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Summary. Given topological spaces X1 , . . . ,X  n with product space X, prob- 
ability measures #~ on X~ together with a real function h on X define a 
marginal problem as well as a dual problem. Using an extended version of 
Choquet's theorem on capacities, an analogue of the classical duality theo- 
rem of linear programming is established, imposing only weak conditions 
on the topology of the spaces Xi and the measurability resp. boundedness 
of the function h. Applications concern, among others, measures with given 
support, stochastic order and general marginal problems. 

Introduction 

An extension of the well-known transportation problem to an infinite number 
of origins resp. destinations (to some extent considered as early as in 1781 by 
Monge [17]), combined with a change of sign in the cost function and a 
generalization from n = 2  to n~N, leads to the following measure theoretic 
version: 

Given probability distributions gl on spaces Xi, 1 < i < n ,  and a real func- 
tion h on their product X = X  1 x ... x X ~ ,  consider the "marginal problem" 

(1) maximize J" h dg, 
X 

where the distribution # on X is subject to the restriction 

#({x~X: x i ~ B i } ) = # i ( B i )  for l <_i<_n. 

As in classical linear programming, this gives rise to a "dual problem" 

(2) minimize 2 S h i d # i ,  
l < i < n  Xi 

where the real functions h i on X i are subject to the restriction 

hi(xi)>=h(xl . . . .  ,xn) for all x i. 
1 <_i<_n 
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Then, disregarding for the moment the question whether the maximum in (1) 
resp. the minimum in (2) is really attained, the main problem to be settled is 
the validity of the "duality theorem" max (1) = m in  (2). 

To mention just one important example, consider the case n = 2  with spaces 
X i both equal to some space Y with metric d. Choosing h - - - d ,  up to a 
change of sign, the marginal problem provides the Wasser~tein distance (see 
[25]) of two probability measures/~1, #2 on Y, while the dual problem leads to 
their Kantorovitch-Rubingtein distance (see [10]). In this case the duality 
theorem amounts exactly to the coincidence of both metrics - and in fact holds 
true for compact spaces Y. This result was extended to separable metric spaces 
by Dudley [3], but his proof contained a gap, which was filled only by 
Fernique [5] for polish spaces and by the author [12] under weaker assump- 
tions. 

Returning to the general case, but restricting the spaces Xi to be compact 
metric or at least polish and the function h to be bounded continuous, the 
duality theorem essentially results from an application of the Hahn-Banach 
theorem, combined with the Riesz representation theorem. This fact, however, 
remains hidden in the papers of Riischendorf [19] and Gaffke-Riischendorf [6] 
from 1981, which are devoted roughly to this situation and are until now the 
only relatively general treatments of related duality theorems. 

Unfortunately, the methods there as well as the procedure mentioned above 
fail to settle more general situations as encountered in the present paper. The 
main idea in this treatment consists in regarding the measures kh as fixed and 
the function h as variable and thus introducing S(h) as the supremum in (1) 
and I(h) as the infimum in (2). 

Each of the functionals S and I - and this is the crucial point - can be 
shown to enjoy three of four possible continuity properties. First, both S and I 
are z-continuous upwards ((1.23), (1.29)) and downwards ((1.26), (1.30)), from 
which the validity of the duality theorem can be deduced for lower as well as 
upper semicontinuous functions ((2.2) and (2.6)), the first result being more 
surprising than the second one. Moreover, both functionals - though failing to 
be a-continuous downwards - are at least ~-continuous upwards ((1.21), (1.28)). 
By a functional version of Choquet's capacitability theorem (stated in (2.11)) 
these continuity properties, put together, lead to the central result (2.14): 
without any special topological assumptions, the equation S(h)=I(h) holds for 
all Suslin functions h (defined in (2.12)), provided they are bounded below in 
some weaker sense - a condition, which can be shown to be essential. 

To end these introductory remarks, the different sections making up the 
three parts of the paper will be briefly summarized: 

After providing in Sect. 1.1 the more or less elementary tools needed 
permanently in the sequel, the next two sections are devoted to the continuity 
properties of the functionals S and I stated above. The proofs are achieved 
mainly by appropriate compactness concepts, which are much more involved 
for the n-tuples of functions h i figuring in the definition of I than for the 
measures # in that of S. Returning to the Hahn-Banach approach, Sect. 1.4 
clarifies, to what extent continuity properties of the function h can be trans- 
ferred to h 1 . . . .  , h,. 
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Section 2.1 starts from the duality theorem for finite spaces X~, settles the 
situation for semicontinuous functions h and ends up with the case of count- 
able spaces Xi, without any boundedness - or even finiteness - condition on h. 
After having collected the needed concepts and facts about Suslin functions 
and corresponding capacities in the next section, the step from continuity to 
measurability is taken in Sect. 2.3. From the key result (2.14) it is derived, for 
instance, that the duality theorem holds quite generally, whenever the underly- 
ing spaces Xi are metrizable or second countable (leaving the general compact 
case, however, as an open problem). The final section of part 2 proves the 
supremum S(h) to be attained in the case of sufficiently smooth functions h as 
well as the infimum I(h) in the case of suitably bounded functions h. 

The first section in the applications clarifies, which functions h are integrable 
(possibly to the same value) for all solutions # of a given marginal problem. 
Section 3.2 is limited to the case n = 2  and devoted to measures with given 
support. It unifies results of Strassen, Hoffmann-Jorgensen and Edwards (in the 
topological setting) as well as results of Sudakov and Shortt (in a more 
abstract setting). The next section considers in addition an order structure, 
transfers monotony properties of the function h to h 1 .. . .  ,h, and strengthens 
thereby results obtained by Kamae-Krengel-O'Brien and again Hoffmann- 
Jorgensen and Edwards. Section 3.4 resumes a general marginal problem 
treated in 1964 by the author for X~=R and investigated later on by Maharam 
and Lembcke among others. In particular, by this last application the restric- 
tion to tight measures throughout this paper can be shown to be essential. 

Finally, the work of Levin-Milyutin [15] at least should be mentioned; but 
in spite of the title it treats an essentially different problem, having no exten- 
sion to general n and even for n = 2  making sense only in the case X1 = X  a. 

Notations 

1. If Y is an arbitrary set, ~3(Y) denotes its power set and ~(Y) the set of all 
functions from Y to the extended real line [!. 

A family ~Ic~3(Y) or a g c ~ ( Y )  is called a lattice (a-lattice), if it is stable 
with respect to finite (countable) lattice operations. The a-lattice generated by 
arbitrary 2[ or ag is denoted by a(~l) or a (d) ,  respectively. 

If ~4 is any subset of ~(u  then (using the index b for "bounded"  and f for 
""finite") 

d b = { g ~ s r  in fg>- -oo} ,  
g 

,5~r {g~Q/r g(y)> --oo for all yeg}  

with an analogous meaning of ~4 b and ~r 
2. Without further notice, in the sequel all topological spaces are assumed 

to be Hausdorff. For such a space Y, 

(a) (5(Y) is the family of all open sets in Y, 
~f(Y) is the family of all lower semicontinuous functions in ~(Y), 
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(b) ~(Y) is the family of all closed sets in Y, 
~(Y) is the family of all upper semicontinuous functions in ~(Y), 

(c) ~3(Y) is the family of all Borel sets in Y, 
~(Y) is the family of all Borel measurable functions in N(Y); 

(d) E(Y) is the family of all Baire sets in Y, 
cg(y) is the family of all continuous functions in N(Y). 

Moreover, g(Y) denotes the family of all finite elementary functions in N(Y) 
(i.e. g[Y] c R  and finite for g~g(Y)). 

3. If v is any measure on ~3(Y), the space of all v-integrable functions 
ge~(Y) is denoted by ~(v) (without identifying v-almost equal functions) and 
the respective integrals are abbreviated by v(g). Similarly, v, and v* are used 
for inner and outer measure as well as for lower and upper integral. 

4. Suppressing again an index, M(Y) denotes the space of all tight (or 
Radon) probability measures v on ~3(Y); since these measures are in particular 
v-continuous (i.e. continuous with respect to downwards resp. upwards directed 
families in ~(Y) resp. (5(Y)), they have a well defined support, which is denoted 
by supp v. 

M(Y) is endowed with the weak (or narrow) topology, i.e. the (Hausdorff) 
topology generated by (one of) the requirements 

v~-~v(g) is lower semicontinuous for all bounded gs~(Y), 

v~--~v(g) is upper semicontinuous for all bounded ge~(Y) .  

5. Henceforth X1, ..., X~ are fixed topological spaces with product space X 
and canonical projections ~zi: X ~ X  i. 

The abbreviation 

@ g i : = g l  @ ... @ g n =  2 g i ~  7Ci 
i i 

is used, provided the functions gi belong all to NI(X~) or all to ~Y(X~). 
Moreover, g (X0 |174  denotes the tensor product of the spaces 

g(X~), consisting of finite sums of products [ I  gi ~ rE with g~eg(X,). 

Finally, the measures #i are assumed to be fixed elements of N(Xi) in the 
sequel, which - though crucial - are suppressed in the definitions of Sect. 1.1. 

