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Summary. We establish a law of the iterated logarithm for a triangular array 
of independent random variables, and apply it to obtain laws for a large class 
of nonparametric density estimators. We consider the case of Rosenblatt- 
Parzen kernel estimators, trigonometric series estimators and orthogonal 
polynomial estimators in detail, and point out that our technique has wider 
application. 

1. Introduction and Summary 

Much attention has recently been directed towards obtaining conditions for the 
strong consistency of density estimators, and rates of strong consistency. In the 
present paper we obtain sharp pointwise rates of strong consistency, by estab- 
lishing laws of the iterated logarithm for a large class of estimators. The 
estimators we shall consider are of the type 

~( X)=n-1 L Kr(.l(x;Xi)' 
i=1 

where {K,., r e I }  is a sequence of "kernel" functions (I is an arbitrary index set), 
and X 1 , X  2 . . . .  are independent observations of a distribution with unknown 
density f Most nonparametric estimators have this form - for example, Rosen- 
blatt-Parzen kernel estimators, trigonometric series estimators, orthogonal poly- 
nomial estimators. Fourier transform estimators and histogram estimators. 

A fundamental contribution to the theory of strong consistency has been 
made by Deheuvels [7]. who gave necessary and sufficient conditions for the 
strong convergence of Rosenblatt-Parzen kernel estimators. For generalizations 
and related work see the more recent papers of Devroye [8], Devroye and 
Wagner [9], Silverman [-14] and Singh [15]. Earlier work on kernel estimators is 
referenced in these articles. Parallel results on the convergence of orthogonal 
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series estimators have been obtained by Bluez and Bosq [1, 2] and Bosq [3, 4, 
5]. See also Winter [19]. Wegman and Davies [18] have given a law of the 
iterated logarithm for a sequentially calculated density estimator, but their 
results do not overlap with ours. 

We begin by establishing a law of the iterated logarithm for a general class of 
triangular arrays of independent variables, complementing work of Tomkins 
[17]. This result is presented in Section 2, and is central to the paper. In the 
subsequent sections we apply it to establish laws for Rosenblatt-Parzen kernel 
estimators, trigonometric series estimators and orthogonal polynomial esti- 
mators. The special properties of the "kernel" functions used to construct these 
estimators necessitate some differences of detail in the proofs, but there are 
many similarities and we keep our discussion brief. We stress that these three 
types of estimators are only intended as examples, and our method can be 
applied more widely. 

The rate of convergence of a density estimator s  to the density f(x) is 
restricted by two different factors - the rate of convergence of the error from the 
mean, f~(x)-E[f,(x)], and the rate of convergence of the bias, E [ s  
Generally these factors work against one another, in the sense that a con- 
struction which reduces one will tend to increase the other. Either term may 
dominate the difference f,(x)-f(x). Since the bias is purely deterministic and 
may be easily estimated by analytical methods, it suffices to obtain a law of the 
iterated logarithm for the error from the mean. We shall adopt this procedure. 

In the proofs the symbol C will denote a positive generic constant not 
depending on the parameters in question. It will differ from appearance to 
appearance. 

2. A Law of the Iterated Logarithm for Triangular Arrays 

Let X 1 , X 2 .. . .  be a sequence of independent and identically distributed random 
variables with their distribution confined to the interval (a, b), where 
-oo<a<b<oo. Let {K r, r~I} be a sequence of univariate functions each of 
bounded variation on (a,b), and define 

Sn(r)= ~ [K,(Xi)-EKr(Xi)]. 
i = 1  

Gs=cov[K~(XJ, Ks(XJ] and aff=G.~. 

Select a sequence {r(n), n = l , 2  . . . .  } _ I .  We establish conditions under which 
Sn(r(n) ) obeys the law of the iterated logarithm. That is, with 

q5 (n) = (2 n eft(n) log log n) } 
we have 

lira sup+  loS(n)] * S,(r(n))= 1 (1) 
n ~ c o  

almost surely (a.s.). We shall write S, for S,(r(n)) and r for r(n) whenever no 
ambiguity arises, and denote an integral over (a, b) by y. 
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Theorem 1. Suppose 

and 
(log n) 4 [~ dK 2 2 I r(n)(X)l'] /nar( , ) loglogn~O 

l im lim 2 sup sup Io-ro,)r(,)/a,(,) - i I = 0, 
E ~ O  n ~ c o  m 

(2) 

(3) 

where the inner supremum is taken over values of m with [m-nl<en.  Then (1) 
holds. 

