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Summary. Let X be a strong Markov process. Let M be an optional set 
with the property that 1MoOT(S)=IM(s+T) whenever s > 0  and T is an 
optional time with IT]  c M .  If L = s u p { t > 0 :  tEM}~M,  we show that L is a 
splitting time of X: the pre-L events and the post-L events are con- 
ditionally independent given X L. To prove this, we extend work of Sharpe's 
to show that the big shift operators 0 T and 65 7. commute with optional 
projection and dual optional projection, respectively, whenever T is an 
optional time. Examples are given which are not contained within previous 
work of Millar and Getoor. 

O. Introduction 

Let X=(f2,F,  Ft,Xt, O,,P x) be a right process [-3] canonically defined on the 
space ~ of all right continuous paths with lifetime ( and taking values in a 
Lusin measurable space (E,E). If T is an optional time, the strong Markov 
property states that F r (the events occurring up to time T) and the events 
occurring after time T are conditionally independent given X T. Recently there 
has been some interest in exploring random times which have this conditional 
independence property, but which are not necessarily stopping times. These 
times are called splitting times of the process. A good introduction to this topic 
is provided in the survey article of Millar [9]. Much of the work has been 
motivated by the following example. Let f be a continuous function on E x E, 
and let R be the time at which the process f ( X t _ ,  X,) achieves its last mini- 
mum (here, of course, we assume X t_ exists!). Then the process (XR+t)t> 0 is 
conditionally independent of F R given the vector (inff(X~ , Xs), XR), and, given 
this vector, (XR+t, FR+,)t> o is a homogeneous strong Markov process. The 
most recent proof of this fact given by Millar [8] has relied on constructing an 
auxiliary Markov process and appealing to a well-known decomposition of a 
Markov process at a coterminal time [-6, 7]. Of course, this approach yields 
much more information than the fact that R is a splitting time. Getoor  [-4] 
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recently recast Millar's approach into a general setting so that other splitting 
times fit into the framework. 

The purpose of this paper is to introduce a different auxiliary procedure 
which exhibits new classes of splitting times. These times are the ends of 
certain intrinsically homogeneous sets. We say a set M is intrinsically homo- 
geneous if it is optional and if 1MooT(s)=l~(T+s) whenever T is an optional 
time with [T]cM and s > 0  (see (2.1) for a precise definition). These are 
generalizations of optional homogeneous sets. Getoor  and Sharpe [5] gave a 
proof (relying on Motoo's theorem) that the ends of optional homogeneous sets 
are splitting times: we modify Motoo's theorem and their proof to fit this 
situation. A major hurdle is in showing that if L is the end of an optional 
intrinsically homogeneous set, then the dual optional projection A t of the 
increasing process 1~o <L_<t~ is an intrinsically additive functional: i.e. At+ r = A  r 
+AtoO 7 whenever T is optional and IT  l c M .  In order to show this, in Sect. 1 
we extend some work of Sharpe [10] on the big shift operator O t. He in- 
troduced this operator on measurable processes and a dual operator 0 t taking 
random measures into random measures and showed that O t commutes with 
optional projection and 6 t commutes with dual optional projection. We show 
that this still holds when we replace Ot and Ot with 0 7 and 6 3 whenever T is 
an optional time. We develop what we need in Sect. 1. Much of the material 
discussed in Sect. 1 is also discussed in Sect. 3 of a recent comprehensive paper 
on Semimartingales and Markov Processes by ~inlar, Jacod, Protter and 
Sharpe [11]. 

In Sect.2, we discuss a few simple facts about intrinsically homogeneous 
sets and functionals. In Sect. 3, we show that the end L of an optional 
intrinsically homogeneous set M with LsM is a splitting time. (All intrinsically 
homogeneous sets in this paper will be optional, so we shall just refer to an 
"intrinsically homogeneous set.") That is, the pre-L and post-L events are 
conditionally independent given XL, alone. 

