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Summary. The infinitesimal robustness of the asymptotic variance of lo- 
cation M-estimators is investigated by means of the change-of-variance 
curve (CVC), which bears some resemblance to the influence curve (IC). It 
is proved that this CVC leads to a more stringent robustness property than 
the IC and that the Huber estimators are still optimal in this new sense. 

1. Introduction and Definitions 

In his paper (1964),, P. Huber introduced M-estimators and proved their 
consistency and asymptotic normality. By means of a minimax theory for the 
asymptotic variance V(r F) he then determined asymptotically most robust 
estimators, amounting to what is now called a "Huber estimator" at the 
normal distribution. The infinitesimal bias was investigated by F. Hampel 
(1968) by means of the influence curve (IC), and optimally robust estimators 
were found. At the normal, the latter coincide with Huber's solutions. The IC 
describes the infinitesimal behaviour of the asymptotic value of the M-esti- 
mator, whereas the aim of this paper is to study the infinitesimal behaviour of 
the other very important asymptotic concept, namely V(r F), For this purpose 
the change-of-variance curve (CVC) is studied. This notion, discovered by F. 
Hampel in 1972, was sometimes briefly referred to (Hampel, 1973, p. 98) but 
has not yet appeared in print explicitly. In Sect. 2 it will be shown that the 
CVC leads to a more stringent robustness concept than does the IC, and in 
Sect. 3 it is proven that the Huber estimators are still optimal. 

Our investigation takes place in the classical framework of M-estimation of 
a location parameter when scale is known (Huber, 1964). Denote by IR the real 
line with its Borel ~r-algebra, by )t the Lebesgue measure, by ~ the standard 
normal distribution (identified with its cumulative) and by q5 its density. We 
shall restrict our attention to M-estimators for which the corresponding map- 
ping @ belongs to ~'. The class ~u consists of all mappings r IR ~ IR satisfying: 

(i) ~ is continuous on IR, qJ(-x)= - r  for all x and 0(x)>0 for x>0;  
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(ii) ~p' is defined and continuous on IR\D(O), where D(O) is a finite set of 
points which is symmetric with regard to zero; 

(iii) ~O2d~p< oe; 
(iv) 0 < ~ 0 ' d ~ =  -lOdp'dx=SxO(x) d~(x)< oo. 

Conditions (i) and (iii) imply that 5~,d~= 0, reflecting Fisher-consistency of the 
M-estimator corresponding to q/ (see Hampel, 1974). From (i) and (iv) it 
follows that 0 < ~ d ~ .  Therefore, if 

A(~)=5~2d~ and B0p) = ~p'd~ 

then 0<A(~)<oe  and 0<B(~)<oo  for all ~ in ~. To study the infinitesimal 
behaviour of the asymptotic value of the estimator corresponding to ~ in the 
vicinity of ~, F. Hampel (1974) introduced the influence curve (IC) which 
equals 

(2(0 , x)= O(x)/B( O ), 

and the gross-error-sensitivity 

Y*(0) = sup 1~2(~, x)l. 

(Of course, his definition is much more general, but here we restrict ourselves 
to the normal model for simplicity.) The asymptotic variance of the M- 
estimator corresponding to ~ at the symmetric distribution F equals the 
expression 

VOP, F)= J'O2 de/@p' dF) 2 

under suitable regularity conditions on O and F (Huber, 1967). In order to 
investigate the infinitesimal stability of V(O, F) in the vicinity of ~, the first 
idea would be merely to replace F by the type of contaminated normal 
distribution one uses in the definition of the IC, namely ( l -e )~b+g6 x, where 
0 < e <  1 and fix is the Dirac probability measure at x. However, this distribu- 
tion is not symmetric when x+0.  Following Collins (1977, Formula 2.1) we 
therefore prefer to evaluate V(~, ~.x) where ~,x  is the symmetric distribution 
(1-e) q~+~(�89189 x). For all 0Eke, x~IR\D(O) and 0<~<1  we have 
0 < V(O, ~=, ~) < co, and for e = 0 we obtain V(O, q~) = A(~)/B2(O). 