1. The Functionals S and I 

1.1. Preliminaries 

To introduce the functionals in question, the basic set of measures has to be 
fixed first: 

(1.1) Definition. M:={#EM(X): ~zi(#)=#i for l < i < n } .  

The essential properties of this set are summarized in: 

(1.2) Proposition. ['/I is a non-void compact convex set. 

Proof The product measure #1 |174 being defined only on 
N(X1) |174 has a unique extension #eN(X) (see [21, p. 63]), which 
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obviously is an element of H. Thus, the convexity being clear, only the 
compactness remains to be verified. To this end, let e>0  be arbitrary, choose 

compact sets K i c X~ with the property #i(C Ki )<e  and consider the compact set 
K'. = K 1 x . . .  X K n. Evidently n 

#(~ K) < y '  #@z/l[~ Ki])<e for all #6M, 
i 

i.e. the set H is uniformly tight and thus relatively compact (see [21, p. 379]). 
But in addition N1 is closed, since the continuity of ~ implies the continuity of 
the map #~-+~i(#) (see [21, p. 372]), and the proof is completed. [] 

Now the main definition can be given: 

(1.3) Definition. Let h ~ ( X )  be arbitrary; then 

S(h): = sup {#*(h): #~ M}, 

I(h):= inf{y' #~(h~): h~s ) and h < @  hi}. 
i i 

Here, the use of the upper integral in defining S is adequate as is seen by 
the case n=  1, while in defining I the usual convention inf r + oo is made. 
Moreover, in the case h = 1 s the notations S(B) and I(B) will be used. 

Now one half of the duality equation is as immediate as the other half is 
intricate: 

(1.4) Proposition. S(h)<__I(h) for all hoe(X). 

Proof # ~ l  and hi~Gas(#~ ) with h < @  h i yield 
i 

#*(h)<#*@ hi)< ~ #*(hiorh)= ~ #i(hi). [] 
i i i 

The following property will be used frequently: 

(1.5) Proposition. The functionals S and I are isotone. 

Proof. Obvious. [] 

Of course, only a very restricted additivity holds: 

(1.6) Lemma. I f  he~(X) is arbitrary, hieY(#i) is finite and ho:=@hi, then: 
i 

(a) S(h + ho)= S(h) +S(ho) and I(h + ho)=I(h)+ I(ho), 
(b) S(ho)=~#~(hi)=I(ho). 

i 

Proof. (a) follows immediately, while (b) - for I - employs (1.4). [] 

The next result makes essential use of the convexity of M : 

(1.7) Lemma. I f  h ~ ( X )  satisfies #*(h)< oo for all #~[vl, then S(h)< oo as well. 

Proof. Assuming #*(h)< oo for all # s H  and S(h)= c~, there are measures #k~H 
with #*(h)>2 k for keN. According to (1.2) the measure go.'= ~ 2-k#k is 

k e N  

contained in N, hence #~(h)< oo and there is a function f ~ ( # o )  with h<f. In 
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view of ~(#o) c ~(#k), however, 

#o( f )=  ~ 2-k#k(f)> ~ 2-k#~(h)= o% 
k e N  k ~ N  

i.e. the assumption leads to a contradiction. [] 

The following fact, carrying over boundedness properties from h to h i, will 
be used repeatedly: 

(1.8) Lemma. For h ~ ( X )  define 7:= in fh  and ~:=suph;  then the functions h i 
X X 

appearing in the definition of I(h) may be assumed to satisfy the additional 
requirement 

(a) 1 1 + (7 -7 )  in the 7eR, -7<=hi<= ? case 
n -  n -  - 

(b) h i is bounded cz in the case 7eR. 

proof. (a) Apparently 7 = 0 may be assumed, hence @ h i > h implies 
i 

infh i = inf (~ h i > infh = 0; 
i X i  X i X 

thus there are constants 7i<infhi with ~ ? i = 0 ,  and h i may be replaced 
Xi i 

hi-?i>O without changing ~#i(hhi ). Using now hi>0, the inequality @hi>h 

remains true if h i is replaced by h i/x 7. 
(b) Because of h i= in fh  i v ( - k )  the functions hl may be assumed to be 

k e n  

bounded below, therefore in view of y<  oo to be bounded above as well. [] 

By the last result, the functionals S and ! can be shown to be a-sub- 
additive: 

(1.9) Lemma. I f  O<hke~(X) for keN, then 

S(~,hk)<=~ S(h k) and I ( ~  h k)<=~ I(hk). 
k e N  k ~ N  k e N  k ~ N  

Proof. The first inequality is a consequence of the a-subadditivity of #* for all 
#6M. Concerning the second inequality, the functions hke~i(#i )wi th  hk<(~h k 

i 

may be assumed to be non-negative in view of (1.8a); but under this restriction 
the assertion follows easily. [] 

Having collected these basic facts about the functionals S and I, it is 
possible to define an appropriate metric in the space ~(X). First the relevant 
null sets have to be introduced: 

(1.10) Definition. 9 1 : = { A ~ ( X ) :  A ~  u ~z/-i[Ni] with #i(N/)=0 for all i}. 
i 

An immediate consequence is: 

(1.11) Proposition. 9l is stable with respect to the formation of subsets and 
countable unions. 
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Pro@ Obvious. []  

This class gives rise to the following notions: 

(1.12) Definition. For functions f , g ~ ( X )  the relations f = g  and f__<g are 
N N 

defined by the requirements { f  # g} egl and { f  > g} cOl, respectively. 

Thus for instance hi<h' i for all i implies @hi<@h' i (if both sides are well 
defined). ~ i N i 

The main facts concerning these notions are summarized in: 

(1.13) Proposition. = defines an equivalence relation and < a partial order in 
N N 

~(X), both compatible with countable lattice operations. 

Proof. See (1.11). [] 

Of course, (1.12) and (1.13), when specialized to indicator functions, define 
relations = and c in ~3(X) with analogous properties. 

N N 

After these preparations the required metric can be introduced: 

(1.14) Definition. d(f, g) : -- I(l f -  g[) for f, g ~ ( X ) .  

Here, as in related situations, f ( x ) -g (x )  has to be interpreted as 0 
whenever the values f (x)  and g(x) are equal; then: 

(1.15) Proposition. With respect to =, d defines a (possibly infinite) metric in 
~(x) .  N 

Proof. Since the triangle inequality follows from (1.9), the main point to be 
checked is the equivalence of the relations f = g  and d(f, g)=0. 

N 
(a) Given sets N i such that 

{ f # g } c ~ .  ~-I[N~] and /~i(N~)=0, 

the functions hi== oe. 1N,e5~ satisfy 

l f - g l < @ h l  and ~#i(hi)=0.  
i i 

(b) If conversely I ( I f - g l ) = 0 ,  then (1.8a) provides functions h~e~(l~i) with 
h/k > 0 such that 

I f-g]<@h~ and ~#,(h~)<2 -k for all keN;  
i i 

hence the functions hi." = lim sup h~ > 0 satisfy 
k ~ o o  

I f - g l < @ h i  and ~kt/(hl)=0, 
i i 

and the sets Ni. '={hi#0} fulfill the requirements in (a). [] 
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The metric d is easily seen to be appropriate: 

(1.16) Proposition. The functionals S and I are continuous with respect to d. 

Proof. Given functions f ,  geN(X)  with ,5:--d(f,g)< o% applying (1.4) it follows 
as in the proof of (1.9) that 

S(g)<S(f)+(~ and I (g )<I( f )+6 .  [] 

It is an immediate consequence of the continuity that the functionals S and 
I are constant on equivalence classes with respect to = .  

N 

The following notation will be used in the sequel: 

(1.17) Definition. d denotes the closure of ~e.ccN(X) with respect to d. 

Then topology and lattice structure in N(X) are compatible in the following 
sense: 

(1.18) Lemma. I f  d c C ~ ( X )  is stable with respect to finite resp. countable 
infima or suprema, the same holds true for ~ .  

Proof. For f." = i n f f  k (or supf  ~) and g.-= infg k (or sup gk) an application of (1.9) 
k e n  k e n  k e n  h e n  

yields the inequality 

d(f, g) < I( ~ If  k - gkl) < ~ d ( f  k, gk), 
k e n  k~N 

by which the assertion is easily established. [] 

The final notion concerns the question whether a function f e N ( X )  is 
minorized or majorized by a sum @hi; more precisely" 

i 

(1.19) Definition. If d e N ( X )  is arbitrary, then 

sJm: = { f e ~ :  f > @ h  i for suitable hle~s(#i)}, 
i 

din. �9 = { f e ~ :  f < @ h  i for suitable hies162 }. 
i 

Obviously the inclusions sJ b c d ~  and d b c~4 '~ always hold true; but more 
important are the following equations: 

(1.20) Lemma. Let sJ c N(X)  contain the constants; then: 

d b = s t  m = (~)~, if ~4 is v -stable, 

~@ = s ~ ' ~ = ( J )  m, if ~r is /x-stable. 