We then discuss several examples which are not contained in the approach 
of Getoor  and Millar. In the discussion of Example (3.6), we show that this 
approach cannot subsume their work, either, so both approaches have their 
uses in different circumstances. 

Now we turn to the usual task of laying out the habitual notations and 
hypotheses. The process has been introduced in the first sentence of the paper. 
We shall need a few more filtrations. Let F~~ F~=a{f(Xs): s<t, f 
is 1-excessive}; F~ u is the customary augmentation of F t with all of the PU-null 
sets in the completion of F. We shall use the notation T to denote the 
collection of all (Ft)-optional times. A random time R is a nonnegative F- 
measurable random variable. If (Gt) is any filtration on Q, let O(Gt) denote the 
smallest G-field on R + x  ~ containing the right continuous processes adapted 
to G,: these are the (Gt)-optional processes. If R is a random time, we define 
the stopped fields as follows: GR=a{ZR:ZsO(Gt+)}. It is important to use 
this definition in discussing F ~ and F~ when TeT. We let F* denote the 
universal completion of F ~ 
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A map K: B ( R + ) ~ F  is said to be a random measure if (i) ~c(.,A)sF for all 
AsB(R+); (ii) ~c(co,.) is a measure for each m. The class of random measures 
will be denoted by R, and we let AR={KeR:  K(co,(0,t])eF, for all t}. 

If G is a sigma-algebra on either ~2 or R § x g2, bG denotes the collection of 
bounded G-measurable functions, and G § denotes the collection of positive G- 
measurable functions. 

If ~c~R and Z ~ B ( R + ) x F ,  we define Z*KcR by setting Z*~c(co, B) 
=~Z~c(oo, ds) for B~B(R+). Finally, we let E e = a { f :  f is 1-excessive} and E* 

B 

=o '{f :  f is universally measurable on E}. 

1. The Big Shift 

Let T~T, and define a map Or: B(R +) x F ~ B ( R  +) x F  by setting 

(O r Z)(s, ~o) = Z s 7.~o~)(07, co) lit" oo)(s) 

for all Z~B(R +) x F. Sharpe introduced this operator in [10] with T=t ,  a fixed 
time. All of the ideas in this section are basically due to Sharpe [10] and 
Benveniste and Jacod [-1]. Our contribution is to introduce and develop the 
big shift operator with random times T(see also [,11]). 

(1.1) Theorem. There is a mapping Z ~ 1Z of bB(R +) x F into bO(E+)  so that 

(i) 1Z is a version of the optional projection of Z with respect to (~2, F~, P") 
for all #. 

(ii) 2(0 7. Z) and 0 r 1Z are indistinguishable for each T in T. 

Proof Let Z e b B ( R + ) x F .  There is a process 1Z satisfying (i) [,10, 6, 11]. We 
now show that 1Z satisfies (ii). Fix T~T and an initial law #. There is a process 
Z ~  ~ so that Z and Z ~ are PU-indistinguishable. It follows that 
1(O r Z) and 1(Or Z~ ) are PU-indistinguishable, as are O r 1Z and O r 1 Z ~  There- 
fore, it suffices to show that l (orZ~ ) and 0 r 1Z~ are PU-indistinguishable for 

o all Z ~  +) x F  ~ So let Zs = 

oo 

(1.2) g(s) h Ye-~(~176 du, 
i = i  0 

where (a(i)) is a sequence of positive numbers, g is a bounded continuous 
function on R § and F/=fdX0),  with each fl being a bounded continuous 
function on E. Then 

(1.3) 
Z~ =g(s) i= _[I, e-~(i)~Fi~ du 

+e-a(i)s S e-"(i> Fi~176 dv . 
0 
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Upon multiplying out, we find that Z ~ is a sum of products, a typical one of 
which is of the form 

s 

W~=g(s) [~ ye-"(~ du 
t~,".a~ i= 1 o 

oo 

f i  e -a(i)s ~ e-a(1)v FiioOvoOsdv. 
i = k +  1 0 

To compute 1Z~ it suffices to compute 1W. Now 

] (1.5) ll'V~=g(s) ye-~Ci~FioOuduE x~ e -a(Os y e-~(1)OFioO~dv . 
i = 1  0 i =  1 0 

