Über die Grenzverteilung von Summen Markowscher Ketten auf endlichen Gruppen. I

Von

JOHANN CIGLER

Sei $\{X_n\}$ $(n=1,2,3,\ldots)$ ein diskreter stochastischer Prozeß mit Werten aus einer endlichen, nicht notwendig kommutativen Gruppe G der Ordnung k. Sei $P(X_n=g)$ die Wahrscheinlichkeit, mit der die Zufallsvariable X_n den Wert $g\in G$ annimmt. Sei ferner allgemein $P(X_{n+1}=g_1,X_{n+2}=g_2,\ldots,X_{n+i}=g_i)$ die Wahrscheinlichkeit, daß gleichzeitig $X_{n+1}=g_1,X_{n+2}=g_2,\ldots,X_{n+i}=g_i$ $(n=1,2,3,\ldots;i=1,2,3,\ldots)$ gilt. Mit $P(X_1X_2=g)$ bezeichnen wir die Wahrscheinlichkeit, daß $X_1=g_1$ und $X_2=g_2$ gilt, wobei $g_1g_2=g$ erfüllt ist. Offenbar ist

$$P(X_1X_2=g) = \sum_{\substack{g_1 \in G \\ g_1g_2=g}} \sum_{g_2 \in G} P(X_1=g_1, X_2=g_2).$$

Analog ergibt sich

$$P(X_1X_2...X_n = g) = \sum_{\substack{g_1 \in G \ g_n \in G \ g_n \in G}} P(X_1 = g_1, ..., X_n = g_n).$$

Unser Ziel ist die Untersuchung des Grenzverhaltens der Wahrscheinlichkeiten $P(X_1 X_2 X_n = g)$ für $n \to \infty$.

Im allgemeinen Fall eines beliebigen stochastischen Prozesses sind keinerlei Ergebnisse bekannt. Für den Fall, daß der Prozeß $\{X_n\}$ stationär ist und die Zufallsvariablen X_n unabhängig sind, ist das Ergebnis wohlbekannt (vgl. [2]): Die Wahrscheinlichkeitsverteilung der "Summen" $X_1X_2...X_n$ (bzw. das arithmetische Mittel dieser Wahrscheinlichkeitsverteilung) strebt dann gegen das Haarsche Maß einer Untergruppe H von G. Für den Fall, daß $\{X_n\}$ eine stationäre Markow-Kette bildet und G zyklisch ist, wurden einige Resultate von Z. Koutský [3] gewonnen. Diese Untersuchungen wurden dann für beliebige endliche Gruppen in [1] fortgeführt. Die vorliegende Arbeit setzt es sich zum Ziel, die allgemeine Gestalt der Grenzverteilungen der Summen $X_1X_2...X_n$ zu bestimmen und Kriterien für die asymptotische Gleichverteilung aufzustellen.

Sei $\{X_n\}$ eine stationäre Markow-Kette, deren "Zustände" die Elemente der Gruppe G sind. Die Matrix der Übergangswahrscheinlichkeiten sei $P=(p_{g_ig_j})$. Dabei seien die Elemente $g_i \in G$ in einer beliebigen, aber für das Folgende festen Reihenfolge durchnumeriert und $g_0=e$ das Einheitselement der Gruppe G. Dann gilt $p_{g_ig_j} \geq 0$ und $\sum_{g_j \in G} p_{g_ig_j} = 1$. Die Elemente von P^n seien mit $p_{g_ig_j}^{(n)}$ bezeichnet.

