The Distribution of Majority Times in a Ballot

By
\section*{Lajos Takícs}

1. Introduction

Suppose that in a ballot candidate A scores a votes and candidate B scores b votes and that all the possible $\binom{a+b}{a}$ voting records are equally probable. Denote by α_{r} and β_{r} the number of votes registered for A and B respectively among the first r votes recorded. Let c and μ be nonnegative integers. Denote by P_{j} the probability that the inequality $\alpha_{r}>\mu \beta_{r}$ holds for exactly j values among $r=1$, $2, \ldots, a+b$, and by P_{j}^{*} the probability that the inequality $\alpha_{r}>\mu \beta_{r}-c$ holds for exactly j values among $r=1,2, \ldots, a+b$.

In 1887 E. Barbier [3] found that

$$
\begin{equation*}
P_{a+b}=\frac{a-\mu b}{a+b} \tag{1}
\end{equation*}
$$

if $a \geqq \mu b$ and this was proved by A. Aepplr [1] in 1924. However, it is of some interest to find the complete distribution $\left\{P_{j}\right\}$. In this paper we shall prove the following theorems:

Theorem 1. If $a>\mu b+1$, then

$$
\begin{equation*}
P_{j}=\frac{(a-b \mu-1)}{(a+b)(a+b-1)} \sum_{\frac{a+b-j}{\mu+1} \leqq s \leqq b} \frac{\binom{a}{s \mu+1}\binom{b}{s}}{\binom{a+b-2}{s(\mu+1)}} \tag{2}
\end{equation*}
$$

for $j=0,1, \ldots, a+b-1$, and if $a=\mu b+1$, then

$$
\begin{equation*}
P_{j}=\frac{1}{(a+b)} \tag{3}
\end{equation*}
$$

for $j=1,2, \ldots, a+b$.
Theorem 2. If $a>\mu b-c$, then

$$
\begin{equation*}
P_{a+b}^{*}=\mathbf{1}-\frac{a+c-b \mu}{a+b} \sum_{\frac{c+1}{\mu+1} \leqq s \leqq b} \frac{\binom{a}{s \mu-c}\binom{b}{s}}{\binom{a+b-1}{s(\mu+1)-c}} . \tag{4}
\end{equation*}
$$

The proofs are based on two combinatorial theorems which have special interest in fluctuation theory, in order statistics and in the theory of queues.

2. Two combinatorial theorems

Let $\nu_{1}, \nu_{2}, \ldots, \nu_{n}$ be interchangeable random variables that assume nonnegative integer values. Define $N_{r}=\nu_{1}+\cdots+\nu_{r}$ for $r=1, \ldots, n$. Denote by Δ_{r} the number of subscripts $i=1, \ldots, r$ for which the inequality $N_{i}<i$ holds.

In [6] we proved that

$$
\begin{equation*}
P\left\{\Delta_{n}=n \mid N_{n}=k\right\}=1-\frac{k}{n} \tag{5}
\end{equation*}
$$

for $k=0, \mathbf{1}, \ldots, n$, provided that the left hand side is defined. Further we have

$$
\begin{equation*}
P\left\{\Delta_{n}=j \mid N_{n}=n-\mathbf{1}\right\}=\frac{1}{n} \tag{6}
\end{equation*}
$$

for $j=1,2, \ldots, n$, provided that the left hand side is defined. The latter follows immediately from Theorem 1 of $[7]^{\star}$ or can be deduced from Theorem 3 of E. Sparre Andersen [2] or from Theorem 2.1 of F. Spitzer [5].

The following two theorems can easily be proved by using (5) and (6).
Theorem 3. If $k<n-1$, then we have

$$
P\left\{\Lambda_{n}=j \mid N_{n}=k\right\}=\left\{\begin{array}{c}
1-\frac{k}{n} \text { if } j=n \tag{7}\\
\sum_{i=n-j+1}^{k+1} \frac{(n-k-1)}{i(n-i)} P\left\{N_{i}=i-1 \mid N_{n}=k\right\} \\
\quad \text { if } j=n-k, \ldots, n-1 \\
0 \quad \text { if } j=0,1, \ldots, n-k-1 .
\end{array}\right.
$$