Notice that E ~ ~e acO~F~oO~dv is a(i -excessive, so (1.5) is a.s. 
i =  1 0 i =  1 

right continuous. It follows that (1.5) is a right continuous version of the 
optional projection of W~. Then 

k s 

(0  T 1W)~=g(s-  T) 1-] e"(i)r ~e-~(i)"Fi~ du 
i = 1  T 

(1.6) f i  [=k~i+ ~ ] e-a(i)(s- T)EX~ e-a(i)~ FioOvdv I[T,o~)(S ). 
i = k +  1 i i 0 

But 
k s - T  

(OTW)s=g( s -T )  I~ Y e-"(i)"Fi~ du 
i = 1  0 

(1.7) ] e-a(i)(s- T) I e-a(i)v Fi~ dv ltr, oo)(S) , 
i = k +  i 0 

and a simple computation shows that a right continuous version o f  1(0 r W)s is 
given by (1.6). 

Let M = {Z~bB(R +) x F~ I(oTzO ) and 07, 1Z~ are W-indistinguishable}. 
Then M is a vector space containing constants, and M is closed under uniform 
and monotone convergence. Since M contains the multiplicative class consist- 
ing of functions of the form (1.2), which generates B ( R + ) x F  ~ M = b B ( R  +) 
x F ~ by the monotone class theorem, and this completes the proof. Q.E.D. 

In order to discuss analogous results for a dual shift operator 6 T, we shall 
need a few auxiliary facts. Once again, the approach was inspired by Sharpe's 
treatment of 67., with T =  t fixed. The following result is a consequence of an 
easy monotone class argument. 

(1.8) Lemma. Let T be a (Ft~ )-optional time. Then 

F~ GebF~176 

(1.9) Proposition. Let T be an (F~~ time. The trace of B(R +) x F ~ on 
[Too)  is a{G 'OTZ:  G~b F ~ Z~b B(R+) x F~ 



Intrinsically Homogeneous Sets 137 

Proof. The trace of B(R +) x F ~ on [T, o0) is generated by processes of the form 
Zs=l l7  . . . .  j(s)F(co), where c>0,  F ~ b F  ~ and hence is equal to the sigma- 
algebra generated by processes of the form Z~ = ltT vc ' ~)(S)G. FoO 7 , where c >0,  
F s b F  ~ G ~ b F  ~ Set D ( n ) = s u p { t : t = k 2  -n for some k; t+  T<=c} (sup0=0).  It 
follows that D ( n ) + T  increases to T v c .  But if F ~ b F  ~ G ~ b F  ~ and Z k'n 
= ltk/2~ ' ~ .  F, then 

(1.10) G. E l{D(n)-k/2n} (OTzk'n)s = lID(,)+ T, o0)(s) G-Fo 0 T . 
k 

As n increases, this converges to ltTvc, oo)G.FoO ~. Since {D(n)=k/2n}eF ~ we 
have shown that l i t  . . . .  ) G . F o O r e a { G . O T Z :  G e b F  ~ Z e b B ( R + ) x F ~  and 
the conclusion of the proposition follows. Q.E.D. 

We now introduce Sharpe's dual shift operator 0 r :  R ~ R defined by 

(1.11) 0 T K(co, B) = K(0 T o,  B - T) 

for all random measures ~c, for all BeB(R§ Here we are assuming that ~c is 
considered as a measure on all of R a so that (1.11) is well-defined. Sharpe 
proved that Or commutes with the dual optional projection for T = t  fixed. 
Using the preceding results, we need modify Sharpe's proof in only minor ways 
to show that 6) T commutes with dual optional projections whenever T~T. 