Condi t ion  (3) m a y  be reformula ted  as: for all sequences m , n ~  oo with 
m/n ~ 1, 

2 
Gr(m) r{n)/O'r(n) ~ 1. 

With Kr(x)=x for each r we obta in  as a corol lary the H a r t m a n - W i n t n e r  law 
for a sequence of bounded  variables. Next  suppose 

1 if x<_r, 
K~(x) = 

0 if x>r ,  

where 0 < r _ < l ,  and  X 1 , X  2 ... .  have the uniform distr ibution on (0,1). Let  
r(n)--*O, 

(log n)4/nr(n) log log n ~ 0, (4) 

and  suppose  r(m)/r(n) ~ 1 for all sequences m, n ~ oo such that  m/n ~ 1. Then  as a 
corol lary  to T h e o r e m  1, 

lira sup + (2nr log log n)-  ~ n [F,(r) - r] = 1 a.s., 
n ~ o o  

where F, is the empir ic  distr ibution function of X 1 , X  2 ... .  ,X , ,  and r=r(n). 
Eicker  [10] and Kiefer [11] ob ta ined  this result by other  methods,  and Kiefer 
showed that  (4) m a y  be weakened to 

log log n/nr(n) ~ O. 

Tomkins  [-17] considered the law of  the i terated logar i thm for t r iangular  
arrays  in a more  general setting, but  only obta ined a lower bound.  Fo r  a general 
sequence his condit ions would be difficult to check. 

Proof of  Theorem 1. We begin with 

L e m m a  1. Let L 1 and L 2 be functions of bounded variation on (0, l), and W~ 
0 <_ t <_ 1, be a Brownian bridge. Then 

( Z l , Z 2 ) =  W~ [ W~ 

has a bivariate normal distribution with zero means and covariances 

cov (Z i ,Z j )= i  L i ( t ) L j ( t ) d t - [ i  Li(t)dt] [i Lj(t)dt ]. 

The p roo f  is s traightforward.  
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Returning to the proof of Theorem 1 we see that it suffices to consider the 
case where each X~ is uniform on (0, 1). In this case a = 0  and b =  1. Let F~ denote 
the empiric distribution function of X 1, X 2, ..., X,. In view of Theorem 4 of 
Koml6s, Major and Tusn~dy [12], on a rich enough probability space we may 
write 

n [ F , ( x ) - x ] =  ~ Wi~ 
i = 1  

0 < x < l ,  where W.. ~ i > l ,  are independent Brownian bridges and there exist 
positive absolute constants C a, C 2 and 2 such that 

P (  sup le,,(x)l > (CI  logn + x ) l o g n ) <  C2 e-'~x 
0 _ < x < l  

for all x and n. (Koml6s, Major and Tusn~tdy speculate that the extra factor of 
logn is unnecessary; this would allow us to reduce (logn) ~ to (logn) 2 in 
condition (2).) Therefore 

S. = n S Kr (x) d IF. (x) - x] = - ~ ~ W~ ~ (x) dK r (x) - ~ e. (x) dK r (x). 
i = 1  

For large values of n, making use of condition (2), we have 

P([qb (n)3 - 11~ e.(x) dKr(x)l > e) 

__< P ( sup ]e.(x)l > e(log n) 2 [2na 2 log log n/(log n) 4 {~ [dKr(x)l} 2]~) 
O _ < x ~ < l  

< C 2 exp ( -  6 [na~ log log n/(log n) 2 {~ IdKr(x)[}2]~), 

where 8 > 0 does not depend on n. It follows from the Borel-Cantelli lemma that 

[~b(n)] -1 Se,(x)dK~(x)--+O a.s., 

and so it suffices to prove that the variables 

T.(r)= ~ ~ Wi~ 
i = 1  

obey the law of the iterated logarithm. We shall write T. for T.(r(n)). 
For fixed n we have 

T. = n~ ~ W~ dK~(t) 

for a Brownian bridge W ~ In view of the lemma and the usual approximation 
to the tail of the normal distribution, 

P(T, > (1 + e) q5 (n)) < (2 zr)- ~ exp ( -  (1 + 02 log log n). (5) 

