The Distribution of Majority Times in a Ballot

 $\mathbf{B}\mathbf{y}$

Lajos Takács

1. Introduction

Suppose that in a ballot candidate A scores a votes and candidate B scores b votes and that all the possible $\binom{a+b}{a}$ voting records are equally probable. Denote by α_r and β_r the number of votes registered for A and B respectively among the first r votes recorded. Let c and μ be nonnegative integers. Denote by P_j the probability that the inequality $\alpha_r > \mu \beta_r$ holds for exactly j values among $r = 1, 2, \ldots, a + b$, and by P_j^* the probability that the inequality $\alpha_r > \mu \beta_r - c$ holds for exactly j values among $r = 1, 2, \ldots, a + b$.

In 1887 É. BARBIER [3] found that

$$(1) P_{a+b} = \frac{a-\mu b}{a+b}$$

if $a \ge \mu b$ and this was proved by A. Aeppli [1] in 1924. However, it is of some interest to find the complete distribution $\{P_j\}$. In this paper we shall prove the following theorems:

Theorem 1. If $a > \mu b + 1$, then

(2)
$$P_{j} = \frac{(a-b\mu-1)}{(a+b)(a+b-1)} \sum_{\substack{a+b-j \\ \mu+1} \le s \le b} \frac{\binom{a}{s\mu+1} \binom{b}{s}}{\binom{a+b-2}{s(\mu+1)}}$$

for j = 0, 1, ..., a + b - 1, and if $a = \mu b + 1$, then

$$(3) P_j = \frac{1}{(a+b)}$$

for i = 1, 2, ..., a + b.

Theorem 2. If $a > \mu b - c$, then

$$P_{a+b}^* = 1 - \frac{a+c-b\mu}{a+b} \sum_{\substack{c+1\\ \mu+1} \le s \le b} \frac{\binom{a}{s\mu-c}\binom{b}{s}}{\binom{a+b-1}{s(\mu+1)-c}}.$$

The proofs are based on two combinatorial theorems which have special interest in fluctuation theory, in order statistics and in the theory of queues.

2. Two combinatorial theorems

Let v_1, v_2, \ldots, v_n be interchangeable random variables that assume non-negative integer values. Define $N_r = v_1 + \cdots + v_r$ for $r = 1, \ldots, n$. Denote by Δ_r the number of subscripts $i = 1, \ldots, r$ for which the inequality $N_i < i$ holds.

In [6] we proved that

(5)
$$P\{\Delta_n = n \, | \, N_n = k\} = 1 - \frac{k}{n}$$

for $k=0,1,\ldots,n$, provided that the left hand side is defined. Further we have

(6)
$$P\{\Delta_n = j \mid N_n = n - 1\} = \frac{1}{n}$$

for $j=1,2,\ldots,n$, provided that the left hand side is defined. The latter follows immediately from Theorem 1 of $[7]^*$ or can be deduced from Theorem 3 of E. Sparre Andersen [2] or from Theorem 2.1 of F. Spitzer [5].

The following two theorems can easily be proved by using (5) and (6).

Theorem 3. If k < n - 1, then we have

(7)
$$P\{\Delta_{n} = j \mid N_{n} = k\} = \begin{cases} 1 - \frac{k}{n} & \text{if } j = n, \\ \sum_{i=n-j+1}^{k+1} \frac{(n-k-1)}{i(n-i)} P\{N_{i} = i-1 \mid N_{n} = k\} \\ & \text{if } j = n-k, \dots, n-1, \\ 0 & \text{if } j = 0, 1, \dots, n-k-1. \end{cases}$$

Proof. Without loss of generality we may suppose that $N_n=k$ is fixed. If $\Delta_n=j< n-1$ and $N_n< n-1$, then there exists an r such that $N_r=r-1$. Denote by r=i $(i=1,\ldots,k+1)$ the greatest r with this property. Then $N_i=i-1$ and $N_r-N_i< r-i$ for $r=i+1,\ldots,n$. Thus