Wir nennen ein Element g_j von g_i aus in n Schritten erreichbar, falls $p_{g_ig_j}^{(n)} > 0$ ist. Wir schreiben dann $g_i \stackrel{(n)}{\sim} g_j$. Gibt es stets ein n, so daß $g_i \stackrel{(n)}{\sim} g_j$, so nennen wir g_j von g_i aus erreichbar, $g_i \sim g_j$. Folgt aus $g_i \sim g_j$ auch stets $g_j \sim g_i$, dann heißt g_i wesentlich. Ist g_i wesentlich, dann auch jedes von g_i erreichbare Element g_j . Wir

bezeichnen die Menge aller g_j , die von einem wesentlichen Element g_i aus erreichbar sind, als irreduzible Klasse. Man bekommt somit eine Zerlegung der wesentlichen Elemente von G in irreduzible Klassen. Ist der Zustand g_i nicht wesentlich, so nennen wir ihn transient.

Wir wollen uns auf den Fall beschränken, daß G selbst eine irreduzible Klasse ist. Dies bedeutet keine wesentliche Einschränkung der Allgemeinheit, wie aus den Resultaten in [I] ersichtlich ist. Sei also G irreduzibel. Dann existiert stets

$$\lim_{N\to\infty} \frac{1}{N} \sum_{n\leq N} P^n = Q = (q_{g_ig_j}).$$

Dabei ist $q_{g_ig_j}=q_{g_j}$ unabhängig von g_i und positiv. Bekanntlich bilden die Summen $S_n=X_1X_2\ldots X_n$ selbst keine einfache Markow-Kette, wohl aber die Paare $\binom{X_n}{S_n}$ (vgl. [3], [1]). Sei daher $\mathfrak S$ die Menge aller Paare $\binom{g}{s}$, $g,s\in G$. Für die Übergangswahrscheinlichkeiten $p_{\binom{g_i}{s_i}\binom{g_j}{s_j}}$ von einem Zustand $\binom{g_i}{s_i}$ in einen Zustand $\binom{g_j}{s_j}$ gilt dann: $p_{\binom{g_i}{s_i}\binom{g_j}{s_i}}=p_{g_ig_j} \text{ wenn } s_j=s_ig_j$

 $p_{\binom{g_i}{s_j} / (g_j)} = p_{g_i g_j} \text{ wenn } s_j = s_i g_j$ $= 0 \quad \text{sonst.}$ Wir bezeichnen mit C_s die Menge aller Zustände $\binom{g'}{s'} \in \mathfrak{S}$, die von $\binom{e}{s}$ aus erreichbar sind. Wegen der Irreduzibilität von G enthält C_s für jedes $g \in G$ mindestens ein Element der Gestalt $\binom{g}{s'}$ mit einem passenden $s' \in G$. Zwei Klassen C_{s_0} und C_{s_1} sind entweder identisch oder fremd; $C_{s_0} = C_{s_1}$ ist genau dann der Fall, wenn man von $\binom{e}{s_0}$ in $\binom{e}{s_1}$ übergehen kann. Offenbar sind alle Zustände einer Klasse C_s wesentlich (vgl. z. B. [1]). Wir haben also eine Zerlegung von \mathfrak{S} in irreduzible Klassen C_s gewonnen. Es existiert nun eine eindeutig bestimmte Untergruppe H von G, so daß $C_s = C_{sh}$ genau für jedes $h \in H$ gilt. Wir nennen H die Invarianzgruppe (vgl. [1]). Sei nämlich H die Menge aller Elemente h mit $\binom{e}{e} \curvearrowright \binom{e}{h}$. Ist dann $h \in H$, $h' \in H$, dann auch $hh' \in H$, wie aus der Relation $\binom{e}{e} \curvearrowright \binom{e}{h} \curvearrowright \binom{e}{h'}$ ersichtlich ist. Die Menge H ist also eine Gruppe. Gehören $\binom{g}{s}$ und $\binom{g'}{s'}$ derselben Klasse an, so schreiben wir kurz $\binom{g}{s} \sim \binom{g'}{s'}$. Sei a die Ordnung der Invarianzgruppe H. Dann zerfällt \mathfrak{S} in genau k/a irreduzible Klassen, die alle dieselbe Anzahl ka von Elementen besitzen.