(1.12) Theorem. Let  tc~R with E~0c(o,R+))<oo for all x. There is a map 
~c ~ ~c 1 of  R into AR so that 

(i) K1 is a version of  the dual optional projection of  K with respect to 
(f2, F,", P") for all #. 

(ii) ( 0  w ~:)~ = OT(rC 1) for all TeT .  

Proof. A standard construction in Markov processes guarantees existence of x~ 
satisfying (i). To prove (ii), since (OTTO) 1 and Or rd are measures carried by 
IT, oo), it suffices to show that 

(1.13) E" y l i t  ' o~)(s)Z~(Oz K)l(ds)=E"~ l i t  ' oo)(s)Z~(Or ~cl)(ds) 

for all Z e ( B ( R + ) x F )  +. But for fixed #, it suffices to prove (1.13) for all 
Z~(B(R +) x F~ + (since a process in B(R +) x F is P"-indistinguishable from a 
process in B(R +) x F ~ and for all (Ft~ times T (since for each TeT, 
there is an (F~ time T o with P"(T~ T)=0).  Recalling (1.9), we find 
that it suffices to verify that 

(1.14) E" S G. O T Z(O T g)l (ds) = E # ~ G. ~)T Z(OT gl) (ds) 

for all G~b F ~ Z~(B(R +) x F~ § The left hand side of (1.14) may be written as 

E" [G S I(OT Z)s(OT K)(ds)] = E # [G ~ 0 T 1Zs(O T K)(ds)~ 

=E"[G.(~Z*~c)(OT,R+)] =E"[G.EXT[(~Z*~c)( .  ,R+)]]  

= E ~ [G. E x~ [Z* ~c ~ (-, R +)]] = E" [G ~ 0 T Z s (0  T ~c ~)(ds)] Q.E.D. 
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We now introduce some definitions which will be of use in Section 3. Let 
~c~R. 

(1.15) Definition. Let F be a set in O(Ft). Then ~c is said to be F-homogeneous 
^ __ :tr if the following holds: whenever T~T with 11T] c F, l(r  ' ~) 0 7. ~c- l(r  ' 00) ~c. 

The following statement is an immediate consequence of (1.15) and Theo- 
rem (1.12). 

(1.16) Corollary. Let ~c~R with Ex(tc(co, R+))<oo. Let FeO(Ft).  I f  ~c is F- 
homogeneous, then ~c 1 is F-homogeneous. 

If we let At(co)= ~:(co, (0, t]), and • and T are as in (1.15), then 

As(OT(1) ) = I s  , (0 ,  S ] )  = 0 T / s  T + s] = A T +  s --  A r. 

Therefore, the F-homogeneous measures ~ A R  correspond to (what we may 
call) the F-additive functionals. 

This concludes our development of the big shift operator with random 
times. It is worth noting that there are analogues of all of the above theorems 
concerning commutation with the predictable and dual predictable projections, 
and the reader should have no difficulty filling in the details (the predictable 
case is discussed in 1111]). 

2. Intrinsically Homogeneous Random Sets 

We define the class of intrinsically homogeneous random sets as follows. 

(2.1) Definition. Let H={F~O(F~):  if T e T  and [ T ] c F ,  then l ( T , ~ O r l  r 
= l(r, oo)lr}. 

In this section we make some simple observations about sets in H and related 
objects, and we give some examples which are further discussed in Sect. 3. 

We should clarify a point about It .  Sets in H should properly be called 
"intrinsically homogeneous on (0, oo)." We can define H * =  {F~H: if T~T and 
[T]  c F, then lrr ' ~)OT.lr = ltr,~) lr}. These sets should be called "intrinsically 
homogeneous on I-0, oo)." The analogy with sets which are homogeneous on 
(0, oo) and on 110, oo) is obvious. We shall stick to the terminology "intrinsically 
homogeneous" for sets in H. 