(8)
$$P\{\Delta_{n} = j\} = \sum_{i=1}^{k+1} P\{N_{i} = i-1\} P\{\Delta_{i} = i+j-n \mid N_{i} = i-1\} \times P\{\Delta_{n} - \Delta_{i} = n-i \mid N_{i} = i-1\}.$$

By (6) $P\{\Delta_i = i + j - n | N_i = i - 1\} = 1/i$ for $n - j < i \le n$, and 0 otherwise. By (5)

$$P\{\Delta_n - \Delta_i = n - i \mid N_i = i - 1\} = P\{\Delta_n - \Delta_i = n - i \mid N_n - N_i = k - i + 1\}$$
$$= (n - k - 1)/(n - i) \text{ for } i = 1, \dots, k + 1.$$

This proves (7) for $j = n - k, \ldots, n - 1$. If j = n, then (7) reduces to (5). The case j < n - k is obvious.

Theorem 4. For a fixed $c \ge 0$ denote by Δ_n^* the number of subscripts r = 1, $2, \ldots, n$ for which $N_r < r + c$ holds. We have

(9)
$$P\{\Delta_n^* = n \, | \, N_n = k\} = 1 - \sum_{i=1}^{k-c} \left(\frac{n+c-k}{n-i}\right) P\{N_i = i+c \, | \, N_n = k\}$$

for c < k < n+c. $P\{\Delta_n^* = n \mid N_n = k\} = 1$ if $k \le c$, and 0 if $k \ge n+c$. Proof. Let $N_n = k$ be fixed and c < k < n+c. Then

(10)
$$1 - P\{\Delta_n^* = n\} = \sum_{i=1}^{k-c} P\{N_i = i+c\} P\{\Delta_n - \Delta_i = n-i \mid N_i = i+c\}.$$

^{*} I should like to note here that when I proved Theorem 1 of [7], it escaped my attention that it can be deduced from Theorem 2.1 of F. SPITZER [5].

The left hand side is the probability that at least one of the inequalities $N_r < r + c$, r = 1, ..., n, is violated. If r = i, i = 1, ..., n, is the greatest r for which $N_r < r + c$ is violated, then necessarily $N_i = i + c$ and $N_r - N_i < r - i$ for r = i + 1, ..., n. Thus we get the right hand side of (10). By (5)

$$P\{\Delta_n - \Delta_i = n - i \, | \, N_i = i + c\} = P\{\Delta_n - \Delta_i = n - i \, | \, N_n - N_i = k - c - i\}$$

= $(n + c - k)/(n - i)$ if $0 \le i \le k - c$,

and 0 otherwise. This proves (9). The cases $k \le c$ and $k \ge n + c$ are obvious. If c = 0, then (9) reduces to $\left(1 - \frac{k}{n}\right)$.

3. Proof of the ballot theorems

Define ν_r , $r=1,\ldots,a+b$, as follows: $\nu_r=0$ if the r-th vote is cast for A and $\nu_r=(\mu+1)$ if the r-th vote is cast for B. Now $\nu_1, \nu_2, \ldots, \nu_{a+b}$ are interchangeable random variables that assume nonnegative integer values and

$$v_1 + \cdots + v_{a+b} = b(\mu + 1).$$

Since $v_1 + \cdots + v_r = (\mu + 1)\beta_r$ and $r = \alpha_r + \beta_r$, the inequality $\alpha_r > \mu\beta_r$ holds if and only if $v_1 + \cdots + v_r < r$, and $\alpha_r > \mu\beta_r - c$ holds if and only if $v_1 + \cdots + v_r < r + c$. Thus $P_j = P\{\Delta_n = j \mid N_n = k\}$ and $P_j^* = P\{\Delta_n^* = j \mid N_n = k\}$ where n = a + b, $k = (\mu + 1)b$ and obviously

(11)
$$P\{N_i = j\} = \frac{\binom{a}{i-s}\binom{b}{s}}{\binom{a+b}{i}}$$

if $j = s(\mu + 1)$, and 0 otherwise. Formulas (1), (2), (3), and (4) can be obtained from (5), (7), (6), and (9) respectively. If, in particular, c = 0, then

$$P_{a+b}^* = P_{a+b} = (a - \mu b)/(a + b),$$

and if $\mu = 1$ and c > 0, then

$$P_{a+b}^* = 1 - rac{inom{a+b}{a+c}}{inom{a+b}{a}}$$

which can be proved directly.

