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Introduction

Let C(S) be the space of real valued continuous functions on a compact metric
space (S,d), and let X be a C(S)-valued random variable. Sufficient conditions
for the central limit theorem to hold for X can be given in terms of the e-entropy
of S with respect to some continuous distances associated to X; sec Giné [4],
Dudiley [2] and Jain and Marcus [6].

If X and Y are independent C(S)-valued random variables in some (£, Z, P),
we are going to use these results to state sufficient conditions for the central
limit theorem to hold for the C(S%)-valued random variable corresponding to
the process {X (s)Y(t); (s, 1)eS?}. This variable will be denoted by X = Y.

As an application we discuss in Sect. 2 the convergence to the law of a two-
parameter Wiener process.

Section 1

In a metric space § with metric p, we denote by N, (S, ¢) the minimal number of
balls or radius ¢ which cover S, and the e-entropy of S is defined as H (S, ¢)
=log N,(S, ¢).

If X is a zero mean C(S)-valued random variable such that sup E(X?(s)) < o0

seS

we can consider the metric 7 on S given by (s, £)=[E(|X (s)— X (t)]*)]"* and we
will say that X has subgaussian increments (see [67) if there exists a positive
constant A such that

Elexp(A(X (s)— X ()] Sexp (4 471(s,1)%), 1.1

for all s, teS, AeR.
Using basically the results of Jain and Marcus [6] we can state the following
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Theorem 1.1. Let (S, d) be a compact metric space and let X be a zero mean square
integrable C(S)-valued random variable. Consider the following conditions on X :

(a) There exists a nonnegative square integrable random variable M| and a
continuous metric p, on S such that, given s. teS, wef2

| X (s, 0) = X (2, o) =My () p, (5,7) (1.2)

1
12 (s .
gHm (S, u)du< oo 1.3)

(b X has subgaussian increments and the metric v, associated to the co-
variance of X is continuous and verifies

1
HI2(S, w)ydu< .
§ o (S, u)du (1.4)

Then, if X and Y are zero mean, square integrable C(S)-valued independent

random variables satisfying one of these properties, X = Y verifies the central limit
theorem on C(S?).

Proof. Denote by p,, 7, the metrics and by M, the random variable correspond-
ing to Y in conditions (a) and (b).

If (a) holds for X and Y, the theorem is an immediate consequence of
Theorem 1 of [6]. Indeed, X = Y also verifies condition (a) on C(S?), with metric
(P Vv P)((s 1), (8, t))=max {p,(s,5), p,(t. ')} and nonnegative random variable
sup |X (s)]- M, () +sup|Y ()] - M (w).

Under condition (b) the proof follows from Lemmal of [6] using an
argument similar to the proof of Theorem 2 of [6].

In fact, let (2, xQ,. % x%, P, xP,) be a product probability space such
that {X",n=1}, a sequence of independent copies of X, is defined on (2,, £.
P)), and a sequence {Y",n=1} of independent copies of Y is defined on
(Q,. %, P,). Denote by E, and E, the expectations with respect to P, and P,
respectively.

The random variables | X jj—suplX (s)} and ]lYH—sup]Y(s)) are square in-

tegrable (see Sect. 6.1 of [3] adapted to random var1ables with subgaussian
increments and satisfying (1.4)), and we can suppose without loss of generality
that E(| X|*)=1 and E(||Y|}*)=1.

Let #>0 given. By the strong law of large numbers there exists ny, 2,, =Q,
with P,(Q,,)=1—7 and Q,, =Q, with P,(Q2,,)=1—n such that for all w,eQ
®,€8,, and n=zn,

1n>

3 1Xi(y)222,

1
= 7

Set 2,=Q,, xQ,, =Q. For each 1>0, n=n,, and z=(s, 1), 2/ =(s, ') in S%, we
have

> 1V (w52 (15
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P{Q”m (% >6A/l)}
gP{Qnm (—]}; >3Ai>}

{Q A (If >3A/1)}

<2 [ 9K, (o (- 3 XG0 Ve)S) P,

21y ﬁi=1
#2 ] e, (exp (L 7 Y Y6 - X ) B) P,

235 i=1

i X(s)Yi(t)— X'(s) Y'(t)

i=1

i XY= Y'(t)

i=1

()X () - X'(s)

<2e 3 (exp QAP 1,(t, 1)) +exp (2A BT, (s.5)?)
<de 34 exp(2AB*(t, v T,)(z, 2'))
Sdexp (= At v1,)(z,2)?),

taking f=1/(t, v 7,)(z. 2)%
Now the function ¢(x)=4e~*/34* yerifies on Q, the hypotheses of Lemma 1

of [6] applied to the process RS Y X'(s) Y(t). (s,t)eS? and the metric 7, v 1,

ﬂ i=1
on S%.