Sei $h_0=e,\ h_1,\ldots,h_{a-1}$ eine beliebige Anordnung der Elemente von H. Wir zerlegen nun die Zustände aus C_e in a Klassen $D_{h_0},D_{h_1},\ldots,D_{h_{a-1}}.$ Zur Klasse D_{h_0} möge $\binom{e}{e}$ gehören, sowie k-1 weitere Elemente der Gestalt $\binom{g_1}{s_1},\binom{g_2}{s_2},\ldots,\binom{g_{k-1}}{s_{k-1}}$ mit geeigneten s_i , so daß $\binom{g_i}{s_i}\in C_e$. Ist D_{h_0} bereits gewählt, so setze man für $h\in H$

$$D_{h} = \left\{ \begin{pmatrix} e \\ h \end{pmatrix}, \begin{pmatrix} g_{1} \\ h s_{1} \end{pmatrix}, \dots, \begin{pmatrix} g_{k-1} \\ h s_{k-1} \end{pmatrix} \right\}.$$

Offenbar sind alle D_h verschieden und ihre Vereinigung ist C_e . Ist nun $C_s \neq C_e$, dann setze man

$$D_{sh} = \left\{ \begin{pmatrix} e \\ sh \end{pmatrix}, \begin{pmatrix} g_1 \\ sh s_1 \end{pmatrix}, \dots, \begin{pmatrix} g_{k-1} \\ sh s_{k-1} \end{pmatrix} \right\}.$$

Es gilt dann

$$p_{\binom{g_i}{h_l s_i}\binom{g_j}{h_m s_j}} = p_{\binom{g_i}{s \, h_l s_i}\binom{g_j}{s \, h_m s_j}}.$$

Die Matrix der Übergangswahrscheinlichkeiten ist also für jede Klasse C_s dieselbe wie die für C_e . Es genügt daher, die Klasse C_e zu betrachten. In C_e gilt

(1)
$$p_{\begin{pmatrix} g_i \\ h_l s_i \end{pmatrix} \begin{pmatrix} g_j \\ h_m s_j \end{pmatrix}} = p_{g_i g_j} \text{ wenn } h_m s_j = h_l s_i g_j$$

$$= 0 \text{ sonst.}$$

Diese Wahrscheinlichkeit hängt also bei festem g_i, g_j nur vom Wert $h_l^{-1} \cdot h_m$ ab. Daraus ergibt sich unmittelbar, daß die Matrix der Übergangswahrscheinlichkeiten für die Zustände aus C_e gegeben ist durch

$$R = \begin{pmatrix} A_{h_0} & A_{h_1} & \dots & A_{h_{a-1}} \\ A_{h_1^{-1} h_0} & A_{h_1^{-1} h_1} & \dots & A_{h_1^{-1} h_{a-1}} \\ \dots & \dots & \dots & \dots \\ A_{h_{a-1}^{-1} h_0} & A_{h_{a-1}^{-1} h_1} & \dots & A_{h_{a-1}^{-1} h_{a-1}} \end{pmatrix}$$

Dabei ist $A_{h_l^{-1}h_m}$ die $k \times k$ -Matrix mit den Elementen in (1), d. h. $A_{h_l^{-1}h_m}$ ist die Matrix der Übergangswahrscheinlichkeiten aus einem Zustand aus D_{h_l} in einen Zustand aus D_{h_m} . Aus (1) ergibt sich unmittelbar, daß $\sum_{h \in H} A_h = P$.