Proof. 1. It suffices to prove for instance the second assertion, where the 
inclusion x d b c x i  m is trivial. Since feNm(X)  and d( f ,g)<oo obviously implies 
geNre(X), the set ~m(X) is closed; hence (~r is closed as well, 

which implies sur "~c(~)m. Thus only the inclusion (ff)m c s~cb has to be estab- 
lished. 
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2. Choosing an arbitrary g~(~)m,  there exist functions g k e d  and h i ~ / ( # ~  ) 
such that d(gk, g ) ~ 0  and g<@h~. Then, according to the assumptions on d ,  

i 
the functions f k : =  gk A k are contained in .~b and satisfy 

d (fk, g) < d(fk, g A k) + d(g A k, g) ~ 0 

because of the estimates 

(a) d ( f  k, g/x k)= i([gk A k - g A kD 

<I(Lgk--g[) 

= d(gk, g), 

(b) d (g/, k, g) = I((g - k) +) 

1.2. Continuity of  S 

Much more important than the metric continuity stated in (1.16) are continuity 
properties of the functionals S and I with respect to the natural order in ~(X). 
The situation is relatively simple for S, especially in the increasing case: 

(1.21) Proposition. The functional S is a-continuous upwards on ~b(X). 

Proof. Since #* is a-continuous upwards on ~b(X) for a l l / ~  M, the correspond- 
ing property of S follows by interchanging two suprema. [] 

The assumption h~Nb(X ) cannot be weakened to S ( h ) > -  o% as is easily 
seen: 

(1.22) Example. For n = 2  choose X i = { - 1 ,  + 1}, let #~ assign �89 to each point 
and consider 

h(xl,x2): =(x 1 +x2).  oo (with 0- oo: =0). 

Then hk:----h A k T h, while obviously 

S(h k) = 0 for all k e N  and S(h) = oo. 

The preceding proposition has a topological analogue: 

(1.23) Proposition. The functional S is z-continuous upwards on fib(X). 

Proof. The equation #*(h)=sup#(hAk)  for hEfb(X  ) implies, again by in- 
kEN 

terchanging two suprema, that g* is z-continuous on fib(X), and the assertion 
follows as (1.21). [] 
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The decreasing case is lesspleasant: 

(1.24) Example. For n = 2  choose Xi=[0 ,  1], let the measures ~i be Lebesgue 
measure and consider the sets 

Fk:={(Xl,X2)eX: X2=X 1 nt-~ (mod 1)}e~(X), 

Gk:={(Xl,X2)eX:xl<x2<s for keN. 

Then the sets F k support unique measures I~keM and the sets G k decrease to 
G = 0, hence 

S(Gg)>sup#l(Gg)=sup(1-1]=l for all keN, 
l>k  l>k  \ l] 

while obviously S(G)= O. 

By this example it is seen that S fails to be o--continuous downwards even 
for indicator functions of open sets and thus (1.21) has no counterpart. To 
show this, however, to be true for (1.23), the following result will be used, 
which is essential also in Sect. 2.4: 

(1.25) Lemma. For herb(x) and ~<S(h) the set 

M(h; 6)." = {#eM: #*(h) > &} 

is non-void and compact. 

Proof. In view of the definition of S and of (1.2) it suffices to prove N(h; &) to 
be closed. But the function 

~ * ( h )  = inf~(h v ( - k ) )  
k~N 

as an infimum of upper semicontinuous functions on M(X) has this property 
as well, and the assertion follows. [] 

Having available this result, it is easy to show: 

(1.26) Proposition. The functional S is z-continuous downwards on ~b(x). 

Proof. Let (hj)j~j be a decreasing net in ~b(x)with limit h and take an 
arbitrary &<infS(hJ). Then, in view of (1.25), the sets M(h;; 6), jeJ, form a net 

j~J  

of non-void compact sets, which is obviously decreasing. Now choose any 
#e(~ M(hJ;6) and note that # ,  is z-continuous downwards on ~b(x) in cor- 

j~J  

respondence to the analogous property of/~* stated in the proof of (1.23). Since 
/~, and/~* coincide on yb(x), this yields 

S(h) > p*(h) = inf p*(h j) > ~. 
j e J  
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Letting 5 tend to its upper bound and using (1.5), this implies 

S(h) > inf S(h j) > S(h), 
j e J  

and the assertion is proved. [] 

409 

1.3. Continuity of  I 

The crucial point in deriving duality theorems consists in continuity properties 
of the functional I, which to prove is unfortunately much more involved as it 
was for the functional S. This has its reason mainly in the absence of an 
appropriate compactness concept for the set of functions @h i, hi~5~j-(#i), 

i 

dominating a given function h e ~ ( X ) .  Passage to the n-tuples (hi . . . . .  h,) sug- 
gests to endow H L~(#i) with the product of the weak topologies of the spaces 

i 
S(#i) ;  accordingly in this section functions hi and h'~ with h~ = h' i are identified 
whenever necessary. ~ 

With these conventions a first result can be stated, which will be needed 
again in Sect. 2.4: 

(1.27) Lemma. For O<heg~(X) and cS>I(h) the set ~ ( h ; 5 )  consisting of all 
sequences (h k , k . . . .  hn)kE N in 1-[ ~ (#i) with 

i 

(1) 0 < h k < k for all i and k, 
l t i  ldl 

(2) h i < h2~ < ... for all i, 

(3) ~ #i(h k) <__ c5 for all k, 
i 

(4) h / x k < @ h  i for a l l k  
N i 

is a non-void subset of ( I ~ ( # i ) )  TM, which is compact with respect to the product 
i 

of the weak topologies in the spaces 5s (#~). 

Proof. 1. First of all there are functions hieSer satisfying the inequalities 
h<@h~ and ~#~(hi)<6, where according to (1.8a) in addition h~>0 may be 

i i 

assumed. Then it is easily checked that the sequence corresponding to 
hk= = h~/x k fulfils all requirements, and the assertion S(h ;  5) 4= 0 is verified. 

2. Apparently the first three requirements define a closed subset of 
(H5r N. Moreover, the set {hks~(#i): (1)} is uniformly integrable, hence 

i 

relatively weakly compact for each i and k, and this carries over to the whole 
product. Thus it remains only to show that the last requirement defines a 
closed subset of 1~[ 5r (#i) for each k. 

i 
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3. To this end fix a function gE~(X) and consider the set 

{(g, . . . .  , gn)e H g < @g,} .  
i N i 

It is obviously convex and moreover closed with respect to the product of the 
norm topologies of the spaces Y(/l~); for, supposing 

g<@g~i and IIg~i-&ll--+0 for all i 
N i 

and taking a suitable subsequence, the functions gI i may be assumed to con- 
verge #i-almost everywhere as well and, using (1.13), this implies 

g < @(lim supg g) = @g,. 
N i l ~ c o  N i 

Now, since a strongly closed convex set is also weakly closed (see [20, p. 65]) 
and the weak topology of the product coincides with the product of the weak 
topologies (see [20, p. 137]), the set 2'(g) is closed in the underlying topology 
and the proof is completed. [] 

The first continuity property of I can now be established: 

(1.28) Proposition. The functional I is a-continuous upwards on ~b(X). 

Proof Let (hi)~N be an increasing sequence in Nb(X) with limit h and take an 
arbitrary ~ >sup  I(hZ); moreover, formally applying (1.6a), assume h t > 0  for all 

i e N  

IeN. Then, in view of (1.27), the sets 5e(hl;6), l~N, form a sequence of non- 
void compact sets, which is obviously decreasing. Now choose any 
(hi, . . . ,  hk,)k~N ~ 0 2~(hi;g) and consider the functions hi:= lim sup h~, which by 

I ~ N  k ~ e e  

condition (1) may be assumed to be non-negative. By conditions (2) and (3) 
they belong to S (&) and fulfil ~ &(hl) < 6, while condition (4) implies 

i 

(*) h 1=< @h i for all feN, 
N i 

where use of (1.13) is made. Applying (1.13) once more results in 

(**) h =< @h i, 
N i 

and, redefining the functions hi suitably, this inequality may be assumed to 
hold everywhere. This yields 

I(h)<~&(h~)<6; 
i 

letting c5 tend to its lower bound and using (1.5), this implies 

I(h) <__ sup I(h') <= I(h), 
l ~ N  

and the assertion is proved. [] 
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As for the functional S the assumption he~b(X ) cannot be weakened to 
I(h) > - 0o ; this is seen by (1.22), checking that 

I(hk)=0 for all keN and I(h)= ~ .  

Passing to the topological analogue of the last proposition leads to: 

(1.29) Proposition. The functional I is z-continuous upwards on Nb(X). 

