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Summary. Let X 1 , X  2 . . . . .  X n be i . i .d .r .v . ' -s  with P(X>u)=F(u) and 
Y,, Y2 . . . . .  Y, be i.i.d. P(Y>u)=G(u) where both F and G are unknown 
continuous survival functions. For i = 1, 2 . . . .  , n set 8 i = 1 if X / <  Y~ and 0 if 
X i > Y~, and Zi = m i n  {Xi, Y~}. One way to estimate F from the observations 
(Zi,61) i = 1  . . . . .  n is by means of the product limit (P.L.) estimator F* 
(Kaplan-Meier, 1958 [6]). 

In this paper it is shown that F* is uniformly almost sure consistent 

with rate O ( ~ / ] f n ) ,  that is 

P( sup IF*(u)-F(u)l=O(]/loglogn/n)=l 
- o o < u <  +0<3 

if G(Te)>O, where Te=sup{x:  F(x)>0}.  
A similar result is proved for the Bayesian estimator [9] of F. Moreover 

a sharpening of the exponential bound of [3] is given. 

1. Introduction 

Let X 1 . . . .  , X,,  resp. Y1, ..., Y, be i.i.d, sequences of random variables with fixed 
unknown continuous survival function F, resp. G. Suppose that the two se- 
quences are independent of each other. Set 

6i=[Xi<Yi] and Zi=min{Xi, Yi} 

for i =  1,2, . . . ,  n, where [A] denotes the indicator function of the set A. One 
way to estimate F from the sample {Zi, 6i} i= 1,2, ..., n is by means of the 
product limit (PL) estimator [6]. The properties of this estimator are similar to 
the ones of the empirical distribution function. One reason of this fact is that 
in the uncensored case the PL is equal to the empirical d.f. Before giving the 
definition of the PL we introduce some notations. 
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Let P(Z > u) = H(u). Then H(u) = F(u) G(u). Let us denote by 

N+(u, n)=N+(u)= # Z j - s  greater than u. 

r = [~ j=  1, zj<=u]. 

The usual definition of the product limit estimator of the survival function of 
X, in case of continuous F and G is 

F,(u)=[~= (N+(Zj),~j(u) 1 \ N ~ Z ~ - I ]  if u<max{Z1 ,  ...,Z,,} 

if u > m a x { Z  1 . . . . .  Z,}. 

In course of the proof we need the modified product limit estimator; 

_#n(u) {~= ~N+(ZJ)+I' ~j(u) = 1 \N+(Zj)+2] if u<max{Z~ . . . .  ,Z.} 

if u > m a x { Z  1 . . . . .  Z.}. 

Frequently the sub-distribution function 

l#(u) = P ( Z  __< u,  6 = 1) = P ( X  = u, X - Y <= O) 

= i G(s)d(1-F(s)) 
- -  ( X 3  

will be used and its empirical distribution (not survival) is defined by 

F.(u) 1 " l n "  =~i~__lEZi~u, ~ i = l l =  ,~lfll (") 
n 

1 ~= [Xi<u ' X i - Y ~ < 0 ] .  
n l  

The empirical survival function of H is 

H.(u)= ! N + (u). 

F-~(u) denotes the inverse function of F. Further let 

Tr = sup {u, F(u) > 0}. 

Ta and T u are defined similarly. 
In [3] it was proved that 

where /-/(T)>0. This paper contains somewhat more general model, namely 
the r.v.-s X'-s, and Y'-s are not necessarily nonnegative, furthermore the 
convergence rate is considered on an interval ( - o %  Tr). Supposing that T F < T a 
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(<  + oo) the upper part of the law of iterated logarithm is proved (Theorem 1), 
namely 

in [1] Burke, CsBrg~5 and Horvfith consider a whole class of product limit type 
statistics and prove a weaker rate result on (--c~,TF) without the above 

mentioned condition. They also prove the O (1/IOglOgn) rate on the interval 

( - o %  T], where H(T)>0 ,  giving some information on the constant too, using 
the embedding theorem of [-11]. 