Da C_e eine irreduzible Klasse ist, besitzt die Matrix R die Zahl 1 als einfachen Eigenwert. Es gibt daher genau eine stochastische Matrix S mit RS = SR = S und $S^2 = S$. Nun gilt für die Matrix

$$Q = \lim_{N \to \infty} \frac{1}{N} \sum_{n \le N} P^n$$

die Gleichung PQ = QP = Q und $Q^2 = Q$. Daher folgt, daß die Matrix

$$S = \begin{pmatrix} \frac{1}{a} Q \dots \frac{1}{a} Q \\ \vdots \\ \frac{1}{a} Q \dots \frac{1}{a} Q \end{pmatrix}$$

eine (und daher die eindeutig bestimmte) Lösung der Gleichungen RS=SR=S und $S^2=S$ ist. Das ergibt sich nämlich unmittelbar aus den Relationen

$$\sum_{h \in H} A_h \frac{1}{a} Q = \frac{1}{a} \left(\sum_{h \in H} A_h \right) Q = \frac{1}{a} P Q = \frac{1}{a} Q$$

$$\sum_{h \in H} \frac{1}{a} Q A_h = \frac{1}{a} Q \left(\sum_{h \in H} A_h \right) = \frac{1}{a} Q P = \frac{1}{a} Q.$$

Aus dem Obigen folgt nun, daß

(2)
$$\lim \frac{1}{N} \sum_{n \leq N} R^n = S \text{ gilt, d. h. also, daß}$$

$$\lim \frac{1}{N} \sum_{n \leq N} P\left\{ \begin{pmatrix} g' \\ s' \end{pmatrix} \mathcal{A} \begin{pmatrix} g \\ s \end{pmatrix} \right\} = \frac{1}{a} q_g.$$

Nachträglich überzeugt man sich sehr leicht davon, daß die obigen Überlegungen und insbesondere Formel (2) auch in dem Fall richtig bleiben, daß G außer einer Klasse wesentlicher Elemente auch noch transiente Elemente enthält. Ist g transient, dann gilt natürlich $q_g = 0$ und umgekehrt. (Falls e transient sein sollte, muß man die obigen Überlegungen, die mit H und der Klasseneinteilung C_s , D_h zusammenhängen, in naheliegender Weise modifizieren. An den Resultaten ändert sich nichts.)

Wir bekommen somit den

Satz 1. Die Gruppe G bestehe aus einer irreduziblen Klasse und einer (eventuell leeren) Klasse transienter Elemente. Dann gilt, wenn a die Ordnung der Invarianzgruppe H bezeichnet und g' und g wesentlich sind,

(3)
$$\lim \frac{1}{N} \sum_{n \leq N} P\left\{ \begin{pmatrix} g' \\ s' \end{pmatrix} \stackrel{(n)}{\sim} \begin{pmatrix} g \\ s \end{pmatrix} \right\} = \frac{1}{a} q_g, \ wenn \begin{pmatrix} g' \\ s' \end{pmatrix} \sim \begin{pmatrix} g \\ s \end{pmatrix}$$
$$= 0 \quad sonst$$

Damit ist — wenn man die Klasseneinteilung von $\mathfrak S$ als bekannt voraussetzt — die Frage nach der Grenzverteilung der Summen $X_1X_2\ldots X_n$ vollständig beantwortet. Bezeichnet man nämlich mit $\{p_g\}$ die Anfangswahrscheinlichkeiten der Markow-Kette, dann ergibt sich für die Wahrscheinlichkeiten $P(X_1X_2\ldots X_n=s)$:

$$\lim_{N\to\infty} \frac{1}{N} \sum_{n \leq N} P(X_1 X_2 \dots X_n = s) = \frac{1}{a} \sum_{\substack{g_i \in G \\ g_i g_j = s \\ \binom{g_i}{g_i} \sim \binom{g_j}{s}}} p_{g_i} q_{g_j}.$$

Von besonderem Interesse ist jedoch die Wahrscheinlichkeit

$$P\left(s \left| \begin{pmatrix} g' \\ s' \end{pmatrix} \right) = \lim_{N \to \infty} \frac{1}{N} \sum_{n \leq N} P\left\{ S_n = s \left| \begin{pmatrix} g' \\ s' \end{pmatrix} \right\}.$$