Proof. 1. By checking the proof of (1,28) it is seen that the only additional 
difficulty is contained in the passage from (*) to (**). Therefore it suffices to 
show that for non-negative functions g Jeff(X) and hieL, e(#i) the inequalities 

(a) g J < @ h  i for all jeJ 
N i 

imply the corresponding inequality for g :=  sup gJ. 
j e J  

2. Next, each gJ is a supremum of functions e l  G . . . . . .  G~ with 0 < e e Q  and 
GietS(Xi). As there are only countably many values ct, in view of (1.13) it is 
sufficient to prove that for arbitrary sets G{eff)(X~) the equations 

J (b) (G{ x ... x G,)r~{@h~<~} =~ for all jeJ 
i N 

yield the corresponding equation for G.'= ~ (G{ x ... x G~). 
jEJ 

Finally, the set {@hi<zt } is a countable union of products B l x . . .  xB,  
i 

with Bi={h~<ei}. Therefore, again according to (1.13), it remains to verify 
that for arbitrary sets Bie~(X~) the equations 

(c) (G~ x ... x G~)r~(B 1 x ... x B , ) = 0  for all jeJ  
N 

lead to the corresponding equation for G as above. 
3. To this end define 

J~:={jeJ:#~(G~r~B~)=O} and N~:= U (G~c~B~). 
j~Ji 

Then the set N~ is contained in ~(Xi) and satisfies ~i(Ni)=0, as follows from 
G{r~Bieff)(Bi) and the fact that the restriction of #~ to B i is again z-continuous. 
Moreover, due to the equation 

(6~ ~B1)• ... •  =~, 
N 

for each jEJ there is at least one index i satisfying #~(G~c~Bi)=0, and this 
amounts to the equation 

(G~x...xG~)c-~(BIx...xB,)c~_)~FI[Ni] for all j e J ,  
i 

thus completing the proof. [] 
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Again (1.28) cannot be carried over to the decreasing case as is seen by 
(1.24), where I(Gk)>s(Gk)>I for all k~N in contrast to I(G)=I(O)=O. How- 
ever, (1.29) has the following counterpart: 

(1.30) Proposition. The functional I is z-continuous downwards on : " (X ) .  

Proof. Let J (h)j~j be a decreasing net in ~b(X)  with limit h and choose an 
arbitrary 6>I(h) ;  moreover, formally applying (1.6a), assume h J<0  for all j~J.  
Then, in view of (1.8b), there exist bounded functions hie~(l~i) such that 

h < @ h  i and ~#~(hi)<6. 
i i 

Denoting by 7__<0 a common finite lower bound for the functions h~, according 
to Lusin's theorem there are compact subsets K i of X~ satisfying 

2 gi(hi) - n ?: 2 #i(C Ki) < ~ 
i i 

such that the restrictions of h i to K i are continuous. Hence, for arbitrary e> 0, 
Dini's theorem applies to the restrictions of h j and (@h~)+e to the compact set 

i 
K , = K ~  x ... x K ,  and provides an index j oe J  with 

hJ~ for all xeK .  
i 

Now, replacing the functions h i by 

h'i:=hi + - - n T  lcK ̀  
n 

and using the bounds hJ~ and hi>y, it is easily verified that 

hJ~ and ~#i(h'i)<6+e. 
i i 

For  cS$I(h) and e$0, combined with (1.5), this implies 

as was to be shown. [] 

inf I(h j) < I(h) < inf I(hJ), 
j~J jsJ 

1.4. Topological Versions of I 

As already mentioned in the introduction, the duality theorems dealt with in 
the second part are closely related to the Hahn-Banach theorem, provided the 
function h is bounded and continuous. Therefore it is of interest - and will be 
essential for some applications treated in the third part - to settle the question, 
to what extent continuity properties of h can be reflected by corresponding 
properties of the functions h i appearing in the definition of I. 

Here, lower semicontinuity raises no problem, as any function h ~ ( # i )  
is majorized by functions h'ie~(#~)c~Nb(Xi) with arbitrarily small deviations 
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#~(h'i)-#~(hi), due to the regularity of #i. Concerning upper semicontinuity the 
main result reads: 

(1.31) Proposition. For hE~(X) let there exist functions h~ with 
h<-_ h ~ @ i; then 

i 

I(h) = inf{~ #~(h~): h~e G'~i(#~) c~ 2 ( X )  and h <-@ h~}. 
i i 

Proof. 1. Consider first the case herb(X), in which the additional condition is 
trivially satisfied, and assume without loss of generality h<0.  Then h is an 
(infinite) infimum of functions of the type e l  G . . . . . .  G, with e < 0  and G~eqi(Xi), 
which in view of (1.30) for this proof may be replaced by a finite infimum; 
hence finally 

hff ~ ( X ) ~ ( o c ( X 1 ) @  ... @ ~(Xn)),  

Now, in view of (1.8b), in determining I(h) it suffices to consider bounded 
functions hie ~ (#~); thus 

hi~#(Xi) and h<@h i 
i 

may be assumed as well. But apparently h 1 may be decreased to 

h'l(Xl):=sup{h(xl, . . . , x , ) -  ~ hi(xi): xisX i for i+  1} 
i # - i  

without violating these statements and in addition, due to h ~ ( X ) ,  achieving 
h'l~g(X1); here - as for for h'lsd(X1) - use is made of the fact that the 
(infinite) supremum is actually a finite one. Continuing this way, after n steps 
all functions are smoothed and the special case is settled. 

2. In the general case the functions h ~ have to be used. For an arbitrary 
~>0 choose keN large enough to fulfil 

~#~(h])<e for h i : =  ~ - ~ n  ~ffb(X~) 
i 

and apply part 1 of the proof to the function h/xkeyb(x).  For arbitrary 
6>I(h) this provides functions h{eSfi(Xi)c~(Xi) satisfying 

h / x k < @ h {  and ~#~(h 2)<6. 
i i 

Then the functions h~:=2h~ +h  2 lie again in ~.(#~)c~o~(X~) and fulfil h<@h~, 
i 

as is obvious in the case h(x)<k and follows otherwise by means of the 
inequality 

h(x) < 2h (x ) -k  <2@i (h~ �9 \ 2 n j ( x )  �9 

Since in addition ~#~(h~)<2~+a, the assertion is proved. [] 
i 
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The existence of functions h ~ as required in this proposition is an essential 
condition and not a consequence of I(h)< oo: 

(1.32) Example. Let X be the product of X a = N  and X 2 = [ 0  ,1] with the 
discrete and euclidean topology, respectively, and #i be given by 

#a({x~}):=2 -x' and #2({0}):=1. 

Then h: (xi,Xz)l---~2Xtx2 defines a continuous function with h = 0  and therefore 
N 

I(h)=0. Now assume 

h<h1| 2 with h~SP.~(#i)c~(Xi). 

Then ha(0)<oe and there is a constant y<  oo such that hz(x2)=<7 in some 
neighborhood of x 2 =0;  but this implies 

h l ( k )>h(k '~ ) -h2 (~ )  >-2k k fo ra lmos ta l l  k e n  

and contradicts the integrability of h 1. 

The extension of (1.31) to the continuous case is straightforward under the 
natural topological condition: 

(1.33) Proposition. For h~c6(X) let there exist functions h~ with 
h_-< @h/~ then, provided all spaces X i are completely regular, 

i 

I(h) = inf{~. #i(hi): hie 2'~(#i) c~ cg(Xi) and h < @i hi}. 

Proof. 1. Assume first h~g'b(X) and apply (1.31), which yields the analogous 
equation with ~(Xi) instead of cg(Xi). But as in (1.Sb) the functions h i may be 
replaced by bounded ones, which then allows to apply the complete regularity 
of the spaces X i in conjunction with the z-continuity of the measures #i. 

2. The extension to unbounded functions h proceeds as i n  part 2 of the 
proof of (1.31). [] 

The fact that the condition of complete regularity in (1.33) cannot be 
dispensed with is related to a recently solved topological problem. Suppose the 
proposition to hold in arbitrary Hausdorff spaces and apply it to a fixed 
bounded function hecg(X) and to all point measures #i on X i. This leads to the 
equation 

h=inf{@hi: hi~c@(Xi) and h<@hi}. 
i i 

Hence h is upper semicontinuous and, replacing h by - h ,  even continuous 
with respect to the product of the (usually weaker) topologies generated on X i 
by cg(Xi). This, however, fails to be true in general as is shown in [18] (for 
which reference the author is indebted to Z. Frolik). 
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2. Duality Theorems 

2.1. Special Duality Theorems 

Even without the additional tools collected in Sect. 2.2, the continuity proper- 
ties of the functionals S and I established in the first part lead to fairly 
comprehensive situations implying for a function h ~ ( X )  the "duality theo- 
rem" 

(D) S(h)=I(h).  

The starting point is, of course, the case of finite spaces X~, where the validity 
of (D) for finite functions h follows from the well-known duality theorem of 
linear programming, which in turn is an easy consequence of the Hahn-Banach 
theorem applied to a finite dimensional space. 

A natural extension yields: 

(2,1) Proposition. (D) holds on r174174 

Proof. 1. Given a function h~oQX, ) |174  there are finite spaces X'  i and 
Borel measurable maps q01: Xi- - ,X '  i such that, abbreviating X ' ~ = X '  1 x ... x X', 
and ~0:= (q)l . . . .  , r there is a factorization 

h=h'o(p with h': X ' -~R.  