Let p > 1 and set m k = [pk] (the integer part of pk). We seek a lower bound for 

P(Tm >(1 + 0  q5 (mk)l Tn>(1 + 30  qS(n) for some rnk_ 1 <n<mk)  

> infP(Tmk > (1 + e) q5 (ink) [ T , = z), (6) 
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where the infemum is taken over integers n with m k _ 1 < n < m k and real numbers  
z>( l+3e)~b(n) .  For  any m > n  the variables T m and T~ have a joint  normal  

2 and z respectively, and distribution with zero means, variances m0-r(m) nar(,) 

covariance n0-r(m)r(,)(use L e m m a  1). Therefore  condit ional  on T , = z ,  T m is normal  

N (,~ s,Z/0-~, 2 2 m0- s --nasj0-t  ) 

where s = r ( m )  and t=r(n) .  Let q~ denote  the s tandard normal  distribution 
function. Then  if 0-~t > 0, 

P(Tm >(1 +~)r To=z) 
= l _Cb[ {(l + e) O(m)_0-s ,Z/0-z}/{m0-2_ no-st~o- 2} ~] 

> 1 - ~b [{(1 + e) q5 (m) - (1  + 3 ~) q5 (n) 0-s]0-z}/{m 0-2 _ n 0-210-2}~] 

if z> (1  +3e)~b(n). By choosing p sufficiently close to 1 we may ensure that  

(1 + 3 e) (n log log n) ~ > (1 + 2e)(m k log log rnk)a 

for all m k_ l < n  < m  k and all sufficiently large k. And applying condit ion (3) we 
see that  if p is close to 1, 

(1 + 2 0  0-~(,,k),(,)/0-~(,) > (1 + e) 0-r(~k) 

for all m k 1 < n < m k and all large k. Therefore  for large k, 

P(Tm~ > (1 +e)q~(mk)I T, = z)__> 1 -~b(0) =�89 

uniformly in m k_ 1 < n < m  k and z__> (1 + 3e)qb (n). F r o m  this result, (5), (6) and the 
inequality 

P(A)  < P ( B ) / P ( B I A )  

we see that  for an integer ko, 

~, P ( T , > ( l  + 3e)d?(n) for some mk_l  < n < m k )  
k >ko 

< 2  ~ P(Tm > ( l + e )  q~(mk))<oO. 
k >=ko 

The Borel-Cantelli  lemw~ now implies that for all e > O, 

P (T, > (1 + e) ~b (n) i.o.) = 0. (7) 

A lower bound  may be obta ined by applying Tomkins '  [17] Theorem 1, but  
it is very easy to give a direct proof. To this end, define 

tP (k )=[2(mk- -mk  1) 2 �89 0-~{,,~) log log mk] 
and 

A k = Tm~ (r (ink)) -- T~k_~ (r (rag)). 

The variables A k are independent  and normal ly  distr ibuted with zero means and 
0 -2 variances (m k -  m k_ ~) ~(m~), and so by the Borel-Cantelli  lemma and an estimate 
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of  the tail of  the normal  distribution, 

P(A k > (1 - e) 0(k) i.o.) = 1 (8) 

for all e > 0. Choose  p > 1 so large that  

[1  - 2 e -  (1 - e)(1 - p -  1)~] p ~  < _ 3. 

For  large values of  k, 

_ ~ ( k ) = ( l _ 2 e ) r  2 1 1 fir(ink) log log ink_ 1) ~'. 

The variable Tmk_l(r(mk)) is normal ly  distributed with zero mean and variance 
0 "2 and so by the Borel-Cantell i  lemma, ink-- i r(mk), 

P(T,,k_ 1 (r (ink)) -< - r = 0. 

Combin ing  this with (8) we see that  for any e > 0, 

P(A k + T,,~_, (r(mk)) > (1 -- 5) ~ (k) - ~ (k) i.o.) = 1 ; 
that  is 

n(T,,~(r(mk) ) > (1 -- 2e) q5 (ink) i.o.) = 1. 

One par t  of  the law of  the iterated logar i thm is a consequence of  this and (7); 
the other  follows by symmetry.  