Let A t be an increasing right continuous adapted process with Ao=0,  and 
let F denote the set of points of right increase of A. We say that A t is an 
intrinsically additive functional if A s + r = A r + A s o  0 7. whenever S, T~T,  S>0 ,  
and rT]  o F .  We leave it to the reader to check the following result (the proof 
is virtually the same as the one given when time-changing a Markov process 
by the inverse of a continuous additive functional). 

(2.2) Theorem. Let A t be an intrinsically additive functional as described 
above which is also continuous. Let rt denote the right continuous inverse of 
A. Then X~=((2, F, F v t  , X~t  , Ozt , px) is a homogeneous strong Markov process. 
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We now give two main examples of intrinsically homogeneous sets. 
(2.3) Let A t be an optional process satisfying A~+s(CO)=A~(m)+A~(O, co ). This 
process need not be increasing or right continuous. Then F = {t: A t = 0} belongs 
to H. 

(2.4) Again, let A t be a left continuous optional process satisfying A~+~=A t 
+AsoO t. Set Bt = s up{A~ : s < t  }. Let F = { t :  B t > B  s for all s<t} ,  Then F ~ H  and 
B has the following property. Let TeT,  [T]  ~ F. Then B,+ 7.= sup {A s: s ~ t + T}. 
Since I T ] o F ,  A T > A  s for all s<T,  so 

Bt+ T=SUp {As+ T: s < t} =sup {A~ o OT: s <=t} -F A T= Bto OT + BT. 

In the next section we shall examine some specific choices for A t to derive 
information about splitting times. 

3. Splitting Times and Intrinsically Homogeneous Sets 

We fix M~H,  and we let L = s u p { t > 0 :  t s M }  (supO=0). Assume that L e M  a.s. 
on {L>0}. If T~T and [T]  c M ,  then L O O T = ( L - T )  +, so L behaves much as a 
coterminal time does. Let K(co, ds) be the random m e a s u r e  eL(o))(ds)l{o<L(co)< ~). 
Now K is M-homogeneous. Moreover, K 1 is supported by M, for 

E" ~ 1Mc(s ) Kl(ds) = E ~ ~ 1Mc(S ) K(ds) = W(O < L ~ M  c) = 0 

for all #. 
The main object of this section is to prove the following theorem by 

adapting a proof of Getoor  and Sharpe [5] to this setting. 

(3.1) Theorem. Let M e H  be such that L ~ M  a.s. on {L>0}. Then for every 
F~bF*,  there is a bounded E*-measurable function f such that for every 
ZebO(Ft)  and for every #, 

E ~ EZLF o 0 L ; L < oo] = E" [Z L f ( X L )  ; L < oo]. 

Before embarking on the proof of (3.1), we prove the following generali- 
zation of Motoo's theorem. 

(3.2) Proposition. Let B and A be continuous, increasing, adapted processes with 
Bo=A 0 =0, and let MeO(Ft).  Assume 

(i) If S, T~T with [ T ] c M ,  then A s + T = A T + A s o 0 3  and BS+T=BT 
+B s o OT; 

(ii) A ~ B; 

(iii) E~S1Mc(s)dBs=O for all #. 
t 

Then there is a function geE* so that A t=S g(Xs)dBs. 
0 

Proof. Let "Ct='E(t ) denote the right continuous inverse of B t. Unfortunately, we 
cannot apply Theorem (2.2) (since B may not be intrinsically additive), but we 
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can state that (X~(t~, 0~,), F~(t), px) is a time-homogeneous strong Markov 
process on the random set r (Notice that ~beO(F~(,)). In other 
words, if T is an optional time for the filtration (F~,)) and [T]  c ~ ,  then rT+ t 
=~r+~toO~,Ti. Set A,=A~(, and Bt=B~,l=t on {~t<~}, so that At~t.  Set Z t 
=liminfn(At+l/n-At). By Lebesgue's differentiation theorem, we have A t 

n ~ o o  
t 

=~ Z~ds. 
0 

Set g(x)=E~[Zo] EE *+. For  the remainder of the proof, fix a finite measure 
oo 

# on (E,E), and define a measure v on E by setting v(C)= ~e-tPu(X~eC)dt. 
0 

Choose g' and g" in E + with g' =< g ___< g" and v(g"-g')=O. Then ~e t(g"(X~) 
-g'(X~))dt=O a.s. (PU), which implies that the process g(X~,) is in the com- 
pletion of B(R +) •  with respect to the measure P~ x dt. It remains to show 

t 

that At=~g(X,)dB ~. If T is optional for (F,~) with [ T i c , b ,  we have g(X~T ) 
0 