The above-mentioned duality theorem of linear programming, applied to the 
measures ffi:=~pi(#i) on X'  i and the function h', yields a measure #' on X' and 
functions h'i: X '  i -~ R satisfying 

(a') 7z'i(ff) = #' i for l < i < n ,  

(b') h' < ~, hi~ re'i, 
i 

(c') #'(h') -- ~, #'i(h'i) , 
i 

where :z' i denotes the corresponding projection from X' to X' i. 
2. Since the spaces X' i are finite, there is a density f '  of #' with respect to 

//1 @ ' "  |  Defining 

d # : = f d ( # ~ | 1 7 4  with f , = f ' o c p  

and hi'.=h' i o (Pi yields a measure #sM(X) and functions hie~(/h) which in view 
of (Pi ~ rci = ~z'i ~ (P are easily seen to satisfy 

(a) 7~i(]'t) = Pi for 1 _< i <_ n, 

(b) h ~ ~ h i o 7ri, 
i 

(c) # (h) = ~ #~@). 
i 

Thus S(h)>I(h)  and combined with (1.4) the assertion follows. [] 

Now a first major result can be stated: 

(2.2) Theorem. (D) holds on ~m(X). 
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Proof 1. Consider first the case hefCb(X ) and assume without loss of generality 
h>0.  Then h is a supremum of functions e1~1 . . . . .  G, with ~>0  and GielS(Xi), 
hence the limit of the increasing net of finite suprema of these functions, which 
belong to g(XO|174 as well. Thus (D) results from (2.1) by applying 
(1.23) and (1.29). 

2. Now, taking into account (1.16), (D) extends to the closure of CSb(X ) with 
respect to d, which in view of (1.20) is CNm(X ). [] 

The preceding result has a natural counterpart: 

(2.3) Proposition. (O) holds on ~m(X). 

Proof The proof of (2.2) carries over, (1.26) and (1.30) replacing now (1.23) and 
(1.29). [] 

The following result, which will be needed in Sect. 2.3, implies that both 
(2.2) and (2.3) really extend (2.1): 

(2.4) Proposition. g(X0|  | c ~(X) n ~(X). 

Proof Since each function h6g(Xfl@...@8(X,) is a finite supremum of func- 
tions ~1B . . . . . .  B, with ~eR and Bi~(Xi)  and, moreover, ~-(X) and if(X) by 
(1.18) are again lattices, it suffices to consider the special case h = ~ l n  . . . . . .  B,. 
Now, given an arbitrary e > 0, there are sets F i ~ ~(Xi) and G i ~ ~b (Xi) satisfying 

FIcBi~G i and #i(Gi\Fi)<e,. 

If then h' denotes any of the functions ~IF1 . . . . .  e, and ~1 a . . . . . .  G,, the differ- 
ence Ih-h'l can be estimated by I~l(@la~v ). This provides the inequality 

i 
' d(h,h)=l~]ne, and by proper choice of h' - depending on the sign of e - the 

assertion h~J(X)n-~(X) follows. [] 

As a consequence of the last result, combined with (1.18), the statements of 
(2.3) and (2.2) apply in particular to functions of the form 

h=inf( fkvh k) and h=sup(gk Ahk), 
keN keN 

where f k ~ " ( X ) ,  gkEfc~(X) and hk~g(X1)|174 
A question still to be settled concerns the necessity of a minorizing or 

majorizing function of the type @h i with hie~(#~) in the statements of (2.2) 

and (2.3). A first answer is in the affirmative: 

(2.5) Example. Choose n = 2  and X~, #~ as in (1.24). Then the function 

satisfies the equations 

h: = -  oo- l{x I >__x2~eff(X) 

S ( h ) = - ~  and I(h)=0. 

To verify the first one, suppose #~M to fulfil /~*(h)>-oe;  this implies 
#({x 1 >x2} ) =0, or x 1 < x  2 # -  almost everywhere, and leads to ~ xld#< ~ x2d #, 

X X 
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contradicting the fact ~l(p)=rc2(#). To verify the second equation, it suffices to 
show 

pl(hl)+#2(h2)>0 whenever hl(xl)+h2(x2)>O on {xl<x2}; 

but this follows from the equation 

i-~ i i 

f hl(s)ds+I h2(s)ds=I (h~(s-e)+ha(s))ds>O, 
0 e r 

letting ~ > 0 tend to 0. 

Thus the result of (2.2) cannot be extended from ~m(X) to ~(X). The 
analogous extension of (2.3), however, is possible: 

(2.6) Theorem. (D) holds on g(X) .  

Proof. Since in the case S(h)= oo the assertion is a consequence of (1.4), 
consider hef t (X)  with S(h)<oo. This means in particular p*(h)<o�9 for all 
peM, hence as well p*(h+)< oo for all p e n  and thus S(h+)< ~ by (1.7). On the 
other hand 

I(h +) = lira I(h +/~ k)= lim S(h +/x k)=S(h+), 
k~oo k ~ a o  

where (1.28), (2.3), (1.21) are applied in this order. By (1.5) this implies I(h)< oo 
and shows that h is in fact contained in Ym(X). [] 

The preceding result solves the case of discrete spaces without any boun- 
dedness - or even finiteness - condition: 

(2.7) Corollary. (D) holds on ~(X), whenever all spaces X i are discrete. 

Proof. The product space X being again discrete, ~(X) coincides with i f(X) 
and (2.6) applies. [] 

As a consequence (2.7) yields the analogous result, whenever all spaces X~ 
are countable, because in this case the topology in X~ may be refined to the 
discrete topology without affecting M and ~(p~). 

2.2. Suslin Functions 

To extend the duality theorems from semicontinuous to measurable functions 
requires some facts connected with the passage from Suslin sets to Suslin 
functions. The most up-to-date source for these concepts is the recently pub- 
lished part C of "Probabilit6s et potentiel" [-2]. There, however, the functions 
are restricted to non-negative values, which makes it more natural to work 
with projections. To treat functions f e ~ ( Y )  it is simpler - and somewhat more 
general - to use the classical Suslin operation, which yields: 

(2.8) Definition. (a) For 9.1c~(Y) a set B is called an "9,l-Suslin set" if it has a 
representation 

B=U("]Akl...k ' with Akl...ke~l , 
l eN  

where the union is taken over all sequences (kl),~ N in N; 
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(b) for d = ~ ( Y )  a function g is called an "d-Susl in function", if it has a 
representation 

g = s u p  inffkl...k~ with fkl...kzEd, 
l ~ N  

where the supremum is taken over all sequences (kl)lE N in N. 

The main fact concerning these notions that will be needed in the sequel is 
the following one: 

(2.9) Proposition. The class of all 92-Suslin sets resp. d-Suslin functions is a a- 
lattice containing 92 resp. d .  

Proof The classical proof, for instance in [7, p. 106], showing the extension to 
Suslin sets to be idempotent, carries over to Suslin functions without any 
change. Utilizing this fact, the assertion is easily established. [] 

The most important concept connected with the Suslin operation extends 
immediately from sets to functions: 

(2.10) Definition. Given d c ~ ( Y )  a functional C: ~(Y)-~I~I is called an " d -  
capacity", if 
(0) d is a lattice, 
(1) C is isotone, 
(2) C is a-continuous upwards on ~(Y), 
(3) C is a-continuous downwards on d .  

As in the corresponding situation for sets Choquet's theorem holds true: 

(2.11) Proposition. Let C: ~ ( Y ) ~ I I  be an d-capacity, where in addition 

(4) d is stable with respect to countable infima. 

Then the approximation 

C(g) = sup { C(f):  d ~ f  < g} 

applies to all d-Suslin functions g. 

Proof As already mentioned at the end of [1], Choquet's original proof carries 
over to the present situation (since the complete lattice [i is totally ordered and 
thus completely distributive). [] 

Finally, the underlying topology enters: 

(2.12) Definition. If Y is a topological space, ~(Y) resp. 5QY) denotes the 
class of all ~(Y)-Suslin sets resp. ~-(Y)-Suslin functions. 

The relationship between ~(Y) and if(Y) is maintained: 

(2.13) Proposition. A function g ~ ( Y )  belongs to 5P(Y) if and only if 

{g_>-~}~(Y) for all c~[i. 

Proof 1. Simplifying the index sets, first consider a function 

g=su.pinffjk with f j keg(Y) .  
j k 
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For arbitrary c~e[/this yields 

{g>___e}=5 U 0 7 . 
leN j 

Since all sets on the right-hand side belong to ~(Y), the set {g>cq belongs to 
~(Y)  according to (2.9). 

2. To prove the converse, for arbitrary A c Y and e e R  denote the function 
f: Y ~ { - ~ , e }  with { f = e } = A  by [A; el. If now g is a function satisfying the 
condition in question, in view of (2.9) and the equation 

g = s u p { [ { g > e } ;  ~]: eeQ} 

without loss of generality g =  [B; e] may be supposed. However, 

B= U 0 Ajk with d.jke~(Y ) 
j k 

according to the assumption, and this implies the representation 

g = s u p  inffjk with fjk'.=[Ajk; e ]ef f (Y) .  [] 
j k 

2.3. General Duality Theorems 

With the aid of the last section the special duality theorems of Sect. 2.1 can 
now be generalized. The central result reads: 

(2.14) Theorem. (D) holds on 5fm(X). 

Proof. Fix some k e N  and define 

S'(h):=S((-k)v(hAk)) for heN(X), 

I ' (h):=I((-k)v(hAk))  for heN(X). 

By (1.5) combined with (1.21), (1.26) and (1.28), (1.30) the functionals S' and I' 
are ~(X)-capacities, which agree on ~ ( X )  according to (2.6). As condition (4) 
in (2.11) is satisfied, the coincidence of S' and I' therefore extends to J ( X ) ,  i.e. 