3. R o s e n b l a t t - P a r z e n  K e r n e l  E s t i m a t o r s  

Let K be a function of  bounded  var iat ion on ( -  oo, o9) satisfying 

zK(z)-*O as [z[--+oo and ~ KZ(z)dz<oo. (9) 
oo 

Let X 1 , X  2 .. . .  be independent  r a n d o m  variables whose c o m m o n  distribution 
function F has a derivative F'(x)=f(x)+O at x. A kernel est imator  o f f ( x )  is 
defined by 

s (x) = (n h)-i  ~ K ((x - Xi)/h ), 
i = 1  

where h =h(n)  is a sequence of  positive constants converging to zero. 
We shall assume in addit ion that  F satisfies a Lipshitz condi t ion of  order  one  

in a ne ighbourhood  of  x (that is, for some e, M > 0 ,  IF(y)-F(z)l<=Mly-z[ 
whenever Ix-y[ and Ix -z l  <~); that  

lira lim sup sup [h(m)/h(n)- 1[= 0, (10) 
~ 0  t t~o~  tn 

where the inner sup remum is taken over values of  rn with [m-n] <he; and that  

(log n)4/nh log log n ~ 0. (11) 
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Conditions (10) and (11) would be satisfied in practice, since it is usual to take 
h(n)~an -b for positve numbers a and b with b < l .  I f f  exists and is uniformly 
continuous in a neighbourhood of x, then condition (11) implies the uniform 
convergence of the estimate J~ within a neighbourhood. 

From Theorem 1 we obtain 

Theorem 2. Under the conditions above, 

limsup+_[f,(x)-Es [f(x) ~ K2(z)dz]-~a.s. 
n ~ oo  co  

Analogues of theorem 2 can be obtained for J~;~, with stronger hypotheses on 
f and K, in the estimation of the p'th derivative f(v). 

Proof We set b = - a  = oe and Kh(y ) = K ( ( x -  y)/h), and verify conditions (2) and 
(3). Now, 

a~ =2  [F(x - zh ) -F(x ) ]  K(z)dK(z)-  [ f ( x - z h ) - f ( x ) ]  dK(z) , 
oO 

and for any e > 0, 

] [ F ( x - z h ) - F ( x ) ]  K(z)dK(z)] <~ lh 
Izl > ~lh 

using (9), while 

I S [F(x-zh)-F(x)]dK(z) l  
Izl > e/h 

Since 

Iz K (z) dK (z)l =o(h ), 
Izl > a/h 

<=lK(e/h)l+IK(-e/h)l§ .f IK((x-  y)/h)ldF(y) 
Ix yl > 

< IK(~/h)l + IK( -~/h)l 

+e- lh  ~ Ih - l ( x -y )K(h - l ( x -y ) ) ldF(y  ) 
Ix-y l>  

= o ( h ) .  

sup lu 1 [F(x + u)-  F(x ) -  uf(x)]l ~ 0 (12) 
O<lul<E 

as e-~ 0 then for any 3 > 0 we may choose z so small that 

and 

I ~ [F(x - zh ) -F(x )+zh f (x ) ]  K(z)dK(z)l<=~Sh 
Izl =< dh 

[ ~ [F(x-zh) -F(x)+zhf (x )]dK(z) l<6h 
Izl _-< elh 

for all h. An integration by parts and the Cauchy-Schwartz inequality give the 
formula 

[ ~[~h zdK(z)] <= (n/h)[[K(~/h § )[ + [ K ( -  ~/h- )[] 
M'= / 

+ [  ~ K2(z)dz]r ~ dz]~=O(h-~), 
IzJ ~< ~/h Izl ~ ~/h 
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and  combin ing  these es t imates  we deduce  tha t  

~ E [ K 2 ( ( x -  X x ) / h ) ~ h f ( x )  o~ K2(z) dz 
oo 

as h ~ 0 .  C o n d i t i o n  (2) now follows f rom (11). To es tabl ish  (3) we mus t  
d e m o n s t r a t e  tha t  if h, k ~ 0 such tha t  h/k ~ 1, then 

h - 1 cov {K((x - X1)/h), K((x - X1)/k)} ~ 1. 