=EU[ZTJF~]=Zr a .s .W.  In particular, if we let T = t  on {teqs} and T = o o  
on {te~} ~, we get Ztl#(t)=g(X,~ ) l~(t) a.s. PU for each t~0 .  But Ztl~(t)eB(R +) 
x F, so {t: Z t. l~(t)+g(X~),  l~(t)} has Lebesgue measure 0 for W-almost all o). 

By (iii), {t: t r  has zero Lebesgue measure for W-almost all co. Therefore, A t 
t By 

=Sg(X~,)ds, whence A~=Sg(X~)ds whenever veRange (zt)c~M. Thus Ao 
0 0 
v 

=~g(X~)dB, whenever veRange (~t)c~M. Since A~ and B~ increase only on the 
0 

Range (zt)c~M, A~=ig(Xs)dB s for all v>0.  Q.E.D. 
0 

(3.3) Lemma.  Let A t be an increasing right continuous process which is (F,)- 
t 

optional with A o =0. I f  t e E  *+, then B t =y  g(X~)dA, is an (F,)-optional process. 
0 

Proof Fix a finite measure # on (E,E), and define a measure v on (E,E) by 
t 

setting v(h)=EUyh(Xs)dAs for all heE  +. If t e e  *+, we may find gl and g2 in 
0 

t 

E + with g l < g < g 2  and v ( g 2 - g l ) = 0 .  Therefore, Bt=5gl(Xs)dA ~ a.s. P", which 
0 

implies that BteFt". Since this is true for all #, BteF t, and the right continuity 
of the process B t implies that B t is an (Ft)-optional process. Q.E.D. 

(3.4) Comment. Assume EU[Boo]<oo for all finite # in the lemma above. 
co 

Letting t =  oo, we obtain Boo = ~g~(X~)dA~ a.s. pu. Since ga =<g, it follows that 
0 

t 

Bt=ygl(X~)dA ~ a.s. pu for each t, and these two processes are therefore W- 
o 

indistinguishable. 
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Proof of Theorem (3.1) 

Let R=inf{ t>O:teM},  and let p(x)=E~[e-R]eE*. For l_<n<oo,  set N ,={x:  
(n-1) /n<p(x)<n/(n+l)};  No={X: p(x)=l} .  Let FsbF*,  0-<F_<I, and set 
7(ds)=FoO~c(ds). Notice that 71 is M-homogeneous and ~1~c l .  Let A ~ 

t 

= ~ 1No(Xs)vl(ds) and let B ~ = i 1No(X~)~:t(ds)" By Lemma (3.3), A ~ and B ~ are in 
0 0 

O(Ft). Fix a finite measure g on (E,E). As in Lemma (3.3) and (3.4), we may 

choose 0 < g l < l N o  so that g l e e  and igl(X~)71(ds) and At ~ are P"- 
0 

indistinguishable. Therefore, to show that A ~ is continuous, we need only take 
T e T  with IT]  c M  and examine 

(3.5) g~[y~({ T}) g~(Xr): 0 < r < co] = E" IF o OTgl(XT) ; L = T, 0 < r < oo]. 