Finally we note that K. L. Chung and W. Feller [4] found the distribution of the number of subscripts for which either

$$\alpha_r > \beta_r$$
 or $\alpha_r = \beta_r$ but $\alpha_{r-1} > \beta_{r-1}$, $r = 1, 2, \dots, a+b$.

4. Further generalizations

Theorems 3 and 4 can be further generalized for stochastic processes. Suppose that $\{\chi(t), 0 \le t < \infty\}$ is a separable stochastic process with nonnegative, stationary, independent increments, $\chi(t)$ is increasing only in jumps and $\chi(0) = 0$. Denote by $\varrho(t)$ the measure of the set $\{u : \chi(u) < u, 0 \le u \le t\}$.

If in (6), (7), and (9) we write

$$v_r = \left[\frac{n}{t}\left(\chi_a\left(\frac{rt}{n}\right) - \chi_a\left(\frac{rt-t}{n}\right)\right)\right], \quad r = 1, 2, \ldots, n,$$

where $\chi_a(t)$ is the total amount of jumps of magnitude $\geq a > 0$ occurring in the interval (0, t) in the process $\{\chi(t), 0 \leq t < \infty\}$, and if we let $n \to \infty$ and $a \to 0$, then we get the following results: By (6)

(12)
$$P\{\varrho(t) \le x | \chi(t) = t\} = \frac{x}{t}$$

if $0 \le x \le t$. By (7)

$$(13) \quad P\{\varrho(t) \leq x \, \big| \, \chi(t) = y\} = \int\limits_{\substack{t \leq u+v \\ u \leq u, v \leq x}} \int\limits_{u \leq u} \frac{1}{u} \left(\frac{t-y}{t-u}\right) P\{u < \chi(u) \leq u + du \, \big| \, \chi(t) = y\} \, dv$$

if $0 \le y \le t$ and $t - y \le x \le t$, and

(14)
$$P\{\varrho(t) = t \mid \chi(t) = y\} = 1 - \frac{y}{t}$$

if $0 \le y \le t$. By (9)

(15)
$$P\{\chi(u) < u + x \text{ for } 0 \le u \le t \mid \chi(t) = y\}$$

$$= 1 - \int_{0}^{y-x} \left(\frac{t+x-y}{t-u}\right) P\{u+x < \chi(u) \le u+x+du \mid \chi(t) = y\}$$

if x < y < t + x.

References

- [1] AEPPLI, A.: Zur Theorie verketteter Wahrscheinlichkeiten. Zürich: Thèse 1924.
- [2] Andersen, E. Sparre: On the fluctuations of sums of random variables. Math. Scandinavica 1, 263-285 (1953).
- [3] BARBIER, É.: Généralisation du problème résolu par M. J. Bertrand. C. R. Acad. Sci. (Paris) 105, 407 (1887).
- [4] CHUNG, K. L., and W. FELLER: Fluctuations in coin tossing. Proc. nat. Acad. Sci. USA 35, 605—608 (1949).
- [5] SPITZER, F.: A combinatorial lemma and its application to probability theory. Trans. Amer. math. Soc. 82, 323-339 (1956).
- [6] ΤΑΚΑCS, L.: The probability law of the busy period for two types of queuing processes. Operations Res. 9, 402-407 (1961).
- [7] Ballot problems. Z. Wahrscheinlichkeitstheorie 1, 154-158 (1962).

Department of Mathematical Statistics Columbia University, New York 27, N.Y.

(Received January 14, 1963)