S(h)=l(h) for all bounded h~Sf(X). 

Applying (1.21) and (1.28) once more, this result is extended to all functions 
heSb(X); finally, taking into account (1.16) and (1.20), it is generalized to 
gin(x). [] 

A first application to measurable functions is immediate: 

(2.15) Corollary. (D) holds for all functions heNm(X ) that are measurable with 
respect to G(X). 

Proof. The functions enjoying the stated measurability constitute the c-lattice 
generated by (d(X), hence the assertion results from (2.14) and 

G(~(x))~c(g(x))cy(x).  [] 
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The next application to measurable functions is more profound: 

(2.16) Corollary. (D) holds for all functions hE~m(X ) that are measurable with 
respect to ~(X1) |  | 

Proof The functions enjoying the present measurability constitute the o--lattice 
generated by 8(X1)|  |  where in view of (2.4) 

o-(~(xl) |  | ~~ c o-(S(x)) c o-(~(x)). 

According to (2.9) and (1.18) 5P(X) is again a o--lattice and the assertion follows 
from (2.14). [] 

Even more interesting are, of course, duality theorems for functions that are 
measurable only with respect to the generally larger o--algebra !8(X). A first 
answer is provided by: 

(2.17) Corollary. (D) holds on ~m(X), whenever the space X is strongly Lindelbf 
or perfect. 

Proof. 1. Since for a strongly Lindel6f space X the o--algebra ~3(X) coincides 
with the product ~(X1) |174 , the assertion is in this case a con- 
sequence of (2.16). 

2. If X is perfect, each open set is of type F~ and thus ~B(X) is the o--lattice 
generated by ~(X) alone. Therefore any function herB(X) satisfies 

{h>~}eo-(q~(X))~(X)  for all ~e[i,  

hence by (2.13) is contained in 5P(X), and (2.14) applies. [] 

As none of the topological properties required in (2.17) is finitely multipli- 
cative, explicit conditions on the different factors X i are more practicable. The 
main result in this direction reads: 

(2.18) Corollary. (D) holds on ~m(X), whenever each space X i has at least one 
of the following properties 

(a) X i is second countable, 
(b) X i is metrizable, 
(c) X i is a Suslin space. 

Proof Each space X~ can be exhausted by a o--compact set up to a ~tcnull set, 
which is irrelevant for the functionals S and I. Therefore in any of the three 
cases X~ may be assumed to be the countable union of Suslin spaces, thus 
being a Suslin space itself. Then X is again a Suslin space, hence strongly 
Linde16f, and (2.17) applies. [] 

To conclude this section, it has to be pointed out, that an open problem 
evidently is left: are the toplogical conditions in (2.17) and (2.18) really essen- 
tial? To state only the simplest case, so far the following question is undecided: 
assume all spaces X~ to be compact and B c X  to be a set of type G~ satisfying 
#(B)=0 for all #~b'l; does this imply B~91? Here the first condition amounts 
to S(B)=0, while the second one is equivalent to I(B)=0. 
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2.4. Extremal Solutions 

This section treats a problem disregarded so far, but important in applications; it 
is the question to what extent the supremum S(h) and the infimum I(h) are 
really attained for suitable gem and h~e~(#~), respectively. On the basis of the 
lemmata (1.25) and (1.27) the answer is not too difficult. Concerning first the 
functional S it reads: 

(2.19) Theorem. For any function he~(X) there exists a "maximal" measure 
pen  such that 

S(h)=#*(h). 

Proof. Since the case S(h)= oe - for arbitrary he~(X) - is settled by (1.7), in 
the sequel S(h)< oe will be assumed. According to (2.6) this implies I(h)< oe as 
well, hence heJm(X). Thus by (1.20) there are functions hke~,~b(X) such that 

c3k:=d(h, hk)<~ for keN. 

Taking up the notation of (1.25), this leads to the equation 

M(h;c~)=("]M(hk;c~--~)ksN for all c~<S(h), 

which is easily established taking into account 

#*(hk)--6k<p*(h)<l~*(hk)+3k for all #eN1. 

Thus the non-void sets M(h; c5) are compact by (1.25) and obviously decrease 
for fiTS(h), i.e. 

{M(h; 6): c5 <S(h)} =~. 

Now any # from this intersection is maximal. [] 

According to the remark following (2.4) this result applies not only to 
he~(X) but also to countable infima of functions in #(X1)|  | g(X,), hence 
in particular to uniform limits of such functions - a fact that is proved in [19, 
p. 297] for polish spaces X~. 

That (2.19) does not extend to bounded - or even indicator - functions 
heN(X), is easily seen: 

(2.20) Example. Choose n = 2  and X~, #~ as in (1.24). Then, considering the 
measures #k there, the equation S(G)= 1 can be shown for G:=  {x 1 <x2}e~i(X). 
The existence of a measure p e n  satisfying #(G)=I,  however, would imply 
J~ Xl d#<~ S X2 d#, contrary to the fact 7cl(g)=rcz(#). 
X X 

Turning now to the functional I, the assumption I(h)<oo is inevitable; 
combined with the analogous boundedness below it also suffices: 
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(2.21) Theorem. For any function hE~m(X ) with I(h)< ~ there exist "minimal" 
functions h i~ : (# i  ) such that 

h<@h i and I(h)=~gi(hi). 
i i 

Proof. After redefining h on a set Aegl  all summands in the minorizing 
function @ h  i may be chosen finite, hence (1.6a) is applicable and h__>0 is seen 

to be no real restriction. Then, taking up the notation of (1.27), 

('] {5r c~): 6>I(h)} 4=0, 

because the sets 5f(h; 6) are compact by (1.27) and obviously decrease for 
61 l(h). Choosing any sequence (hi . . . . .  hk,)k~N from this intersection and defining 
h~:=lim sup h~ as in the proof of (1.28) results in functions h ~ ~  fulfilling 

k ~ o o  

~#i(h~)<I(h). Moreover these functions may be redefined suitably to be non- 

negative and to satisfy h < @h i everywhere, thus having all properties required 
i 

for being minimal. [] 

To recognize the condition h ~ ( X )  as essential for this result requires a 
more involved construction: 

(2.22) Example. For n = 2  choose X~--N with the discrete topology and define 
a measure # on the product X -  deleting needless brackets - by 

1 
#(k ,k )=-2k(k+l) -#(k+l ,k  ) for k~N 

(# vanishing otherwise) and a function hEcg(X) by 

h(k l , k2 ) := fk l - k  2 for k 1 - k2  <1, 

- k z  otherwise. 

Moreover, choose #i:=~i(#) and define functions htie~cP(#i) by 

hi (k): = + k for k__< 1 and 1 otherwise, 

hi(k):= - k  for k <  1 and 0 otherwise. 

By simple computation this yields 

1 1 
h<h]Oh~z and ,u~.(h])+#2(h~)=~+l+ 1 foral l  lEN, 

hence the inequalities 

�89 = # (h) < S(h) < I(h) < j- z .2' 

i.e. the measure # is maximal for #1, #2 and h. 



Duality Theorems for Marginal Problems 423 

If now h~S(# i )  are assumed to be minimal, an inspection of the proof of 
(1.4) leads to 

h(kl, k2) = hi(k1) + h2(k2) #-almost everywhere. 

After the normalization,hi(1)= 1 a simple recursion along the points (k, k) and 
(k+ 1, k) results in 

hi(k)= +k  and h2(k)= - k  for all keN, 

in contradiction to hisS~ 

To conclude this section, it should be mentioned that the result of (2.21) 
fails to carry over to the topological versions of I in (1.31) and (1.33), as is seen 
by: 

(2.23) Example. Choose n = 2  and Xi, #i as in (1.32); in addition, with the 
function h introduced there, define the bounded function h':=hAl~Cg(X), 
satisfying again I(h')=O. Then functions h~Sfs(#i)n~(Xi)  with h<h~| 
which may be assumed to be non-negative as in (1.8a), always yield a strictly 
positive sum #l(hl)+ktz(h2). This is obvious for hi@0, while otherwise 

h2( l , ]>l  has to  hold for all k~N, implying h2(0)>l due to h2eY(X2). 
\K!  

3. Applications 

3.1. Equi-integrable Functions 

As a first application those functions in ~(X) are investigated that are "equi- 
integrable', either in the weaker sense of being integrable for all #~N or in the 
stronger one of having the same integral for all #~M. Again, in each of the 
corresponding statements one half is trivial. 

The first result reads: 

(3.1) Proposition. Let the topological conditions of (2.17) or (2.18) be satisfied. 
Then 

N = 

Proof. If he~(X) is integrable with respect to all #eM, the same holds for lhl, 
hence S(]ht)<oo by (1.7) and thus I(Ihl)<oo by (2.17) or (2.18) as was to be 
shown. [] 

Less immediate is the second result: 

(3.2) Proposition. Let the topological conditions of (2.17) or (2.18) be satisfied 
and consider a function h~, , (X)c~lm(X) .  Then the integral #(h) is independent 
of #~N1 if and only if h has a representation 

h = @h i with finite hie~(#i). 
N i 
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Proof. The "if" assertion being trivial, assume the integral #(h) to be constant 
on M, i.e. 

sup #(h) = inf #(h) = - sup/~(-h).  