But on {gl(Xr)>0,  O < T < o o } c { X y e N o , O < T < o o } ,  ROOT=O, So LoOT.>O. 
Since IT]  c M ,  L o 0 r > 0  is equivalent to L > T .  The right hand side of (3.5) is 
therefore zero, so A ~ is continuous. Similarly, B ~ is continuous. It is simple to 
check that the hypotheses of Proposition (3.2) are satisfied, so there is a 

t 

function geE* + so that At ~ = S g(Xs) dB~ . 
0 

t t 

Now let A~=~IN.(X~)),I(ds) and let BT=~IN.(X~)~I(ds). Fix n > l  and a 
0 0 

finite measure ~ on (E,E). Choose h, eE as in Lemma (3.3) and (3.4) with 
t 

0__<h,< 1s. SO that B~ and Sh,(Xs) n~(ds) are W-indistinguishable. Since ,~1 ~t,21, 
0 

t 

there is a process ZeO(Ft)  so that 7~(O,t]=~Zs~C~(ds). It follows that At and 
o 

i h,(X~)7~(ds) are PU-indistinguishable. Now we show that the (Ft)-optional 
0 

process Z~=h,(Xt). 1M(t ) is discrete a.s. (W). Let R , = i n f { t > 0 :  Z~>0}, and let 
p,(x) = E~(e g~) <= p(x). On {h~ > 0} c N,, p < n/(n + 1) < 1. An application of the 
argument given in Theorem4 of [2-[ shows that {t :ZT>0 } is an optional 
discrete set (and dA~ is therefore a discrete measure a.s. P"). If TET, IT-[ 
c {t >0 :  Z~'>0}, and W~eO(F,) +, then 

oo 

(3.6) E" ~ Wtltrj(t)dA'~=EU S WtXETl(t)h,,(Xt)~l(dt) 
0 0 

= Eu[WT.h,(X~.)F o OT; L = T, 0 < r < oo]. 

On { 0 < T < o o } ,  L > T ;  so on {L>__T}, we have L = T  if and only if LoOr=O 
(since [T]  c M). Thus we may rewrite (3.6) as 

Eu[WThn(XT)EX(TI[F; L = 0] ;0  < r < oo] 
(3.7) k~ 

= E" ~ W~ l[rj(t ) h.(Xt) ~ ~d(d 0 
~ctAt) 
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where kF(x )=E~[F;L=O] ,  k ( x )=px(L=O) ,  and 0 /0=0.  It follows that 
kF 

AA"Tlto<r<~o~=(kF(XT)/k(XT))AB"TI(o<T<~ ~ a.s. Pu. If  we set f = ~ - l ~ k > 0  ~ 
+gl~k=o~E*,  and sum over all n>0 ,  we have that 

t 

At = S f ( X s ) d B s  a.s. pu, 
0 

where A~=Tl(0, t] and B t = tel(0, t]. But # is arbitrary and f is independent of #. 
Therefore, if ZeO(F~) § 

(3.8) E u [ Z t F o O L ; O < L < o o ] = E u S Z ~ d A t = E u ~ Z t f ( X t ) d S t .  

But if we define a measure v on (E, E), by setting 

(3.9) v (j) = E ~ ~ Z t j (X t )  dB t = EU[ZLj (X  L), 0 < L < oo 3, 

for all j e E  +, it follows that (3.9) holds for all j e E  *+. Thus we may rewrite (3.8) 
as E" [Z  L f (XL) ;  0 < L < oo]. 

To complete the proof, we follow Getoor  and Sharpe and apply the 
Markov  property at zero: 

E u [Z  L f (XL) ;  L = O] = E • [Z  o f ( X o ) ;  L = 03 = E u [Z  o f ( X o )  k (Xo) ] 

= Eu [Zo kV( X o)3 = E" [Z  o E x(~ [F; L = 0] ] 

=EU[ZLFoOL;L=O].  Q.E.D. 

We now consider some examples. 

(3.5) Example. Let A t be a B(R § x Fe-measurable process satisfying: 

(i) A,+ s(W) = A,(w) + As(O, w), 
(ii) A t is adapted, 

(iii) t ~ A~ is a.s. left continuous. 