2 it But E[K((x-X1)/h)]  =o(h~),  and  so in view of  the a sympto t i c  fo rmula  for ~h 
suffices to p rove  tha t  

h -1 o~ [g ( ( x -y ) /h ) -K( (x -y ) / k ) ]2dF(y )  ~0 .  (13) 
- o o  

F o r  any e > 0 we define 

I(h,k)= ~ [K( (x -y ) /h ) -K( (x -y ) / k ) ]2dF(y )  
Ix-yl< 

as the l imi t  over  increas ingly  fine dissect ions  x - e = Y0 < Y 1 < . - -  < Yn = X -[- E, of  

n - - 1  

E [ K  ( (x  - -  y i ) / h )  - K ((X - -  y i ) / k )3  2 I f  (Yi) - -  g (Y i -1 ) ] .  
i = 1  

If  F satisfies a L ipsh i tz  cond i t i on  of  o rde r  one in the ~ -ne ighbourhood  of x then 
each F(y i ) -F(y  i 1) is d o m i n a t e d  by  M(y i - y i_  1), where  M is a fixed constant .  
Therefore  

I(h,k)<=M ~ [K( ( x - y ) / h ) -K( ( x - y ) / k ) ]gdy  
Ix-yl< 

< M h  ~ [K(z)-K(zh/k)12dz.  

Since K is of  b o u n d e d  va r i a t ion  then it is con t inuous  a lmos t  everywhere  (a.e.), 
and  so K(zh /k )~K(z )  a.e. I t  follows tha t  I(h, k)=o(h) as h, k ~ o o .  F u r t h e r m o r e ,  

S [K ((x - y)/h) - K ((x - y)/k)] 2 dF (y) 
]x y[ > e 

< e  2h2 ~ { h - l ( x - y ) [ K ( h - l ( x - y ) ) - K ( k  l(x-y))]}2dF(y) 
co 

=O(h2) ,  

and  so (13) holds.  

4. Trigonometric Series Estimators 

There  is a wide var ie ty  of  e s t ima tors  based  on  t r igonomet r i c  series or  F o u r i e r  
t ransforms.  W e  cons ider  only  three  of  t hem here  - the e s t ima to r  based  on the 
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Fourier series of a density on ( -  re, ~), that based on the Fej6r form of the series, 
and that based on the cosine series of a density on (0, re). 

Let X1, X 2 . . . .  be independent random variables whose common distribution 
has its support  confined to (-~z,~). If xe(-~,zc) and F'(x)=f(x)+O, two 
estimators of f(x) are 

and 
i = 1  

s -1 Z s 
i = 1  

[1 i cos 
i = l  

where m=m(n) is a sequence of integers tending to infinity and 

d,i--n -1 ~ cos(iXj) and ~ni=n -1 ~ sin(iXj). 
j = l  j = l  

If the distribution has its support confined to (0, ~z), and xe(O, ~z), we may use the 
estimator 

i = 1  

We shall assume that the common distribution function F has a derivative f 
in a neighbourhood of x, continuous at x, and that 

lim lim sup sup [m(p)/m(n)- 11 =0,  (14) 
~ 0  n ~ c o  p 

where the inner supremum is taken over integers p with [p -n[  < ne. 

Theorem 3. Under the conditions above, 

lim sup _+ [ s  Ef~i(x)] (n/2m log log n) ~ = [f(x)/~] ~ a.s. 
n ~ o o  

for i=l  and 3 if 
m(log n)6/n log log n ~ 0, (15) 

and 
lim sup Jr [ f ,  2 ( x ) -  Ef~ 2 (x)] (n/2 m log log n) ~ = If(x)~3 ~] ~ a.s. 

n ~ o o  

if 
re(log n)4/rt log log n ~ 0. (16) 

Conditions (14)-(16) would be satisfied in practice, since it is usual to take 
m(n)~an b for positive numbers a and b with b < l .  
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Proof We shall consider only s  and  4 2 .  In the case of  s  we m a y  write 

s  = n - 1  ~ D~(x-Xi)  
i=1 

where 

Dm(z ) = sin [(2m + 1)z/2]/2zc sin (z/2) 

is the Dirichlet  kernel. (No te  that  

i = l  

Set b =  - a = ~ z  and K~(y)=Dm(x-y) in T h e o r e m  1. It can be shown tha t  

4~ sin 2 (z/2) D',(z) = (2m + 1) [sin (z/2) - (z/2)] cos [(2m + 1)z/2] 