Furthermore we give an exponential bound of the probability 
P( sup [f*(u)-F(u)l>e) where H ( T ) > g > 0 .  This result is the sharpening of 

--oo < u<= T 

the one of paper [3] and the analog of Lemma 2 of [-2]. 
The structure of the paper is the following: 
Section2 contains Theorem 1 which is a law of iterated logarithm type 

result. The exponential bound of the probability P(supIF*(u)-F(u)l>e) is 
given in Sect. 3. Section 4 deals with the Bayesian estimator of F. The proper- 
ties of this estimator were investigated e.g. in [-9]. In Theorem 3 it is proved 

the sup distance of the two estimators is 0(] / lOglOgn]  and Theorem 1 that 
and 2 are valid for the Bayesian estimator too. n \F / 

2. The LIL Type Result 

Theorem l. Suppose that F and G are continuous survival functions, further 
suppose that T r < T G ~ + o0. Then 

sup ot tt=l 
The real meaning of Theorem 1 is that the sup can be taken on ( -  o% TH) if TH 
= T F K q - O 0 .  

Theorem 1 has a corollary the proof of which easily follows from that of 
Theorem 1. 

Corollary l. Suppose that F and G are continuous survival functions and 
G(T)>O. Then 

where T* =rain(T, TF). 

For the proofs of the theorems we need some basic remarks and lemmas. 
First we give a decomposition of F* (u)-F(u). Let 
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T,(u) = ~ ~ ( t )  dF,(t), 

u 1 ~ 
T(u) = j ~  ~ dF(t) = - log F(u) 

where u < T v. Then  

IF.* (u)- F(u)l _-< IF* (u)- P.(u)l + IF.(u)- F(u)l 
and 

f t .(u)- F(u) = (e l~ - e-T"(")) + (e - -  T n ( u )  e - T(u)). 

Using Tay lor  expansions of the two differences separately we have 

ft.(u) + F(u) = e -  r"*(")(log lY.(u) + T.(u)) + F(u) ( T(u) - T.(u)) 
+ 1 e -  r.**(.)(T(u) - T. (u)) 2 

where 

(2.1) 

(2.2) 

min { - log ft.(u), T. (u)} < T* (u) < max { - log ft.(u), T.(u)} 
(2.3) 

rain { T(u), 7". (u)} < T** (u) < max { T(u), 7". (u)}. 

In the lemmas the order  of magni tude  of the terms of (2.1) and (2.2) are given. 
In all of  the lemmas the sup distance is considered on an interval ( - 0 %  u.) 

where 
[ 2A ] 1 / ~ l o g n ~  

U n =  f - 1  

and A __> 7 is a fixed number.  Fur ther  it is supposed that  G(T?)> O. 

Remark 2.1. Suppose that  G(Tv)>0.  Then  for almost  all co there exists an n o 
= no(co) such that  

H,(u)>lH(u)  for - oo <u<__u, 

if n > no(co ). 
F r o m  the condit ion G(Tf )>0 ,  it follows that  

H(u) = G(u) F(u) > G(TF) F(u) for u < T v. 

By an obvious computa t ion  the s ta tement  follows from the law of the i terated 
logar i thm for the empirical distr ibution function [7]. 

Remark 2.2. Let  F and G be continuous,  then 

P (lira sup ] /~  suplP,,(u)-/V(u)l _-< 1)= 1. 
\ ~ 1/(1/2) l o g l o g n  

This remark  is the consequence of the fact that  F.(u) is the empirical distribu- 
t ion of the two-dimensional  r andom vector  (X, X - Y )  at the point  (u, 0), and 
their joint  cont inuous distr ibution is exactly 

P(X <= u, x -  y <  o) = P(u) 
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hence the LIL theorem for the multidimensional empirical distribution applies 
(see [7]). 

Lemma 2.1. For almost all co there exists an no(CO ) such that/fn>n0(CO ) then for 
all u < u, and 

k1>0, k2>0 where k=kl+k2>l  

a) i 1 ~ 2 kl 1 (2 1 ) 
_ooH k, ~-t4k2,.,dFn N k 1 . ( t ,~  tt) - G -  (TF) Fk-I(U) ~+~Z~  ' 

1 ~ ( n ]k21 " 
b) -coi nkl(tfUk2(tidF, =0 \ loglogn]  

Proof By Remarks 2.1, 2.2 

1 ~ U kl  2 ~ i Hkd(t;Hk2(t) dF.(t)< ~ ( ~ d F , ( t )  
- - o o  

< ]~2kl d(F.(t)-P(t),+l i-oo i ~ df(t) 

holds if n>nl(co ) and u<=u., where nl(co ) is given by Remark 2.1. 
Integrating by parts it can be seen that 

2 h __u ~I Gk(TF)2 h 2 suplP,-FIFk(u) j~ a(<(t)- ;(t)) __< 

2 k~+1 supIF,,-Pl 1 2 <+1 
< < (2.4) =Gk(TJ F(u,) Fk-I(u)=A.Gk-I(TF)Fk-I(u) 

if n > n2(co ). 
On the other hand if n >no(co ) =max(nl(CO), rt2(CO)) 

1 ~ 2 kl 1 dF(t)] 2k~-ooi ~dF( t )N~T~( (TF  ) (-- -~i F~O ] 

- 2< ( )~ds)  2k~ 1 1 1). 
Gk-i(Te) (_F --Gk-I(TF) k -1  (Fk;I(U) (2.5) 

Thus a) follows from (2.4) and (2.5), and (b) is an easy consequence of (a). 