Definition 1. We define the change-of-variance curve (CVC) of the M-estimator 
corresponding to Oe T as 

defined in all x for which the right hand side exists. 
It follows that S(O,x) is well-defined and continuous on 1R\D(~k), where it 

equals 
Z(O, x)= 1 + Oe(x)/AOp)- 2O'(x)/B(O). 

Therefore ~ is symmetric, whereas ~2 is skew-symmetric. For example, the 
arithmetic mean corresponds to 0(x)=x, so f2(0, x )=x  and ~ (O,x )=x2-1 .  
(Note that the CVC may also be defined for distributions other than ~, and for 
other types of estimators.) 
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One might wonder why we work with log V instead of taking simply V, 
which would lead to the same curve up to a positive factor. As a matter of 
fact, the use of the logarithmic derivative brings along many advantages and 
simplifications on the mathematical level. The use of the logarithmic transfor- 
mation in similar situations is not new: compare with Huber (1964, Sect. 10) 
and with Wegman and Carroll (1977, p. 809). 

The CVC and the IC have many things in common; for example, we clearly 
have ~f2(tp, x)dq~(x)=O=S~(~b,x)d~b(x ) for all ~b in 7 j. However, both curves 
cannot be interpreted in the same way. Large positive and large negative 
values of the IC have qualitatively the same (unfavourable) meaning, namely a 
bias caused by contamination. (Therefore, 7"(0) is defined as the supremum of 
the absolute value of the IC.) On the other hand one does not have to worry 
about large negative values of a CVC as much as about large positive values, 
since the latter point to a large positive slope of V. This is in accordance with 
the reasoning behind Huber's minimax theory (1964): there one is concerned 
only about the large values of V(~b, F) (where F belongs to a neighborhood of 
q~), and not about small values (see also Collins, 1977). Therefore, we define: 

Definition 2. The change-of-variance sensitivity of the M-estimator correspond- 
ing to ~be7 j is defined as 

~c* (~b): sup {~(~b, x); x 6 IR \ D(~b)}. 

This supremum may be compared with the minimization in Theorem 4.1 and 
Corollary 4.1 of (Collins, 1977). 

2. V-robustness and B-robustness 

When ~c*(~b)<oo we say that the estimator corresponding to ~ is V-robust; 
when 7"(~')< oo we say it is B-robust. 

Theorem 1. For all ~ in 7 j, V-robustness implies B-robustness. 

Proof. Suppose that ~c*(~b)<oo and y*(~b)---oo. There exists K > 0  such that 
D(~b) c ( -  K, K). From y*(0)=oo it follows that sup ~b=oo. Since t c * ( 0 ) < ~  , 

[K. co) 
there exists a constant M > 0  such that sup S(O, x)<__M + 1. Now there exists a 

[K, ~) 
point x o ~ K  for which ~(Xo)> (A(6)M) lj2. If we would have ~'(xo)<0, then 

~(0, Xo)= 1 + ~,2(Xo)/A(O)- 20'(Xo)/S(~,) > 1 + M 

which is a contradiction; therefore O'(Xo)>0. Hence there exists ~> 0 such that 
~b(z)>~b(Xo) for all z~(xo, Xo+e). 

We now prove that ~b(x)>~b(Xo)>(A(O)M) 1/2 for all x > x  o. Suppose there 
exists y > x  0 such that tp(y)<O(Xo). Then x '= in f {x>Xo;  0(x)<0(Xo) } must 
satisfy x '<oo .  Clearly x ' > x o + e > x  o. It also follows that O(x')=~b(xo) and 
~p(x)>tP(xo) for all xe(xo, x' ). There exists x"e(Xo,X' ) such that ~b'(x")<0 
(otherwise ~0(Xo) < 0(x')); moreover O(x") > O(Xo) > (A(~b) M) 1/2. Hence 
Y,(qJ, x") > 1 + 02(x")/A(~b) > 1 + M, a contradiction. 
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Put d=B(O)/2A(O)>O; it is easily checked that 0'(x)/[02(x)-A(0)M~>d 
for all x > x  o. For all Y>Yo, we define 

Q(y) = - (A(0) M) -  1/2 co th -  lOp(y)/(A(O ) M)1/2). 