+ [1 - cos (z/2)] sin [(2m + 1)z/2] 
1 

- (z/2) 2 (2m + 1) 2 ~ t sin [(2m + 1) tz/2] dt, 
0 

and so 

]D'~(z)t<= C[m+(2m+ l) 2 i tsin[(2m+ l)tz/2]dt ] 
0 

uniformly in [z[ _< ~. Therefore  

But 

and  so 

~ Z - 2  (2m+l)z/2 ] 
i IDm(z)]dz= C m+ ~ ~ usinudu dz 

i usinudu <2Iv[  min  (1, v2), 

i ]D~.(z)[ dz = O(m log m) 

as m ~ 0o. It  follows that  

i ldKm(z)l dz = O(m log m). 
- $ r  

Suppose  F has a derivat ive in the e -ne ighbourhood  of x. Now,  

]x-y[ > 
D~(x-y) dV(y)=O(1) 

as m ~ oo, and so 

(17) 
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Ira= i D2(x-y)dF(y) 
-g 

= S D~(x-y)dF(y)+O(1) 
{x-yt  < e 

= f ( x )  i D2(x-y)dy + 
- n  I x - y [ <  

It is easily proved that  

2 Dm(X - -  y) [ f ( y ) - - f  (x)] dy + 0 (1). 

i D2(x-y)dy = i D2(z)dz~m/n, 

and the continuity of f at x now ensures that Im~mf(x)/rc. It may  also be 
shown that  

i Dm(x-y)dF(y)=l ~ Dm(x-y)f(y)dy+O(1)l 
- ~  [ x - y l <  e 

=< C i [D,.(z)l dz=O(logm). 
--rr 

(See Butzer  and Nessel [6, Proposi t ion 1.2.3, p. 42].) Therefore  in the nota t ion of 
Theorem 1, 

2 o-~ ~ E [K 2 (X1) ] ~ mf(x)/n. (18) 

Combining this with (17) we see that (2) follows from (15) in the case of J~l. 
If p > n then 

p 

Dp(z)--Dn(z) =Tz-1 E (cosjz+sinjz), 
n + l  

and so 

i [Dp(z)-D,(z)] 2 dz = ( 2 / n ) ( p - n ) .  

F r o m  this and (18) follows (3). 
Finally we consider the case of s  which we may write as 

s -~ Y, Fro(x--X,) 
i = 1  

where 

F m (z) = {sin [-(m + 1) z/2]/sin (z/2)} 2/2 n (in + 1) 

is the Fej6r kernel. Let  b =  - a = n  and K,,(y)=Fm(X-y ) in Theorem 1. It can be 
shown that  
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2~(m + 1) sin 3 (z/2) F~(z) 
= sin [(rn + 1) z/2] {(m + 1) [sin (z/2) - z/2] cos [(m + 1) z/2] 

+ (m + 1)(z/2) cos [-(m + 1) z/2] - sin [(m + 1) z/2] 
+ sin [(m + 1) z/2] [1 - cos (z/2)] }. 

Since l0 cos 0 - s i n  0l <210l min (1, 02) then 

IF,~(z)l < C {1 + [(m + 1)/212 min [((m + 1) z/2)- 2 1]} 

uniformly in lzl <rr. Therefore 

i I/V2,(z)l dz=O(m), 

and consequently 

i IdK,,,(z)l=O(rn). 

As before we may show that 

cr 2 ~ E [KZ(X0] ~f(x)  i F. 2 (z) dz ~ mf(x)/3 ~z. 

(19) 

Combining this with (19) we see that (2) follows from (16). Condition (3) may be 
established as in the case of s  

5. Orthogonal Polynomial Estimators 

We consider only the case of an estimator based on the Legendre polynomials. 
Let X 1, X 2 . . . .  be independent random variables having a common absolutely 
continuous distribution whose density f has its support confined to ( -  1, 1). We 
shall assume that (1 _y2)-+f(y) is integrable on ( - 1 ,  1). Suppose x e ( - 1 ,  1), that 
f is continuous at x and of bounded variation in a neighbourhood of x, and 
f(x)#O. 

The orthonormal Legendre system is defined by 

pm(z)=[�89 rn>O, 

where the functions Pm are the Legendre polynomials. An estimator of f(x) is 
given by 

f,(x)= ~ d, ipi(x), 
i-O 

where m=m(n) is a sequence of integers tending to infinity and 

dni=g I 1 ~ Pi(Xj)" 
j=l 
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Assume that  (14) holds and 

m3(log n)4/n log log n ~ 0 .  (20) 

Theorem 4. Under the conditions above, 

lim sup +_ [ s  - Ej~ (x)] (n/2m log log n) ~ = [f(x)/n]~(1 - x2) - + a.s. 
n~oo 

Proof The k'th derivative of P,,, otk] �9 ~ , is related to the ultraspherical polynomials  
P~) by the formula 

P[m k] ( x )  .= 2 k (�89 P(mk-+k -D (X).  