Lemma 2.2. 
sup ]F*(u)-F,(u)[=O(]~n 1 ) 

. . . .  _-<.~ loglogn 
almost surely. 

Proof Using that 
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O<=ai<l, O<=bi<l , i=1,  2, ...n, we get 

n 
]gn~(U)--~l~n(U)[~y~=l (. N+(Zj) )flj(u) (N+(Zj)_}_ l~fl3(u ) 

.= \N+(Z)+ I \N+(Z)+ 2! [ 
n < y~ &(u) 

j =  1 ( N+ (Z) + 1) 2. 

Observe that 

dFn(t). 
j=l ( N+ (Z) + 1) 2 - o o  (nile(t)+ 1) 2 --oo 

Hence 

sup_ If*(u)-F.(u)l < ! "  1 . 

and the statement follows from Lemma 2.1. 

sup Ilog_F~(u)+ T~(u)l=O ( ~  n 1 ) 
. . . .  =<.. loglogn 

Lemma 2.3. 

1 ) dP.(t). (2.6) 
nH.(t)+2 

almost surely. 

Proof Observe that 

logr.lu _- i .,og 
- ( )o  

Using the logarithmic expansion we have 

[log F.(u) + r~(u)l 

,-oo n ~1 (2+  n n . ( t ) )  - l  + ~ . ( t )  , 

< dF.(t)+ dl~.(t) 
=_~ Hi(t) ~+H.(t) L (2+nUn(t)) 2 

u 1 ~ 

almost surely. 

Applying Lemma 2.1 the statement follows. 

Lemma 2.4. 

a) sup [T.(u)- T(u)] <2 almost surely. 
--O0<U~Un 

b) sup F ( u ) [ T n ( u ) - T ( u ) [ = O ( ~  ) 
-cy~<u~u n 

(2.7) 
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Proof. Using partial integration by Remarks 2.1, 2.2, Lemma 2.1 it follows that 

1 cl(F.(t)-F(t)) [T.(u)-T(u)]< i [H"(t)-H(t)] dff.(t)+ i 
_OO Hn(t ) H(t) I -OO 1 

] ~  ( 2 ( 1 + 2 )  -F 2 
<2  (2.8) 

]/ 2n \F(u) G(Tv) F(u) G(Tr)]" 
Consequently 

sup IT,(u)-T(u) l=<4(l+l)  
OO<u<=u, A 

Choosing A = 7 we have part (a) of the 1emma. 
By (2.8) it follows that for all u < u ,  

64 ] ~ n  
F(u)IT'(u)-  T(u)I<=YG(Te~ [/ 2n 

which proves (b). 

Lemma 2.5. For - ov < u < u, 

li~(u)- F(u)] <]log F,,(u) + T,(u)] + 2F(u) lT,(u) - r(u)l 

almost surely. 

Proof. Using decomposition (2.2) of IF,(u)-f(u)l  

e-  T *  (u) ]log ff,(u) + Z,(u)] <= l log ff,(u) + Zn(u)l (2.9) 

follows from (2.3). Furthermore 

�89 r(u)12<�89 elT"(u)-r(u)l]T,(u) - Z ( u ) ]  2 . (2.10) 

By Lemma 2.4 ]T,(u)-Y(u)l <2, therefore the inequality �89 2 < x  for 0 < x  <2  
is applicable. Hence 

�89 T"**(")I T,(u) -- T(u)[ 2 < F(u)I T,(u) -- T(u)[ (2.11) 

if n >n0(e) ). These statement follows from (2.2), (2.9) and (2.11). 

Proof of  Theorem 1. 

sup [F*(u)-F(u) l< sup ]F,*(u)-F(u)]+ sup IF,*(u)-F(u)]. 
--O0 < U <  -bOO --OO < l t  ~ U n  U n <  1~< -bOO 

Clearly 
sup ]F*(u)--F(u)I< F(u,)+]F*(u,)--F(u,)]. 

Un.<U< +00 

From inequalities (2.1), (2.2) and Lemma (2.5) follows that 

If,* (u) --F(u)l < IF,* (u) -F,(u)l +l log F,(u)+ r,(u)l + 2f(u)lr,(u) - r(u)[. 