Proof. Without loss of generality we may suppose that $N_{n}=k$ is fixed. If $\Delta_{n}=j<n-1$ and $N_{n}<n-1$, then there exists an r such that $N_{r}=r-1$. Denote by $r=i(i=1, \ldots, k+1)$ the greatest r with this property. Then $N_{i}=i-1$ and $N_{r}-N_{i}<r-i$ for $r=i+1, \ldots, n$. Thus

$$
\begin{align*}
P\left\{\Delta_{n}=j\right\}= & \sum_{i=1}^{k+1} P\left\{N_{i}=i-1\right\} P\left\{A_{i}=i+j-n \mid N_{i}=i-1\right\} \times \tag{8}\\
& \times P\left\{\Delta_{n}-A_{i}=n-i \mid N_{i}=i-1\right\}
\end{align*}
$$

By (6) $P\left\{\Delta_{i}=i+j-n \mid N_{i}=i-1\right\}=1 / i$ for $n-j<i \leqq n$, and 0 otherwise. By (5)

$$
\begin{aligned}
P\left\{\Lambda_{n}-\Delta_{i}=n-i \mid N_{i}=i-1\right\} & =P\left\{\Delta_{n}-\Delta_{i}=n-i \mid N_{n}-N_{i}=k-i+1\right\} \\
& =(n-k-1) /(n-i) \text { for } i=1, \ldots, k+1 .
\end{aligned}
$$

This proves (7) for $j=n-k, \ldots, n-1$. If $j=n$, then (7) reduces to (5). The case $j<n-k$ is obvious.

Theorem 4. For a fixed $c \geqq 0$ denote by Δ_{n}^{*} the number of subscripts $r=1$, $2, \ldots, n$ for which $N_{r}<r+c$ holds. We have

$$
\begin{equation*}
P\left\{\Delta_{n}^{*}=n \mid N_{n}=k\right\}=1-\sum_{i=1}^{k-c}\left(\frac{n+c-k}{n-i}\right) P\left\{N_{i}=i+c \mid N_{n}=k\right\} \tag{9}
\end{equation*}
$$

for $c<k<n+c . P\left\{A_{n}^{*}=n \mid N_{n}=k\right\}=\mathbf{1}$ if $k \leqq c$, and 0 if $k \geqq n+c$.
Proof. Let $N_{n}=k$ be fixed and $c<k<n+c$. Then

$$
\begin{equation*}
1-P\left\{\Delta_{n}^{*}=n\right\}=\sum_{i=1}^{k-c} P\left\{N_{i}=i+c\right\} P\left\{\Delta_{n}-\Delta_{i}=n-i \mid N_{i}=i+c\right\} \tag{10}
\end{equation*}
$$

[^0]The left hand side is the probability that at least one of the inequalities $N_{r}<r+c$, $r=1, \ldots, n$, is violated. If $r=i, i=1, \ldots, n$, is the greatest r for which $N_{r}<r+c$ is violated, then necessarily $N_{i}=i+c$ and $N_{r}-N_{i}<r-i$ for $r=i+1, \ldots, n$. Thus we get the right hand side of (10). By (5)

$$
\begin{aligned}
P\left\{\Delta_{n}-\Delta_{i}\right. & \left.=n-i \mid N_{i}=i+c\right\}=P\left\{\Delta_{n}-\Delta_{i}=n-i \mid N_{n}-N_{i}=k-c-i\right\} \\
& =(n+c-k) /(n-i) \text { if } \quad 0 \leqq i \leqq k-c,
\end{aligned}
$$

and 0 otherwise. This proves (9). The cases $k \leqq c$ and $k \geqq n+c$ are obvious. If $c=0$, then (9) reduces to $\left(1-\frac{k}{n}\right)$.

3. Proof of the ballot theorems

Define $\nu_{r}, r=1, \ldots, a+b$, as follows: $\nu_{r}=0$ if the r-th vote is cast for A and $\nu_{r}=(\mu+1)$ if the r-th vote is cast for B. Now $\nu_{1}, \nu_{2}, \ldots, v_{a+b}$ are interchangeable random variables that assume nonnegative integer values and

$$
v_{1}+\cdots+v_{a+b}=b(\mu+1) .
$$

Since $\nu_{1}+\cdots+\nu_{r}=(\mu+1) \beta_{r}$ and $r=\alpha_{r}+\beta_{r}$, the inequality $\alpha_{r}>\mu \beta_{r}$ holds if and only if $\nu_{1}+\cdots+\nu_{r}<r$, and $\alpha_{r}>\mu \beta_{r}-c$ holds if and only if $\nu_{1}+\cdots$ $+v_{r}<r+c$. Thus $P_{j}=P\left\{\Delta_{n}=j \mid N_{n}=k\right\}$ and $P_{j}^{*}=P\left\{\Delta_{n}^{*}=j \mid N_{n}=k\right\}$ where $n=a+b, k=(\mu+1) b$ and obviously

