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The Distribution of Majority Times in a Ballot
By

Lajos TARACS

1. Introduction
Suppose that in a ballot candidate A scores a votes and candidate B scores b
votes and that all the possible (aj;b) voting records are equally probable.

Denote by o and 8, the number of votes registered for 4 and B respectively among
the first r votes recorded. Let ¢ and u be nonnegative integers. Denote by P; the
probability that the inequality oy > ufr holds for exactly j values among r = 1,
2,...,a + b, and by Pj the probability that the inequality o, > g, — ¢ holds
for exactly 7 values among » =1,2,...,a + b.

In 1887 K. BARBIER [3] found that
a— ub

(1) Pa+b=m

if @ = ub and this was proved by A. ArrrLI [I] in 1924. However, it is of some
interest to find the complete distribution {P;}. In this paper we shall prove the
following theorems:

Theorem 1. If a > ub 4+ 1, then

(oo d) (2)
) P, — (@a—bu—1) sp+1/\s
IR R P (a+b—2)
w1 == s (u 4 1)
forj=0,1,...,a+b—1, and if a = pb + 1, then
1
®3) Fi=ar)

fori=1,2,...,a+b.
Theorem 2. If a > ub — ¢, then

(4) Pl ,=

s (8 Eluibl)_—l 6) |

The proofs are based on two combinatorial theorems which have special
interest in fluctuation theory, in order statistics and in the theory of queues.

2. Two eombinatorial theorems

Let »1, 73, ..., vy be interchangeable random variables that assume non-
negative integer values. Define Ny = »y 4- ++- + », for r = 1, ..., n. Denote by
A, the number of subscripts ¢ = 1, ...,  for which the inequality N; < ¢ holds.
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In [6] we proved that

k

(5) P{An:n[Nn:lc}zlw——n—
for k =0,1,...,n, provided that the left hand side is defined. Further we have

. 1

(6) P{An:Jan:n_l}:Z

forj = 1,2, ..., n, provided that the left hand side is defined. The latter follows
immediately from Theorem 1 of [7]* or can be deduced from Theorem 3 of
E. SparrE AxDERSEN [2] or from Theorem 2.1 of F. SprrzER [5].

The following two theorems can easily be proved by using (5) and (6).

Theorem 3. If k<< n — 1, then we have

k., .
I—-—- if j=mn,
k+1
k=) pNy =i — 1| Ny =k}

i(n — 1)

~1

(7 P{An:len:k}:

i=n—j+1
if j=n—Fk ...,n—1,

0 if j=0,1,...,n—k—1.

Proof. Without loss of generality we may suppose that N, = k is fixed. If
Ap =7 <n—1and N, < n — 1, then there exists an » such that N, = — 1.
Denote by r =1¢ (i =1,...,k + 1) the greatest r with this property. Then
Ni=t—land N, — N;<r—i forr=14-+1,...,n Thus

B+l

(8) P{dpn=j}=> P{Ni=i—1}P{Ay=i+j—n|Ny=i—1}x
i=1
X P{Ap — Ay =n—i|N;y=i—1}.

By 6) P{d; =i+ j—n|Ny=1— 1} =1/i for n —j < i =< n, and 0 other-

wise. By (5)

P{dy—Mi=n—i|Ny=i—1} = P{dy— Ay =n—i|Ny— Ny =k —i +1}
=m—Fk—1)/n-—1i) for v=1,.... k1.

This proves (7) forj =n — k, ..., n — 1. If § = n, then (7) reduces to (5). The
case j << n — k is obvious.
Theorem 4. For a fived ¢ = 0 denote by A, the number of subscripts r = 1,
2, ..., n for which N, << r - ¢ holds. We have
k—c¢

(9) P{A;:n[Nn:k}:1_21<w

) PN =i+ o| Ny =k}
fore<k<n-tc P{A,=n|Ny=k}=1ifk=c and 0if k=n+c.
Proof. Let Ny =k be fixed and ¢ < k << n -+ ¢. Then
k—

(10) 1—P{d,=n}= ZP{N¢:i+c}P{An—Ai:7@—@']N¢:i—i—c}.
i=1

* 1 should like to note here that when I proved Theorem 1 of [7], it escaped my attention
that it can be deduced from Theorem 2.1 of F. SpITzER [5].

g*
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The left hand side is the probability that at least one of the inequalities N, <7+ ¢,

r=1,...,n, is violated. I »r =¢, ¢ =1,...,n, is the greatest r for which

N, < r + ¢ is violated, then necessarily N; =4 + ¢ and Ny, — N; <r — ¢ for

r=1 -+ 1,...,n Thus we get the right hand side of (10). By (5)
=m+c—k)fn—i) if 0=i<k—c,

and 0 otherwise. This proves (9). The cases £ < ¢ and £ = n 1 ¢ are obvious.

If ¢ = 0, then (9) reduces to (1 — —nk—)

3. Proof of the ballot theorems

Define vy, r =1, ..., a 4 b, as follows: v, = 0 if the r-th vote is cast for 4
and v, = (u + 1) if the r-th vote is cast for B. Now »1, 72, ..., ¥4+p are inter-
changeable random variables that assume nonnegative integer values and

y1+ e vars =Dl 4 1).

Since 1 + - -+ v = (v + 1) fr and 7 = oy + fy, the inequality oy > ufr holds
if and only if »; + +-+ + v <r, and & > ufr — ¢ holds if and only if »; 4 ---
+ v <r+ec Thus Pj= P{dn=j|Nu =k} and P; = P{4,=j|Nn=1k}
where n =a + b, k= (¢ + 1)b and obviously

a b
(i - 8) (s )
)
7
if j = s(u + 1), and 0 otherwise. Formulas (1), (2), (3), and (4) can be obtained

from (5), (7), (6), and (9) respectively. If, in particular, ¢ = 0, then
Piyy=Parp = (@ — pb)(@ +b),
and if g =1 and ¢ >0, then

a-+b
P;er:l—w

)
a
which can be proved directly.
Finally we note that K. L. Chuxe and W. FELLER [4] found the distribution
of the number of subscripts for which either '

(11) PN = j} =

or>Pr or oap=P0r bub op1>pr1, r=1L12,...,0+0.

4. Further generalizations

Theorems 3 and 4 can be further generalized for stochastic processes. Suppose
that {y(f), 0 <t < oo} is a separable stochastic process with nonnegative, sta-
fionary, independent increments, y(f) is increasing only in jumps and (0} = 0.
Denote by o(f) the measure of the set {u: y(u) <u, 0 = u = ¢}

If in (6), (7), and (9) we write

e [
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where y,(f) is the total amount of jumps of magnitude = o > 0 occurring in
the interval (0, ¢) in the process {y(f), 0 =t < oo}, and if we let » — oo and
a —> 0, then we get the following results: By (6)

(12) Plol) =w|yt)=t} =7
if 0<z <t By (1)

13) Pl =clzt=u = [ [+

t=<u+ty
U=y, 0=

HfoZy=tandt—y=x=t and

(14) Plott

=tly)=yt=1—-
fosy<t By (9
(15) P{x(u)<u—}—x for 0=u=<t|y(t)=y}

‘1—/(“;_%_ )P{u—&—x<x()<u—|—x du |y () = y}
0
if e<y<t+
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