Since y > x o > K  and ~(y)>(A(O)M) 1/2, the mapping Q is well-defined, con- 
tinuous and differentiable with derivative O'(y)/[Og(y)-A(O)M] on [Xo, 00). 
Hence Q(x)-Q(xo)>d(x-xo) for all X>Xo, so 

c, o th -  l(O(x)/(A(~b ) M)1/2) <= (A(O) M)1/2(dxo - Q(xo) ) -  d(A(O) M) 1/2 x. 

The left hand side of this inequality is strictly positive because 
O(x)/(A(~,)M)I/2>I, but the right hand side will tend to - 0 0  when x--,0% 
which is clearly impossible. This ends the proof. 

Corollary. For monotone 0 in ~P, V-robustness and B-robustness are equivalent. 

Proof Observe that ~:*(0) < 1 + (7*(0))2BZ(O)/A(O). 
For example, Huber estimators satisfy both properties (see next section), 

whereas the arithmetic mean satisfies neither. However, in general the converse 
of Theorem 1 is not true. Consider the following counterexample: 

O(x) = x o <= txl <= 1 

=(2-[xl)l/Zsign(x) l < l x l < 2  

=0 2__<[xl. 

Clearly 7*(0) < oo, but lim 2(0,  x) = oo so ~c*(0) = ~ .  
2 > x ~ 2  

3. Optimal V-robustness 

One can ask the following question: which mappings 0 minimize V(0, ~) 
(meaning the corresponding estimator has maximal asymptotic efficiency) under 
the side condition of an upper bound on 7*(0)? The solution of this well-known 
extremal problem (which we shall refer to as "optimal B-robustness") has been 
given by Hampel (1968). In our framework it is given by Lemma 2 below. If 
one now replaces ~*(0) by ~c*(0), one can speak of "optimal V-robustness'; it is 
shown in Theorem 2 that the Huber  estimators are also optimal in this sense. 

For  any be(0, oo), the M-estimator corresponding to Ob(x)=min(b, max(x, 
-b ) )  is called a Huber  estimator. It is clear that 0b~7 j, where D(0b)= { - b ,  b}. 
One verifies that A(Ob)=2q~(b)-l-2b~(b)+2b2(1-~(b)) and B(Ob)=2cb(b) 
- 1 ,  so 0<A(Ob)< l  and 0 < B ( 0 b ) < l .  For  all be(0, oo), we put g(b)=y*(0b) 
=b/BOPb) and k(b)= ~:*(0b)= 1 +b2/A(O0. 

Lemma 1. The mappings g:b-+g(b) and k:b~k(b) are increasing continuous 
bijections from (0, oo) onto ((re/2) 1/2, oo) and from (0, oo) onto (2, oo). 

Proof The mapping c: [0, oo)--+ [0, 1 ) : t ~ 2 ~ ( t ) - 1  is strictly concave because c' 
is strictly decreasing. Thus for all 0 < r < s < oo we have (c(s)- c(O))/s < (c(r) 
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-c(O))/r, so g(r)= r/c(r)<s/c(s)=g(s). Hence g is strictly increasing. It is clearly 
continuous, and lim g(b)=oo. By L'Hospital's rule, lim g(b)=Oz/2) 1/2. The 

b ~ o o  0 < b ~ 0  

mapping k is also strictly increasing, since k'(b)=2b ~ x2dq~(x)/A2(Ob)>O, 
and we have lim k(b)=2 and lim k(b)=ov, t-b,b~ 

0 < b ~ 0  b ~ o o  

Lemma 2. (Hampel). For each g>(n/2)  1/2 there exists a unique value b > 0  such 
that 7*(r and Ob minimizes V(O,q~) among all ~ in ~P which satisfy 
7*(r Any other solution of this extremal problem coincides with a positive 
nonzero multiple of Oh" 

Theorem 2. For each k > 2  there exists a unique value b > 0  such that lc*(Ob)=k, 
and t)b minimizes V(O, 4)) among all ~ in ~ which satisfy ~c*(O)<k. Any other 
solution of this extremal problem coincides with a positive nonzero multiple of 

Cb" 

Proof. We must show that Ob is optimal and unique in this sense. 
1. Multiplication of r  with any factor r > 0  changes neither V(O, ~) or 

S(O, x). Without loss of generality we may therefore minimize A(q/), where 
O c T  is subject to: 

~(~,x)<=k for all x ~ I R \ D ( ~ )  (3.1) 
and 

B(O) = B(r (3.2) 

Using condition (iv) of the definition of ku and (3.2) one verifies that S(x 
-O(x))2deb(x)= 1-2B(0b)+A(~O), hence minimizing A(O ) is equivalent to mi- 
nimizing ~(x -  O(x))2 ddb(x). 