Aus Satz 1 ergibt sich nun unmittelbar der

Satz 2. Unter den Voraussetzungen von Satz 1 gilt

$$P\left(s \left| \begin{pmatrix} g' \\ s' \end{pmatrix} \right) = \frac{1}{a} \sum_{g \in G} q_g. \begin{pmatrix} g' \\ g' \end{pmatrix} \sim \begin{pmatrix} g' \\ s' \end{pmatrix} \sim \begin{pmatrix} g \\ s \end{pmatrix}$$

Wir wollen nun für ein wesentliches Element $g \in G$ die bedingten Wahrscheinlichkeiten (Maße) $P\left(s \left| \begin{pmatrix} g \\ e \end{pmatrix} \right)$ genauer untersuchen. Sei H_g die Menge aller Elemente h' mit $\begin{pmatrix} g \\ e \end{pmatrix} \sim \begin{pmatrix} g \\ h' \end{pmatrix}$. Dann ist H_g eine zu H konjugierte Gruppe, die Invarianzgruppe bezüglich g. Aus Satz 2 ergibt sich $0 < P\left(h' \left| \begin{pmatrix} g \\ e \end{pmatrix} \right) \leq \frac{1}{a}$ für jedes $h' \in H_g$. Wir wollen nun untersuchen, unter welchen Bedingungen der wichtige Spezialfall eintritt, daß $P\left(h' \left| \begin{pmatrix} g \\ e \end{pmatrix} \right) = \frac{1}{a}$ für jedes $h' \in H_g$ gilt, m. a. W. wann $P\left(s \left| \begin{pmatrix} g \\ e \end{pmatrix} \right)$ das Haarsche Maß auf H_g ist. Das wird durch den folgenden Satz geklärt:

Satz 3. Die Gruppe G bestehe aus einer irreduziblen Klasse und einer (eventuell leeren) Klasse transienter Elemente. Sei $g \in G$ wesentlich. Dann ist $P\left(s \middle| {g \choose e} \right)$ genau dann das Haarsche Maß auf der Invarianzgruppe H_g , wenn für jedes wesentliche g_i $p_{gigi} > 0$ nur für Elemente $g_j \in H_g$ gilt.

 $\begin{aligned} &Beweis: \text{ Sei } H_g \text{ die Invarianzgruppe bezüglich } g. \text{ Für jedes } h' \in H_g \text{ gilt } \\ &0 < P\left(h' \left| \begin{pmatrix} g \\ e \end{pmatrix} \right) \leqq \frac{1}{a} \text{ . Nun ist } P\left(s \left| \begin{pmatrix} g \\ e \end{pmatrix} \right) \text{ genau dann das Haarsche Maß auf } H_g, \\ &\text{wenn für jedes } h' \in H_g \text{ gilt } P\left(h' \left| \begin{pmatrix} g \\ e \end{pmatrix} \right) = \frac{1}{a} \text{ . Nach Satz 2 ist aber dafür notwendig} \\ &\text{und hinreichend, daß für jedes } h' \in H_g \text{ und jedes } g_j \text{ mit } q_{g_j} > 0 \begin{pmatrix} g \\ e \end{pmatrix} \sim \begin{pmatrix} g_j \\ h' \end{pmatrix} \text{ gilt .} \\ &\text{Sei also } \begin{pmatrix} g \\ e \end{pmatrix} \sim \begin{pmatrix} g_j \\ h' \end{pmatrix} \text{ für jedes } g_j \text{ mit } q_{g_j} > 0 \text{. Da die Klasse, die } \begin{pmatrix} g \\ e \end{pmatrix} \text{ enthält, bei } \\ &\text{festem } g_j \text{ nur } a \text{ Elemente der Gestalt } \begin{pmatrix} g_j \\ s \end{pmatrix} \text{ enthält, gilt also } \begin{pmatrix} g \\ e \end{pmatrix} \sim \begin{pmatrix} g_j \\ s \end{pmatrix} \text{ für } s \notin H_g \text{.} \\ &\text{Wäre nun } p_{g_ig_j} > 0 \text{ für ein } g_j \notin H_g \text{, dann würde gelten } \begin{pmatrix} g_i \\ h' \end{pmatrix} \stackrel{\text{(1)}}{\sim} \begin{pmatrix} g_j \\ h' g_j \end{pmatrix} \text{ mit } \\ h' g_j \notin H_g \text{.} \end{aligned}$