From  this and the result 7.33.6, p. 167 of Szeg6 [16] we see that  

[p~kl (COS 0)[ < C rain (m 2k, m k ~0 -k-~) (21) 

for 0 < 0 < 7z/2, where C depends only on k. 
The  Chris toffel-Darboux formula ([13, p. 179]) asserts that 

L m (x, y) = �89 ~ (2 i + 1) P~ (x) P~ (y) 
i=0 

= �89 + 1) (y - x ) - I  [Pm (X) Pm +, 0') -- Pm + 1  (X) Pm (Y)], 

and we may write 

J~(x) = n - x  ~ L m ( X ,  X i ) .  
i=1 

Let  b =  - a =  1 and Km(y)=Lm(x, y) in Theorem 1, and define 

mm(x, y) =2(m + 1)- ~ aL,.(x, y)/c?y 

= 0 ' -  x ) -  2 {pro (x) [ ( y _  x) P~,+I (Y) - Pm+l (Y)] 

-- Pm+~ (x) [(y - x) P/,(y) -pm (y)] }. 

F r o m  Taylor 's  theorem we see that  

where 

Hence 

In order  to bound 

P~ (x) =Pm (Y) + ( x -  y)P/, (y) + (x - y)2 R~ (x, y) 

1 
Rm(x, y)= ~ (1 - t )P~ , ' ( tx+(1  - t )  y)dt. 

0 

M m (x, y) =Pm (x) R m + 1 (x, y) -Pm + 1 (x) R~ (x, y). 

1 

-1 
[Mm(x, y)[ dy we estimate 

1 1 
~m = S dy ~ (1-OIP/ . ' ( tx+t l - t )y ) ld t  

--1 0 

i 1 = ( l + x )  -1 ( t+z)[P2(z ) [dz+(1-x )  ~ ~(1-z)lP/. ' (z)l&. 
--1 x 

(22) 
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We now deduce from (21) that  A m = O ( m 3 / 2 ) .  Again from (21), Pm(x)=O(m-~), 
and so by (22), 

Therefore  

1 

IMm(x, y)ldy=O(m). 
- 1  

1 

IdK,.(Y)l=O(m2). 
--1 

As in the p roof  of Theorem 3 we may write 

1 

Ira= ~ L2(x,y)dF(y) 
--1 

1 

=f(x) ~ LZ(x, yldy+ 
- 1 I x - Y l  < ~; 

--l<y<l 

+ ~ L2(x,Y)f(y)dy+O(1). 
- - 1 < y < 1  

L2 (x, y)I f(y)- f(x)]  dy 

(23) 

If ]x-yl>e and - 1  < y < l  then in view of (21), ]Pm(Y)] ~ Cm-~( 1 _y2)-�88 and so 

L 2 (x, y) <= C~ m 2 [p2 (x) Pg+l (Y) 4- Pd+, (x) Pd (Y)] 

< CzmEIP,,+ ~(y)l + IP,,(y)I] < C3m{(1 _ y2)- +, 

where C l, C 2 and C 3 depend only on e and x. Since (1 _yZ)-~f(y) is integrable 
then 

1 

Ira=f (x) ~ L~(x,y)dy+ 
-i 

L 2 (x, y) I f ( y )  - f ( x ) J  dy + 0 (m~). 
Ix Yl-5 ~; 
--l<y<l 

NOW, 

i L~(x,y)dy=�89 f (2i+l)P~Z(x) 
--1 i = 0  

and 

p 2  (cos 0) = (m ~ sin 0)- 1 { 1 + cos [(2m + 1) 0 - ~z/2J } + 0 (m- s/2) 

as m ~ m  (Laplace's formula;  see for example [13, p 208]), and so 

I m ~ mf (x)/~ (1 - x 2){. 

1 

In view of the condit ions imposed on f ~ L,,(x,y)dF(y) converges as m ~  
--1 

([13, p. 235]), and so in the no ta t ion  of Theorem 1, 

2 E[K2(X1)]~mf(x)/~z(l_x2)~. 

Condi t ion (2) now follows from (20), and (3) may  be proved as in Theorem 3. 
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