Thus, given ¢>0, >0, there exists n,, 6 >0 such that

n

Z ) Y(0)—-X'(s) Yi(t)

1
P{ —= >£}<11+P(Q”)<311
d(s s )ga Vn
t)sé
for every n=n,, and the proof of the theorem follows easily. []

Note. In Theorem 1.1 the condition
1
{ HY*(S,u)du< oo (1.6)
0

where t represents one of the metrics p,. p,, 7, Or 7,, can be replaced by the
following hypothesis:

There exists a probability measure A on S (provided with the t-Borel sigma-
field) such that

I
li log ——————du=0. 1.7
ellrg sslg)j" o8 A{t:p(s,t)<u} " (L7

This condition implies property (1.6) of the metric entropy (see [3], Corol-
lary 6.2.4).

Under hypothesis (1.7) the proof of Theorem 1.1 would follow the same lines
that the preceding arguments, but using Proposition 1.1 of [5] instead of
Lemma1 of [6].
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Section 2

A two-parameter Wiener process {W(s,1t); (s,t)e[0,1]%} is a Gaussian, zero
mean process with the covariance function

E[W( sy, 1) W(sy, t)]=(s5 A8,)(E; Aty).

It is well-known (see [1]) that there exists a version of W with continuous

paths. Then, the results of Sect. 1 lead to the following convergence to the law of
w:

Proposition 2.1. Let {X"(¢);t€[0,10, neN} and {Y"(t);tc[0,1], neN} be two
independent infinite dimensional Brownian motions. Then the sequence of two-
parameter continuous processes

Z,(s, t)=L i Xi(s)Y'()

V&

converges weakly to a two-parameter Wiener process.

This result can be used to provide some estimates for the distribution of
F(W) where F is a continuous functional on C([0,1]?).

For instance, the well-known upper bound for the tail distribution of the
maximum of W(s,t) (see [7]) can be obtained by the limit of the following
sequence of inequalities.

Proposition 2.2.

P{ sup Z,(s,0)>A}<4P{Z,(1,1)>4}.
s.te[0, 1]
Proof. As before let (Q, xQ,, # x%,, P, x P;) be a product probability space
such that two independent infinite dimensional Brownian motions {X"(z);
te[0,1], ne N} and {Y"(¢); t€[0,1], ne N} are defined on (Q,, #,, P,) and (22,,
Z,, P,) respectively.
Define

S(w,,w,)=inf {s=0: there exists t€[0,1] such that Z (5,t; w,,w,)> 41},

and
T(wy, w)=inf{t20: Z,(S(w, 0,), 1; 0, 0,)> 4},

where S=1 and T'=1 if the above sets are empty.

S and T are stopping times with respect to the increasing family {Z (s) x %,;
520}, where {Z(s); s=0} is the natural right continuous filtration associated to
the n-dimensional Brownian motion {X(),..., X"(t); t€[0,17}.

Then, using the classical reflection principle, we have

P{ sup Z,s,0)>4}
s, te[0,1]

=E,(P{Z,1,T)>A}+P{ sup Z,s5)>4Z,(1,T)SA})
1

s, te[0, 1
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=E,(P{Z,0, T) >} +R{Z,(S.T)=4 Z,(1,T)SA})
=2E,(P{Z,(1,T)>A})S2E, (P { sup Z,(1,0)>4})
te[0, 1]

=2E,(P{ sup Z,(1,0)>A})=4E(P{Z,(1,1)>4})
te[0, 1]
—4p{Z (1.1)>4} 0O

Finally we can state the following version of the functional law of the
iterated logarithm which is implied by the central limit theorem in the case of
C(S)-valued square integrable random variables (see [8]).

Proposition 2.3. Let {X"(t); te[0,1], ne N} and {Y"(t); te[0,11, ne N} be two
independent infinite dimensional Brownian motions. Then, for almost every weQ
the set of limit points of
Xi(s, w) Yi(t, w)

2nloglogn

is equicontinuous in C([0,1]%) and coincides with the family of all absolutely
continuous functions h defined on [0,1]* which vanishes along the axes and satisfy

i

11 82h 2
dsdt£1.
M(%m) sat=

In fact, this family of functions is the unit closed ball of the reproducing
Kernel Hilbert space of a two-parameter Wiener process.
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