(2.12) 
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Using Lemmas 2.2-2.4 we have 

sup IF*(u)-F(u), = 0 ( ~ ) ,  
--oo<u<_un 

if n>no(CO ). Now the theorem follows from (2.12) and (2.13). 

(2.13) 

3. The Exponential Bound 

In this section an exponential bound is given to the probability 
P( sup [F*(u)-F(u)[>e). It is supposed that at the point T, H(T)>6>O. 

- o o < u < T  

The result of Theorem 2 is the analog of Lemma 2 of paper [2]. Although 
we have no such type of result on the whole line, it is conjectured that it is 
valid on ( -0% + oo) as well. 

27 
Theorem 2. Suppose that H(T)>6>O and ~>n~-~" Then 

P( sup [F*(u)-F(u)l>e)<d oexp {-nea64dl} 
- ~ o < u < T  

where d o and d 1 are absolute constants, which do not depend on F, G, H. 
The following Remark is a trivial consequence of Lemma 1 of Wellner 

[10]. 

Remark 3.1. Suppose that H(T)>3>0 .  Set 

D,,={c0: sup U(u) >2;.  
. . . .  <= T H,(u) - J 

Then 
P(D,) < exp {-nbca}.  (3.1) 

The proof of Theorem 2 is similar to that of Theorem 1 and based on Remark 
3.1, and the multidimensional exponential bound of Kiefer [7], hence we only 
indicate the necessary steps by stating all the lemmas. 

Lemma 3.1. Suppose that H ( T) >,5 > O, and 

2k1+1 
6 k 

Then 

P ( ~  H~'(t)lHk2(t) d~n(t)>~)<=exp{_nc]cl}+c3exp{_n~2(~2kc22_2(~l+2)} 

where k l > 0  , k2~0 , k l+k2=k.  
8 

Lemma 3.2. Suppose that H(T)>6 and e > ~ .  Then 

P( sup IF~(u)-~(u)l >e)<exp { -n6c l}  +e 3 exp {-n392642-6c2}. 
--oo<u<=T 
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32 
Lemma 3.3. Suppose that H(T)>c5 and e > ~ .  Then 

n o  ~ 

P( sup Iloglf ,(u)+T,(u)l>e)<exp(-n6cl}+c3exp{-nae2642-12c2}. 
- - o o < u < _  T 

Lemma 3.4. Suppose that H ( T) > 6. Then 

P( sup I T~(u)- T(u)l > ~) 
- - o o < u < = T  

<exp  { -n6c l }  + 2  exp { -n~2c]42-4c~}+c3 exp { - ne2622-4c2}. 

Proof of Theorem 2. Using (2.1), (2.2), (2.3) we have 

PC sup IF*Cu)-FCu)I>e)<=P sup IFn~(U)-~(u)l>~ 
- o o < u < T  \ - o o < u < = T  

+ P (_ s u p  ~ I log ;.(u) + To(u) I > 

2 8 (  (ull 

Lemmas 3.2 and 3.3 give exponential bounds of the first two terms of the right- 
hand side. Observe that F(u)__< 1, and 

P sup 11 To(u)- T(u)l 2 >~ 
\ - - o o < u < T  

Hence the last two terms of (3.2) can be estimated by Lemma  3.4. This proves 
the theorem. 

Remark 4.2. c I is constant coming from Wellner's lemma, c a and c 3 are the 
constants of [7] and c 4 is the constant of [2]. 

4. Results for the Bayesian Estimator 

It is well-known that instead of the PL estimator the so-called Bayesian 
estimator can also be applied in case of nonnegative random variables X and 
Y. The definition of this estimator is the following: 

Let c~ be an arbitrary non-null positive measure on the Borel o--field of 
(0, Go). If  1 - F  is assumed to be a random continuous distribution function 
with Dirichlet process prior with parameter  ~, the Bayes estimator of the 
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survival function F(u) of the nonnegative random variable X is 

N+(u)@~ f l  (N+(zi)@OS(Zi)~-l) [~=O'Z~<u] 
F"~(u)= n+ct(0) ,=~ [ ~ + ~ )  (4.1) 

where a(u)=a([u;  + o  o)) ~(Zi)=a([Zi;  + o  o)) and the censoring random vari- 
able is also assumed to be nonnegative. 