Then M = { t : A t = O  } is intrinsically homogeneous and L e M  a.s. Thus, for 
example, let L ~ and L ~, be the local times of a Brownian motion (killed 
exponentially) at 0 and 1, respectively. Then the last time L ~ =L~ is a splitting 
time for Brownian motion. Another  way to look at this example is the 
following: if m r is a continuous multiplicative functional, then L = s u p { t :  m t = l  } 
is a splitting time. 

(3.6) Example. Let A t be as in (3.5), and let B t = i n f { A s : s < t } .  Set M 
= { t : B t < B t _  e for all e}. Then M is intrinsically homogeneous and L e M .  If  we 
take A s = f ( X ~ ) - f ( X 0 )  and assume that f is continuous and X has continuous 
paths (up to the lifetime), then L is the time of the f irst  minimum of f (X t ) .  This 
example seems to have escaped mention in [4] and [8], although an appropri-  
ate shift functional in [4] yields this example. 

We now discuss a very special case of Millar's motivating example. Let f be 
a continuous function on E, and assume X has continuous paths. Let B t 
= inf{f(X~): s < t}, and assume B t > - oo. If we set 

(3.7) M --- {t > 0: f ( X t )  = Bt}, 
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then M is intrinsically homogeneous (this relies on the continuity of f and X) 
and L e M  a.s. Therefore, the conclusion of Theorem (3.1) applies (and yields the 
same conclusion as does Millar's approach). It does not seem likely that this 
example can be extended to the generality of Millar's motivating example 
within the present framework. One would need to deal with processes of the 
form F(X S , Xs), and the presence of the left limit seems to be incompatible 
with the notion of intrinsically homogeneous set as we have formulated it. 
(The reader is encouraged to examine why M is no longer intrinsically homo- 
geneous in (3.7) if we replace f(X~) with F(Xs_,X~) and B t with 
inf {F(X,_, Xs):S < t}. It may be possible to broaden the definition and to prove 
a "predictable" version of (3.1) which would permit a statement such as "pre- 
minimum events and post-minimum events are condtitionally independent 
given a germ field around the time of the minimum." Such a result is less 
precise than the ones obtained by Getoor  and Millar, and we have therefore 
not pursued this. 

(3.8) Example. We assume X is a discrete-time process for simplicity. The 
reader is invited to formulate a continuous analogue of this example (which 
will involve left limits of the process). Let M = { k :  there exists m < k  so that 
X m = X  k and, for every i with m < i <  k, X ; +  X i for all j <i}. Intuitively, we are 
looking at the loops of the process which do not contain other loops, and we 
let M consist of the times these loops terminate. It is easy to check that if T~T 
with [ T ] c m ,  then MoOr~[1 ,  oo)=(M-T)+c~[1,  oo) (i.e. M is intrinsically 
homogeneous on (0, oo)). It is also easy to see that M is not homogeneous. 
Since M is discrete, LeM,  and L is a splitting time by Theorem(3.1). 

A Final Comment. The reader may find the assumption in (3.1) that " L e M "  
somewhat annoying. If M is optional and homogeneous, the closure of M, M, 

I 

is also optional and homogeneous, and L~M. However, this is not true for 
intrinsically homogeneous sets. For example, let X be uniform motion to the 
right on the line with speed 1, and let A t be the additive functional of X which 
increases linearly with slope 1. Let B t be the additive functional of x which 
jumps up by 1 when the process passes through 0. Note that p0 (B~=0 for all 
t ) = l .  Let Ct=sup{A~-Bs:S<=t}, and let M = { t > 0 :  Ct>C ~ for all s<t}. Then 
M is intrinsically homogeneous, but M is not. For  if co(O)=x<O, M(co)=(0, 
- x ) u [ 1 - x ,  oo), and M ( c o ) = [ 0 , - x ] u [ 1 - x ,  oo). Let T be the time X t hits 0. 
Then T~ M and M(0rco)= [0, oo) while ( M - T )  + = [ 1 - x - T ,  oo)c~(0, oo). 
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