2. We must show that Cb is optimal, so we suppose that there exists a 
mapping ~*~7  ~ which satisfies (3.1), (3.2) and 

A(0*) < A(0b). (3.3) 

Then S(x-  ~p*(x))2dcP(x) < 5(x-  @b(X))2dqS(X), hence there exists xoElR such that 
(x o - 0* (Xo)) 2 < (x o - Ob(Xo)) 2. Let x o > 0 w.l.o.g., hence x o > b and 
~p*(xo)>~Pb(xo)=b. Since ~* is continuous, we may suppose that xoCD(O* ). 
Now it is impossible that (O*)'(xo)__<0, because then we would have 
E(O*,Xo)>S(Ob, xo)=k from (3.2) and (3.3), contradicting (3.1). Thus 
(0")' (Xo)>0 and there exists e >0  such that qJ*(z)> O*(Xo) for all ze(Xo, x o + e). 

3. We prove that O*(x)>O*(Xo)>b for all x > x  o, by means of the tech- 
nique used in the proof of Theorem 1 (going from one point of D(tp*)~(Xo, x') 
to the next where necessary.) 

4. Take K > x  o such that ~* is continuously differentiable on I-K, m). We 
find that (0")' (x)/[(O*) 2 ( x ) -  b 2] >= a for all x > K, where a = B(Ob)/2A(Ob) > O. 
Putting P ( y ) = -  coth-l(O*(y)/b)/b for all y>=K, we obtain the final contradic- 
tion by the method used in Theorem 1. 

5. Suppose another solution r exists. W.l.o.g. we may put B(~)=B(Ob) and 
therefore also A(~)=A(Ob), so it suffices to prove that r  By means of a 
reasoning analogous to parts 2, 3 and 4 of the proof, we show no point x o > b 
can exist such that t~(Xo)>@b(Xo), hence ~<----r on (b, oo) and C>----Oh on (--0% 
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- b ) .  F r o m  part  1 and A(~)=A(Ob) it follows that  

(~-O~(x))'-d~(~)= ~ (x-~(x))~d~(~) 
Ixl>b ]xl<b 

+ S (x-~(x))2d~(x)" 
I~[>b 

Together  with the above inequalities (which entail ( x - ~ ( x ) )  2 >=(x-~b(X)) 2 for 
[x]>=b) and continuity,  this implies that  the above inequalities can nowhere  
be strict, hence ~ = ~ b  on ( - - 0 % - b ) u ( b ,  oo). It then also follows that  

S (x-~(x))2.d~(x)= O, and again using continui ty we see that  ~ ( x ) =  x = ~b(X) 
Jxl < b 
on ( - b ,  b). We conclude that  ~ = 0b, which ends the proof. 

Some further research, concerning the case with a finite rejection point, is 
presently being completed in col laborat ion with F. Hampe l  and E. Ronchett i .  

Remark. Throughou t  this paper, it is possible to replace ~b by any distribution 
G having a twice cont inuously  differentiable density g which is strictly positive 
and symmetr ic  with respect to zero, and for which the mapping  A - - ( - l o g  g ) '=  
-g ' /g satisfies A ' ( x ) > 0  for all x, and I(G)=SA2dG=~A'dG<oo. (Here A 
corresponds to the m a x i m u m  likelihood estimator, and I(G) is the Fisher 
information.)  Theorem 1 and its corol lary remain unchanged.  On  the other  
hand, Huber ' s  minimax asymptot ic  variance theorem (1964, p. 80) is applicable 
with solutions 

t)t(x ) = A(x) for ]xl < t 

=A(t)sign(x) for [x l> t  

where t6(0, oe). It can be proven that  the sensitivities of  the 0,  are increasing 
bijections f rom (0, oe) on to  ((2g(0)) -1, 7*(A)) and (2, g*(A)), and that  the 0,  are 
opt imally B-robust  as well as opt imally V-robust at G. 
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