$$
\begin{equation*}
P\left\{N_{i}=j\right\}=\frac{\binom{a}{i-s}\binom{b}{s}}{\binom{a+b}{i}} \tag{11}
\end{equation*}
$$

if $j=s(\mu+1)$, and 0 otherwise. Formulas (1), (2), (3), and (4) can be obtained from (5), (7), (6), and (9) respectively. If, in particular, $c=0$, then

$$
P_{a+b}^{*}=P_{a+b}=(a-\mu b) /(a+b),
$$

and if $\mu=1$ and $c>0$, then

$$
P_{a+b}^{*}=1-\frac{\binom{a+b}{a+c}}{\binom{a+b}{a}}
$$

which can be proved directly.
Finally we note that K. L. Chung and W. Feller [4] found the distribution of the number of subscripts for which either

$$
\alpha_{r}>\beta_{r} \quad \text { or } \quad \alpha_{r}=\beta_{r} \quad \text { but } \quad \alpha_{r-1}>\beta_{r-1}, \quad r=1,2, \ldots, a+b .
$$

4. Further generalizations

Theorems 3 and 4 can be further generalized for stochastic processes. Suppose that $\{\chi(t), 0 \leqq t<\infty\}$ is a separable stochastic process with nonnegative, stationary, independent increments, $\chi(t)$ is increasing only in jumps and $\chi(0)=0$. Denote by $\varrho(t)$ the measure of the set $\{u: \chi(u)<u, 0 \leqq u \leqq t\}$.

If in (6), (7), and (9) we write

$$
\nu_{r}=\left[\frac{n}{t}\left(\chi_{a}\left(\frac{r t}{n}\right)-\chi_{a}\left(\frac{r t-t}{n}\right)\right)\right], \quad r=1,2, \ldots, n
$$

where $\chi_{a}(t)$ is the total amount of jumps of magnitude $\geqq a>0$ occurring in the interval $(0, t)$ in the process $\{\chi(t), 0 \leqq t<\infty\}$, and if we let $n \rightarrow \infty$ and $a \rightarrow 0$, then we get the following results; By (6)

$$
\begin{equation*}
P\{\varrho(t) \leqq x \mid \chi(t)=t\}=\frac{x}{t} \tag{12}
\end{equation*}
$$

if $0 \leqq x \leqq t$. By (7)

$$
\begin{equation*}
P\{\varrho(t) \leqq x \mid \chi(t)=y\}=\iint_{\substack{t \leqq u+v \\ u \leq y, v \leqq x}} \frac{1}{u}\left(\frac{t-y}{t-u}\right) P\{u<\chi(u) \leqq u+d u \mid \chi(t)=y\} d v \tag{13}
\end{equation*}
$$

if $0 \leqq y \leqq t$ and $t-y \leqq x \leqq t$, and

$$
\begin{equation*}
P\{\varrho(t)=t \mid \chi(t)=y\}=1-\frac{y}{l} \tag{14}
\end{equation*}
$$

if $0 \leqq y \leqq t$. By (9)

$$
\begin{align*}
P\{\chi(u) & <u+x \text { for } 0 \leqq u \leqq t \mid \chi(t)=y\} \tag{15}\\
& =1-\int_{0}^{y-x}\left(\frac{t+x-y}{t-u}\right) P\{u+x<\chi(u) \leqq u+x+d u \mid \chi(t)=y\}
\end{align*}
$$

if $x<y<t+x$.

References

[1] AEppli, A.: Zur Theorie verketteter Wahrscheinlichkeiten. Zürich: Thèse 1924.
[2] Andersen, E. Sparre: On the fluctuations of sums of random variables. Math. Scandinavica 1, 263-285 (1953).
[3] Barbier, É.: Généralisation du problème résolu par M. J. Bertrand. C. R. Acad. Sci. (Paris) 105, 407 (1887).
[4] Chung, K. L., and W. Feller: Fluctuations in coin tossing. Proc. nat. Acad. Sci. USA 35, 605-608 (1949).
[5] Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans. Amer. math. Soc. 82, 323-339 (1956).
[6] Takács, L.: The probability law of the busy period for two types of queuing processes. Operations Res. 9, 402-407 (1961).
[7] - Ballot problems. Z. Wahrscheinlichkeitstheorie 1, 154--158 (1962).
Department of Mathematical Statistics Columbia University, New York 27, N.Y.

[^0]: * I should like to note here that when I proved Theorem 1 of [\%], it escaped my attention that it can be deduced from Theorem 2.1 of F. Spitzer [5].