Sei umgekehrt $p_{g_ig_j}=0$ für $g_j\notin H_g$. Dann ist $\begin{pmatrix} g\\e \end{pmatrix} \bowtie \begin{pmatrix} g_j\\h' \end{pmatrix}$ nur für $h'\in H_g$ möglich. Da aber H_g die Invarianzgruppe bezüglich g ist, ist für jedes $h'\in H_g$ $\begin{pmatrix} g\\e \end{pmatrix} \sim \begin{pmatrix} g_j\\h' \end{pmatrix}$ erfüllt und daher nach Satz 2 $P\left(s \mid \begin{pmatrix} g\\e \end{pmatrix}\right) = \frac{1}{a}$.

Eine unmittelbare Folgerung dieses Satzes ist der

Korollar 1. Ist G irreduzibel, dann ist $P\left(s \mid {g \choose e}\right)$ genau dann das Haarsche Maß auf einer Untergruppe von G, wenn die Invarianzgruppe mit G übereinstimmt. $P\left(s \mid {g \choose e}\right)$ ist dann das Haarsche Maß auf G.

Wir wollen nun noch die wichtige Frage untersuchen, wann

 $\lim_{n\to\infty} P\left(S_n = s \mid {g \choose e}\right)$ existiert. Das ist offenbar genau dann der Fall, wenn die Klasse C_g nicht zyklisch ist.

Einen Einblick in diesen Fall gibt der Satz 4.

Satz 4. Die Klasse C_g ist genau dann zyklisch, wenn es einen Normalteiler K_g von H_g vom Index l gibt, so da β $\binom{g}{e}$ $\stackrel{(nl)}{\sim}$ $\binom{g}{k}$ $(n=1,2,3,\ldots)$ genau für alle $k \in K_g$ erfüllt ist. K_g hei β t dann die Periodengruppe bezüglich g.

Beweis: Die Existenz einer Untergruppe K_g mit den angegebenen Eigenschaften wurde schon in [I] bewiesen. Wir brauchen nur noch zu zeigen, daß K_g sogar ein Normalteiler ist.

Sei C_g zyklisch, K_g die Periodengruppe, l die Periode. Dann sind die Klassen Z_l der Elemente, die von $\binom{g}{e}$ in Schritten der Länge nl+i $(n=1,2,3,\ldots)$ erreicht werden können, fremd und enthalten alle die gleiche Anzahl von Elementen. Gilt $\binom{g}{e} \stackrel{(nl+i)}{\prec} \binom{g}{s}$, dann auch $\binom{g}{k} \stackrel{(nl+i)}{\prec} \binom{g}{ks}$ für jedes $k \in K_g$. Andererseits geht $\binom{g}{s}$ in nl Schritten in $\binom{g}{s\,k}$ über. Daher liegen sowohl ks als auch sk in Z_l für jedes $k \in K_g$, d. h. es gilt $K_g s = sK_g$ und zwar für jedes $s \in H$. Damit ist gezeigt, daß K_g ein Normalteiler in H ist.

Literatur

- [1] Cigler, J., und L. Schmetterer: Über die Summe Markowscher Ketten auf endlichen Gruppen. Proc. Third Prague Conf. (in Vorbereitung).
- [2] Ito, K., and Y. KAWADA: On the probability distribution on a compact group. Proc. Phys.-Math. Soc. Japan 22, 977—998 (1940).
- [3] Κουτsκή, Z.: Einige Eigenschaften der modulo k addierten Markowschen Ketten. Proc. Second Prague Conf. 1959, 263—278.

Mathematisches Institut der Universität Wien Wien IX Strudlhofgasse 4

(Eingegangen am 29. Oktober 1962)