The resulting equation S ( - h ) - - - S ( h )  implies the corresponding equation 
/ ( - h ) = - I ( h )  by (2.17) or (2.18), and by application of (2.21) to +h  finite 
functions _hl, hi~Se(#i) are obtained such that 

(a) _h: =@_h i < h < @ h i =  :h, 
i N N i 

(b) 2 #i(_O,) = Z #1(hl). 
i i 

These relations together lead to 

d(_h, h) -- I(/~ -_h) = Z kti(hi --hi) = 0 
i 

and thus yield by (1.15) the desired equation _h = h = h. [] 
N N 

From (3.2) it follows easily that - under the same topological assumptions - 
the measure #(B) of a set BeYS(X) is independent of #eM if and only if for 
some i 

B=~zFI[Bi] with Bi~(Xi). 
N 

3.2. Measures with Given Support 

In the investigations up to now it made no difference whether the product 
space X consisted of two or more factors X i. This changes considerably as 
soon as h is specialized to indicator functions. Under restriction to the case 
n=2,  it turns out that the special structure of h may be transferred to the 
functions h r 

For  the functional I this means: 

(3.3) Proposition. Let n = 2  and B6~3(X) be arbitrary; then 

I(B) = inf{~ #i(Bi): B i ~ ( X i )  and B c ~ ~ - 1  [Bi]}. 
i i 

Proof. For h=  1B the functions h i appearing in the definition of I can be 
confined to 0 < h i < 1 according to (1.8a). But then the inequality 1, < @h i leads 

i 

to the relations 

(a) 

(b) 

Bc({hl>=s}xX2)w(Xlx{h2>=l-s})  for 0_<s_< 1, 
1 1 

~ #i(hi)= y pl({hl >s})ds+yp2({h2 > 1 -s})ds 
i 0 0 

__> inf (#l({h 1 >s})+#z({h2 > 1 -s})). 
0 _ < s _ < l  

Choosing Bl={hl>s}  and B2={h2=>1 - s}  yields the assertion. [] 
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That the statement of (3.3) indeed fails to extend to the case n > 2, can be 
demonstrated even in the simplest non-trivial case: 

(3.4) Example. For n=  3 let X i be the discrete space {0, 1} and the measure #i 
assign �89 to each point; in addition define 

B: = {xeX: ~ hi(x) = 1}. 
i 

Then 1B<@h ~ for hi:=�89 / and thus I(B)< 3, while sets B i c X  i with 
i 

~#i(B~)<l have a total cardinality of at most one, so that B cannot be 
i 

covered by ? n/- 1 [Bi]" 

Returning to the case n=2,  the result of (2.21) can be carried over: 

(3.5) Proposition. Let n = 2  and Be~(X)  be arbitrary," then there exist sets 
Bie23(Xi) such that 

Bc~i ni-l[Bi] and ~#i(Bi)=I(B). 

Proof. Minimal functions h i corresponding to h = 1B according to (2.21) may be 
confined to 0 <=h i <= 1 as in (1.8a), hence relations (a) and (b) in the proof of (3.3) 
can be used. But, due to the minimality of hi, the inequality in (b) is in fact an 
equation and thus the sets Bl={hl>=s} and B 2 = { h 2 > l - s }  are minimal for 
almost all se[0,1]. [] 

After having adapted the relevant result of Sect. 2.4 to sets instead of 
functions the same can be done concerning Sect. 1.4. Again it is no problem to 
restrict the sets B~ in (3.3) to (5(Xi); but also the deeper result of (1.31) can be 
carried over: 

(3.6) Proposition. Let n = 2  and B ~ ( X ) ;  then 

I(B) = inf{~ #1(Bi)" BiE q~(Xi) and B c U n( -1 [Bi]}- 
i i 

Proof. Functions hie~(Xi) corresponding to h=l  B according to (1.31) may 
again be confined to O<h i< 1. Then proceeding as in the proof of (3.3) yields 
sets Bie~(Xi) straight away. [] 

The natural combination of the statements in (3.5) and (3.6), however, is not 
possible, as is seen by" 

(3.7) Example. Choose n = 2 and Xi, #i as in (1.32). Then the set 

satisfies B = r  and thus I(B)=0, while for sets Bie~(Xi) the condition 
N 

B ~ ?  ~z~-1 [Bi] always implies the inequality ~pi(B~)>0; this is obtained simi- 
i 

larly as in (2.23). 
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The concluding result of the present section concerns the problem men- 
tioned in its headline; its purely topological version reads: 

(3.8) Proposition. Let n = 2  and Be~(X); then there exists a measure #~M with 
supp # c B if and only if 

~#i(Bi)>l for all BiE~(Xi) with BcU~EI[B i ] .  
i i 

Proof. Since the supremum S(B) is attained in view of (2.19) and the duality 
theorem (2.6) applies to h--1B, the condition on # is equivalent to the in- 
equality I(B)> 1, which stating explicity the representation of (3.6) may be 
used. [] 

Finally some remarks concerning the existing literature are in order. First 
the work of Strassen [23, p. 436] has to be mentioned, who treats the problem 
of (3.8) for the case of polish spaces. Extensions to completely regular spaces 
are mainly due to Hoffmann-Jorgensen [8, p. 36], where functions h~ecg(Xi) are 
used instead of sets Bi~(X i )  , and Edwards [4, p. 68], who restricts the essen- 
tial inequality on #~ and B~ to the case of a closed set B 1 and an open set B 2. 

Of course, there is also an extension of (3.8) to ~(X), i.e. to the existence of 
measures #~M supported by some set B with 1B6ff(X ). In accordance with the 
remark following (2.19) this applies in its simplest version to countable in- 
tersections of sets belonging to the algebra generated on X by 
~3(X1) ,...,~3(X"). In this non-topological form the statement covers the main 
result in the abstract set-up of Sudakov [24, p. 822] as well as the recent 
results of Shortt [22, p. 316] for a certain subclass of second countable metriz- 
able spaces X~. 

3.3. Stochastic Order 

Another application concerns the case of topological spaces Y with a partial 
order "__<", where the order and topological structure are supposed to be 
compatible in the usual sense, i.e. 

R(Y):={(x,y): Y ~ x < y ~ Y } ~ ( Y  x Y), 

in which case Y is called an ordered topological space. 
Here, the main additional difficulty consists in measurability problems (in 

this context compare [13]), which can be circumvented by the tightness of the 
occurring measures via the following statement: 

(3.9) Lemma. Let Y be an ordered topological space, v~M(Y) be arbitrary and 
g ~ ( Y )  be isotone. Then 

v, (g) = sup {v (f): g >-_f e 5~ b(v) and f isotone}, 

v*(g) =inf  {v(f): g < f ~5~b(V ) and f isotone}. 

Proof. 1. It suffices to prove the first equation. As any function f ~ ( v )  
is minorized by functions f '~SP(V)~b(Y)  with arbitrarily small deviations 
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v ( f ) - v ( f ' ) ,  due to the regularity of v, the assertion to be shown amounts to the 
following 

~given f e  5f(v)c~ ~b(y) with f <  g and e > 0 there exists an isotone function 

(*) ~ f ' ~ ( v )  with f '<=g and v( f ' )>v( f ) -~ .  

2. Consider first the case gE~b(Y ) and assume without loss of generality 
g > 0  as well as f > 0 .  Choosing a compact subset K of Y with v(lc~:f)<e 
condition (*) is satisfied by the function 

f '(y) : = sup 1R(y)(X, y)f(x): 
x e K  

(1) f '  is isotone, 

since y~--~lR(y)(X,y ) f(x), due to f > 0 ,  is isotone for all x~K; 

, <  (2) f =g, 

in view of f < g ,  the isotony of g and g > 0 ;  

(3) f , ~ b ( y ) ,  

since (x, y)v--~ 1R(y)(x,y ) f(x) is upper semicontinuous and K is compact; 

(4) v(f') > v(f) - 8, 

in view of ( f - f ' )+  < 1oK f and the choice of K. 
3. In the general case define gk:=g V ( -k) ,  f k : = f v  ( -k )  and choose 8k>0 

with ~ e k<=8. Applying part 2 of the proof to gk,fk and 8 k provides functions 
keN 

fk' with the corresponding properties (1)-(4). For f ' :  = inf fk' this means 
keN 

(19 f '  is isotone (by (1)), 

(2') f '  < g (by (2) and inf gk = g), 
keN 

(3') f,~@b(y) (by (3)), 

(4') v ( f ' ) > v ( f ) - e  (by (4) and ( f - f ' ) + <  ~ (fk--fk')+), 
keN 

i.e. the function f '  meets all requirements. [] 

By means of this lemma it is possible to transfer isotony properties of h to 
the functions h i in the definition of I. For the case of an arbitrary n this means: 

(3.10) Proposition. Let X i be ordered topological spaces and the function 
h ~ ( X )  be isotone ; then 

I(h) = inf{~ ,Lti(hl): hi~.c/~f([2i) isotone and h < @hi}. 
i i 
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Proof. Consider functions hi~ff(#i ) satisfying h<@h i and an arbitrary ~>0. 
With the notation A~:= {hi< c~} define 

h'l(xl):=sup{h(Xl, . . . ,xn)- ~ hi(xi): xi~A i for i4= 1}. 
i # : l  

Then h t may be decreased to h'l, obtaining an isotone function without 
violating the inequality h<=@h i. Applying next (3.9) to v = # ,  and g = h '  1 yields 

i 

h , e . ~  . an isotone function 1 ~"z(#l) such that 

h ,<h , ,  and #1(hO<#1(hO+e=#1(hO+a 

Continuing this way, all functions h i may be replaced by functions hi' having 
all desired properties and satisfying 

~. #i(h:') < y, #i(hi) + n~. 
i i 

Since e>0  was arbitrary, the proof is completed. [] 

Specialized now to the case n=2,  (3.10) yields in particular: 

(3.11) Proposition. Let n = 2  and X~= Y with an ordered topological space Y; 
then 

I(R(Y)) = 1 -sup{#1(A )-#2(A): Ae~(Y)  isotone}. 

