x s ~ x~2, P~ x P2) be a product probability space such 
that {X", n> l} ,  a sequence of independent copies of X, is defined on ((21, ~ ,  
P1), and a sequence {Y",n>l}  of independent copies of Y is defined on 
( f22,~,  P2). Denote by E 1 and E 2 the expectations with respect to P1 and P2 
respectively. 

The random variables IIX IJ = sup ]X(s)J and 11YII = sup ] Y(s)l are square in- 
s 8 

tegrable (see Sect. 6.1 of [3] adapted to random variables with subgaussian 
increments and satisfying (1.4)), and we can suppose without loss of generality 
that E([IX]I2)= 1 and E(kl YII 2) = 1. 

Let t />0  given. By the strong law of large numbers there exists n 0, (21~cf21 
with Pl ( f21n)~l - r /  and ~ 2 r / ~ r ~ 2  with P2(g22n)>l-~? such that for all c%eE21,, 
co2ef22~ and n>=n o 

I ~ iiXi(coa)l[2_<_2 ' 1 ~ iiyi(co2)112<2" (1.5) 

Set f2, = ~21, x f~2, c f~. For each 2>0 ,  n > n  o, and z=(s, t), z' =(s', t') in S 2, we 
have 
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@, 
Qln ]/tl  i = 1  

+2 f e-3A  E1 exp - 7  
fa2, i = 1 

2 e- 3 A zZ (exp (2 A f12 r2 (t. t') 2) + exp (2 A fiz% (s. s')2) 

< 4e-  3 Aae exp (2A/~2 (771 k/ T2)(Z, Z') 2) 

<4  exp ( -  22/(~, v %)(z. z')Z). 

taking fl = 2/(~ 1 v z2)(z, z') 2. 
Now the function r  4e -x2/36A2 verifies on f2, the hypotheses of Lemma 1 

1 
Xi(s) Yi(t). (s. t)eS z and the metric zl v %  of [6] applied to the process ~ 

i= 1 

on S z. 
Thus, given e > 0, q > 0, there exists n o, 6 > 0 such that 

t l ~ Xi(s ) yi(t)_X~(s,)Y~(t,) > } P sup - 7  ~ <t/+P(Q~)=<3r/ 
(d(s.r ]/n i~1 

d(t.t')<6 

for every n > n o, and the proof of the theorem follows easily. [] 

Note. In Theorem 1.1 the condition 

1 

H1/2(S,  u )du  < c;o (1 .6)  
o 

where z represents one of the metrics p~, P2, "ct, or 772, can be replaced by the 
following hypothesis: 

There exists a probability measure 2 on S (provided with the z-Borel sigma- 
field) such that 

lim<o supers o log 2{t:p(s,t)<u} du=O. (1.7) 

This condition implies property (1.6) of the metric entropy (see [3], Corol- 
lary 6.2.4). 

Under hypothesis (1.7) the proof of Theorem 1.1 would follow the same lines 
that the preceding arguments, but using Proposition 1.1 of ]-5] instead of 
Lemma 1 of [-6]. 
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Section 2 

A two-parameter Wiener process {W(s,t); (s,t)e[0, 1] 2} is a Gaussian, zero 
mean process with the covariance function 

EfW(s~, h) W(s2, t2)] =(s~ A s j ( h  A t j .  

It is well-known (see [1]) that there exists a version of W with continuous 
paths. Then, the results of Sect. 1 lead to the following convergence to the law of 
W: 

Proposition 2.1. Let {Xn(t); te[O,1], neN} and {Yn(t); te[O, 1], neN} be two 
independent infinite dimensional Brownian motions. Then the sequence of two- 
parameter continuous processes 

z,,(s, i x'(s) r'(t) 
] / n  i=1 

converges weakly to a two-parameter Wiener process. 

This result can be used to provide some estimates for the distribution of 
F(W) where F is a continuous functional on C([0, 112). 

For instance, the well-known upper bound for the tail distribution of the 
maximum of W(s, t) (see [7]) can be obtained by the limit of the following 
sequence of inequalities. 

Proposition 2.2. 

P{ sup Z.(s , t )>2}<4P{Z.(I ,1)>2}.  
s, te[O, 1] 

Proof. As before let ((21 • f22, ~-i x o~2, P1 x/2) be a product probability space 
such that two independent infinite dimensional Brownian motions {X"(t); 
t e [0,1], n e N} and {Y"(t); t e [0, 1], n e N} are defined on (f21 , ~-l, P1) and (~22, 
~z, /2)  respectively. 

Define 

S(csi,cs2)=inffs>O: there exists t e [0 ,1 ]  such that Z.(s,t; c01,c02)>2}, 

and 
T(a)l,CSz)=inf{t>_0: Z.(S(coi,osz), t; o)i,c02)> 2}, 

where S = 1 and T =  1 if the above sets are empty. 
S and T are stopping times with respect to the increasing family {~-1 (s) x Wh; 

s > 0}, where {~1 (s); s > 0} is the natural right continuous filtration associated to 
the n-dimensional Brownian motion {X z (t) . . . . .  X"(t); t e [0, 1]}. 

Then, using the classical reflection principle, we have 

P{ sup Z.(s,t)>) 0 
s,t~[O, 1] 

=Ez(PI {Z.(1, T)> 2} + PI { sup Z.(s,t)> 2, Z.(1, T)<=2}) 
s,t~[O, 1] 
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=G(P1 {z , (1 ,  T ) > 2 }  +P1 {Z,(S, T ) > 2 ,  Z , (1 ,  T) < 2}) 

= 2 E z ( P  1 {Z,(1,  T)>)~})<2Ez(P 1 { sup  Z,(1,  0 > 2 } )  
t~[O, 1] 

= 2E1 (P2 { sup  Z,,(1, t) > 2}) = 4 E  t (Pz {Z,(1,  1) > 2}) 
re[O, 1] 

= 4 n { z n ( 1 ,  1 )>2} .  [ ]  

F i n a l l y  we can  s ta te  the fo l lowing  ve r s ion  of  the f u n c t i o n a l  law of  the 
i t e ra ted  l o g a r i t h m  which  is imp l i ed  by  the cen t ra l  l imi t  t h e o r e m  in  the  case of  
C(S) -va lued  squa re  i n t eg rab le  r a n d o m  var iab les  (see [8]). 

Proposition 2.3. Let {X n (t); t ~ [0,1 ], n ~ N} and { yn (t); t ~ [0, 1 ], n ~ N} be two 
independent infinite dimensional Brownian motions. Then, for almost every co ~ f2 
the set of limit points of 

Xi(s, co) Yi(t, co) 

i=1 ~ ~ ~oog~oog~ 

is equicontinuous in C ( [ 0 , 1 ]  2) and coincides with' the family of all absolutely 
continuous functions h defined on [0, 1] 2 which vanishes along the axes and satisfy 

/~2h ]2 
i i \ ~ ]  dsdt<l .  
O 0  

In  fact, this fami ly  of  func t ions  is the  un i t  c losed bal l  of  the r e p r o d u c i n g  
K e r n e l  H i lbe r t  space  of  a t w o - p a r a m e t e r  W i e n e r  process.  
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