It turned out that this F~(u) estimator has similar properties to the P.L. 
estimator. An elegant way to show that a property of one of the above 
two estimators also possessed by the other one is to estimate the distance 
sup iF*(u)-F2(u)l appropriately. The first paper considering the distance of 
the two estimators was published by Phadia and Van Ryzin [8]. They have 
proved that 

E(F,*(u)- F:(u))2=O ( ~ ) ,  

for every fixed u(~(u)>0). From this result it follows that the pointwise strong 
/log n~ 

consistency of F* with rate 0 [ l ~  ! implies the same property of F, ~. In our 

paper [4] it was proved that the sup distance of the two estimators in any 

[-0, T] (where c~(T)>0) is 0 (~) almost surely. (Corollary 
~ x  

fixed interval 4.1). 
~ g  

At the same time an exponential bound was given to the probability 

P( sup IF*(u)-Fd(u)I>~) 
O<u<T 

as well. Therefore it follows that the analog of Theorem 2 is valid for the 
Bayesian estimator. Our present aim is to extend the result of 1-41 to the 
interval (0, TF) which implies the strong uniform consistency of F](u) in (0, T v) 

with rate 0 ( ~ ) .  

Lemma 4.1. Let X and Y be nonnegative random variables. Suppose that 

c~( Te) > O, G( TF) > O. 
Then for n > n o (co) 

1 ) a.s. 
oSUp IF*(u) - F~(u)[ = O  (] /n loglogn 

where the 0 depends only on G(Tp) and ~(0). 

Proof. We summarize some notations and facts from [81 and 1-4] (Sect. 6). 
Denote by Z(I)<=Z(2)<__...<__Z(,) the ordered sample Z 1 . . . .  ,Z ,  and by 6(o 
(i = 1, ... n) the 6 corresponding to Z(~) in the original sample. 

For Z(o<u<Z(~+I ) i=0,  1 .....  n -  1 with Z(o)=0, 

F,*(u) ]n- i  (j~=~ jO~ ) f l B j n ~ i  n-i+c~(u) (4.2) 
--/;2(U)]~ n Aj--.= Bj q- nq_~(0) i 
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where 

Aj= \(n-j+ l ] and Bj . . . .  (n-J+c~(Z(J))+ l ) [oj=~ 
\ n--j+ ~(Z(j)) 

t • - -  Aj- B~ < IAj- Bj] (4.3) 
I n _ _ j = l  

and 

Bjnni n--i+c~(u) <~(0) (4.4) 
j = l  n + ~ ( 0 )  f n - z "  

Observe that by the definition of Aj and Bj 

i i 
[Aj-BjI= ~ [,~u)=O]IAj-Bjl j=l j=l 

i i 
2 [g ( j )= 0 ]  ~(Z( j ) )  <~(O) j21  [-6(j) = 0 ]  j=l (n-j)(n-j+c~(Z{~)) .= (n - j )  2 

[6u) =0] < ~(0) 
j~-- i (n  H n ( Z ( j ) ) )  2" 

Furthermore for n >no(cO) the largest observation Z(.)>u. almost surely: as 

P(Z(.)<u.)< ~ fi P,Zj<u.)= ~ (1-H(u.))" 
n=l n = l j = l  n=l  

< e -nH(u€ < e -nG(Tv)F(un) < e [ 2 < -~- 00.  
n=l n=l  n=l 

Hence from (4.2) and (4.4) it follows that for n>no(O) ) we have almost surely 

sup [F~*(u)-F~ (u)l=<c~(0) jr ~dG, , (u ) -~  (4.5) 
o<=,<_,. (o  n n ,  tu~ n H~(u,) 

where 

Using the obvious fact 
Lemma 2.1, it can be seen that 

- 1 " 
G,(U)=n ~= 1 [Zj<u, ~j=0]. 

that d.(u)=l-H.(u)-P.(u) and similar argument to 

.n 1 (i 
! ~ d d . ( u ) = O  ] /n log logn)"  

Hence applying Remark 2.1 

o_<u_<u.sup ,F.*(u)-F:(u),=O (l/n log1 log n) " 

which proves the lemma. 

(4.6) 

(4.7) 
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Since F,~(u) is decreasing, it is obvious that 

sup IFd(u)-f(u)l<= sup I fd(u)- f (u) l+F(u,)  
O<u<+oe  O<-u<un 

< sup IF~(u)-F*(u)l+ sup IF~*(u)--g(u)l+F(u.). 
0 <u<un 0 <--u'<Un 

By (4.8) and Lemma 4.1 we get the following 

(4.8) 

Theorem 3. Suppose that F and G are continuous survival functions and 
TF< TG < + oe. Then if ~(TF)>0 

sup 
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