Proof. The function h =  la(r) is antitone in the first and isotone in the second 
argument, hence by (3.10) (reversing the order in X1) 

I(R(Y)) = inf{~ #dh/): hie 2*~ and h < @ h i, 
i i 

h I antitone and h 2 isotone}, 

where h i may be confined to O<=hi<l as in (1.8a). But then the inequality 
h < @h i amounts to 

i 

l <=hl(Xa)+h2(x2) for xl <=x2; 

due to the isotony of f :=h  2 therefore h~ may be decreased to 1 - f .  This 
provides 

I (R(Y)) = inf{ 1 - # ~ (f) + #z(f) : f e  Y)(Y) isotone with 0 __<f < 1 } 

= 1 - s u p  {#1(f ) - #2 ( f ) :  ...}, 

where - similarly as in the proof of (3.3) - the isotone functions f may be 
replaced by the isotone sets A = {f  >s}. [] 

The preceding result can even be strengthened by restricting A to ~(Y) or 
(5(Y) as it is done in the main result of this section: 

(3.12) Proposition. Let n = 2  and X I = Y  with an ordered topological space Y; 
then the following conditions are equivalent: 
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(0) there exists g e l  with supp #cR(Y),  

(1) #I(A)__<#2(A ) for all isotone A~q~(Y), 

(2) pl(A)<=#2(A) for all isotone Ae(5(g). 

Proof. 1. Since the supremum S(R(Y)) is attained according to (2.19) and the 
duality theorem (2.6) applies to h=lR(y), condition (0) is equivalent to 
I(R(Y))> 1, hence in view of (3.11) to 

#1(A)=<#2(A) for all isotone Ae~3(Y). 

Thus (0) implies both (1) and (2). 
2. Let now condition (1) be fulfilled and for isotone A ~ ( Y )  and arbitrary 

e>0  choose K c A  compact with #I (A\K)<~.  Then 

F:=n2[R(Y)c~(K x V)] 

as the projection of a closed set along a compact space is again closed and in 
addition isotone; moreover K c F  and F c A ,  due to K c A  and the isotony of 
A. This leads to 

#I(A) - e  < #I(K) -<_ # 1 (F) =< #2(F) < #2(A) 

and for e $ 0 to the desired inequality #1 (A)__< #:(A). 
3. To derive (0) from (2) instead of (1), it is only necessary to reverse the 

order in Y, to interchange the role of #1 and #2 and to replace #i(A) by 
[] 

For ordered polish spaces the corresponding result has been stated first by 
Kamae-Krengel-O'Brien [9, p. 900], while extensions to completely regular 
spaces are due to Hoffmann-Jorgensen [8, p. 46] and Edwards [4, p. 751 - 
both under superfluous semicontinuity conditions on the map y~---, {x~ Y: x __< y}. 

3.4. General Marginal Problems 

A last application of duality theorems will treat a generalization of the mar- 
ginal problem behind the first definition (1.1) and proposition (1.2). If instead 
of the one-dimensional measures #1 . . . . .  #~ some multi-dimensional marginals 
are prescribed, the corresponding analogue of / may well be empty. In the 
most important case X~=R a necessary and sufficient condition for the exis- 
tence of a measure #elvl(X) with the given marginals was first derived in 1964 
in the paper [-11] by the author. Now this criterion can be extended to 
topological spaces without any additional assumptions; moreover, the corre- 
sponding product space may be composed of an infinite number of factors. 

The following notation will be used in the sequel: let Y~, teT, be (non-void) 
topological spaces with product space Y and denote for 04: U c V c T  the 
product I-[ Yt by Yv and the canonical projection from Yv onto Yv simply by 

t a U  

rcv. Then the main result reads: 
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(3.13) Proposition. For each of the non-void subsets 7"1,..., T n of T let be given 
a measure vr eM(Yr). Then the existence of a measure v~M(Y) satisfying the 
equations 

(1) ~ T i ( V )  = VTi for all i 

is equivalent to the following condition 

(2) ~VT~(fT)>O for all bounded f T ~ ( Y T )  with ~fTOnTi>O. 
i i 

Proof. Putting U , = U  T i, for any measure vvEN(Yv) there is obviously a 

measure ve b,l(Y) with nv(v ) = vv; therefore the assumption U = T means no real 
restriction. Then define X i, = YT, (with X again standing for the corresponding 
product), abbreviate #i" = VT, and consider the set 

B, = {x~X: nT,~r~(Xl)=~T~rk(Xk) whenever Tic~ Tk=~r 

which is closed, since all Yt are tacitly assumed to be Hausdorff spaces. Due to 
the assumption U = T, the map 

~o: Y~Y~--~(nTI(Y),'", nT,,(Y))eB 

defines a homeomorphism and induces, moreover, a bijection between N(Y) 
and the subset [Vls(X ) of N(X) consisting of all # with supp # c B ,  where the 
equation nr~(v)=vr, corresponds to the equation ni(#)=#i. Therefore, choosing 
h . ' = l B - o e ,  lCBe~-(X), the existence of a measure v satisfying (1) is equivalent 
to I (h )> l  by (2.6) and (2.19). Employing in addition (1.8b) and (1.31), this 
amounts to the condition 

~/~i(hi)>l for all bounded h i ~ ( X i )  with @hi>h.  
i i 

In view of h(x)= - o e  outside B this is equivalent to 

VT,(hl) > 1 for all bounded hi~g(Yr,  ) with ~ h io nT, > 1. 
i i 

1 
By introducing fT . '=h  i - -  condition (2) emerges. [] 

n 

If the spaces Yt are completely regular, the functions fr ,  occurring in this 
criterion, as usual, can be limited to C~(YT). 

By means of the last result the restriction to tight measures throughout the 
foregoing investigations can be shown to be essential. To this end a counterex- 
ample from [11] is slightly modified: 

(3.14) Example. Let I7o=[0, 1] be partitioned into two subspaces I11 and Y2 
with inner Lebesgue measure 2,(I7//)=0 and choose 

T={0,1,2} and T~----{0, i} for i=1,2.  
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Consider the normed measures 2~ defined by 

2i(B):=2*(B ) for Be~3(Yi) 

and let VTi be their images by the Borel measurable maps 

~i: YI~Y~--~(Y,Y)eYT,, 

which, due to 2*(Y~)= 1, fulfil 

VT,(B x Y~)=2(B) for B~3(Yo). 

To bounded functions fTiec~(Yr) assign bounded functions gi by 

gi(yo):=inf{fw,(yo,yi): yieYi} for yoeYo, 

which are measurable, since the infimum may be restricted to a countable 
dense subset of Y/. Then ~frOnr~ >=0 implies 

i 

Y, gi(Yo)=inf{~, fT~(Yo,Yi): YieYi for i + 0 } > 0  for yoeYo, 
i i 

which in turn yields 

Z VT,(UT,)>=E VT,(g'~ 2(g,)>=O, 
i i i 

i.e. condition (2) in (3.13) is satisfied. 
Assume now the existence of a measure yeN(Y) satisfying condition (1) in 

(3.13). Then I11 m Y2 = r leads to 

v(Y)<__v(~ {yeY: y~*yo}) 

< ~  vr,({(Yo, Y~): Y~=~Yo})=0 

and thus to a contradiction. Therefore the tightness of the measures VT cannot 
be weakened to their regularity and r-continuity (which are given here, since 
the spaces YT, are metrizable and second countable). 

In addition to the reference [11] given at the beginning of this section the 
following two related results have to be referred to. First the preceding propo- 
sition can be deduced from the paper [16, p. 145] by Mahararn, except that it 
provides a measure v defined on a subalgebra of ~3(Y) only. Besides that it can 
be derived from the paper 1-14, p. 101] by Lembcke, at least if condition (2) is 
formally strengthened by enlarging ~(Yr,) to 5~(VT, ). 

Finally, it should be mentioned that (3.13) may be extended to the case of a 
countable number of given marginals, and above all - the general marginal 
problem supposed to have a solution - there arises again the question of 
corresponding duality theorems. But these and related generalizations will be 
taken up in a subsequent paper. 
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