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Introduction 

A sequence of (real valued) random variables (X,) defined on some probabili ty 
space is said to be almost exchangeable if it is a small perturbation of an 
exchangeable sequence after a suitable enlargement of the probabili ty space. 
That  is, if, after enlarging the space, there exists an exchangeable sequence (Y,) 
with Z]X n -Y,I  < oe almost surely. We give here necessary and sufficient intrin- 
sic conditions for a sequence of random variables to have an almost exchange- 
able subsequence (Theorem 2.4). We also give several examples of sequences of 
random variables bounded in probability with no almost exchangeable sub- 
sequences (see the end of Sect. 3). 

As special cases of our results, we obtain that a sequence of random 
variables has an almost i.i.d, subsequence if and only if there is a distribution # 
and a subsequence whose distributions relative to any set of positive measure 
converge to #. It follows for example that any subsequence of (sin 2~nx) has a 
further almost i.i.d, subsequence. We also obtain that a sequence of random 
variables has an almost exchangeable subsequence provided it has an atomic 
tail field. 

The above results were submitted for publication in 1976 in an earlier 
version of this paper. Our theorems are closely related to the results of Aldous'  
paper [1] obtained at the same time. In his paper, Aldous showed that every 
tight sequence has a subsequence with distributional exchangeability properties 
and used this fact to verify the so-called "subsequence principle" formulated by 
Chatterji. He also established the special cases of our results mentioned above, 
and raised the question of when the distributional exchangeability properties of 
subsequences can be improved to a pointwise approximation with exchange- 
able sequences (called "proper ty  B" in his terminology). Our main result 
(Theorem 2.4) answers Aldous'  question and our examples in Sect. 3 give 
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additional information concerning the counterexample in [1], p. 81. We men- 
tion that in [4] the best possible exchangeability condition valid for sub- 
sequences of general tight sequences is determined, together with applications 
to the subsequence principle. 

While our results are closely connected with subsequence behavior, much of 
our work was originally motivated by Banach space theory, namely by the 
discoveries of Dacunha-Castelle and Krivine [6] related to the famous prob- 
lem: does every infinite dimensional reflexive subspace X of L 1 contain a 
subspace isomorphic to 1 p for some l<p__<27 Recently Aldous in a profound 
study, showed that the answer to this question is affirmative [2]. By the results 
in [6], this shows that every such X has a sequence of random variables 
satisfying the conditions of our Corollary 3.5. (Incidentally, 3.5 gives another 
way of looking at the remarkable discovery in [6] : if a weakly null sequence in 
L 1 has I p isometrically as a spreading model, it has a subsequence almost 
isometrically equivalent to the I v basis.) For  generalizations of the discovery of 
Aldous, see the recent work of J.L. Krivine and B. Maurey [11]; see also [7] 
for another exposition. Also see [16] and [17] for further connections between 
probability theory and the Banach space structure of subspaces of L p. 

To formulate the conditions for a sequence to have an almost exchangeable 
subsequence, we introduce the following notion: a sequence of random vari- 
ables is said to be determining if the sequence of its distributions relative to any 
set of positive probability converges c o m p l e t e l y / W e  show in Theorem 2.2 that 
if the distributions of a sequence are tight, then the sequence has a determining 
subsequence. Determining sequences of randomized stopping times are studied 
by Baxter and Chacon in 1-3]. Some work of Dacunha-Castelle and Krivine I-5] 
may be reformulated as asserting that to a determining sequence (X,) there 
corresponds a unique (up to distribution) exchangeable sequence (Y,) so that 
(X,) has a subsequence which behaves like (Y,) at infinity; in particular the 
subsequence is "exchangeable at infinity." 

Let (X.) be a determining sequence, let /~ be the limit distribution of the 
distributions of the X,'s in the sense of complete convergence, and let T 
= { t ~ :  #({t})=0}. For  each t e T  it follows that (Itx,==tl) converges weakly to 
a random variable denoted F(t); we define the limit tail f ield of (X,) to be the 
a-field ~l generated by the random variables F(t), t eT .  ( t ~ F ( t )  is defined as 
the limit conditional distribution function of (Xn).) Our main result, Theorem 2.4, 
then asserts that a sequence has an almost exchangeable subsequence if and only 
if it has a determining subsequence (X,) satisfying the following condition: 

:~(1,X,, < t] c~ S) converges strongly for every 
t~ T and measurable S, where ~ denotes 

(*) conditional probability with respect to the 
limit tail f ield 9.1. 

(At the end of Sect. 3, we give an example of a determining sequence (X,) 
with no almost exchangeable subsequence so that N ( [ X , < t ] )  converges 

1 To avoid ambiguity, ordinary (weak) convergence of probability distributions will be called 
complete convergence, in order to distinguish it from weak convergence of random variables and 
weak convergence of conditional distributions (cf. page 10) 
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strongly for every t~T, thus answering in the negative an open question raised 
in an earlier version of the paper.) Let us say that a determining sequence (X,) 
is strongly conditionally convergent in distribution (s.c.c.d.) provided it satisfies 
(*). It follows by standard arguments (see Lemma 2.12 and the preceding 
remarks) that an almost exchangeable sequence is s.c.c.d. The essential new 
ingredients are contained in our proof that an s.c.c.d, sequence has an almost 
exchangeable subsequence. We accomplish this by first establishing two results 
(Lemmas 2.13 and 2.14) which yield that if the conditional distribution of a 
random variable u is close to that of a variable X (in probability), then if the 
probability space is large enough, there is a random variable Z with the same 
conditional distribution as X, with Z close to Y itself in probability. The proof 
is then completed at the end of Sect. 2, using several preliminary results 
developed in the first two sections. (The version of Lemma 2.14 for con- 
vergence of ordinary distributions lies deeper than the usual equivalents for 
convergence in distribution, and can be alternatively deduced from results of 
Strassen [19].) 

In Sect. 1 we develop the needed machinery for conditional distributions. 
We do not use regular conditional probabilities, but rather regard a conditional 
distribution as a vector-valued measure defined on the Borel subsets of ~ ,  the 
real line. We present a streamlined proof of a theorem of de Finetti, as 
improved by Dacunha-Castelle and Krivine [5], in Theorem 1.1. In Theo- 
rem 1.3 we prove Maharam's Lemma [15]; this result shows that if (Q, 5 P, P) is 
a probability space and 5P is atomless over d ,  a sub-o--algebra of 5 P then any 
d-measurable  function h with 0_<h <__ 1 is equal to the conditional probability 
of some S~5 ~. In Theorem 1.5 we show that if 5 P is atomless over d ,  then 
there exists a random variable on (2 with a prescribed conditional distribution 
(relative to d ) .  We then introduce the notions of weak and strong convergence 
of sequences of conditional distributions, and prove the compactness result 
(Theorem 1.7): every tight sequence of conditional distributions has a weakly 
convergent subsequence. In the first part of Sect. 2 we present the concepts of 
determining sequences of random variables, limit tail field, and limit con- 
ditional distribution. We then draw some simple consequences of our main 
result in Corollaries 2.6, 2.10 and 2.11 before passing to the proof of the main 
result outlined above. For example 2.11 yields that a sequence (Xj) has an 
almost exchangeable subsequence provided it is conditionally identically dis- 
tributed with respect to its tail field. 

Section 3 consists of complements to the results in the previous section. 
After treating the case of almost i.i.d, sequences, we consider the case of 
sequences of random variables almost exchangeable after a change of density. 
We show in Lemma 3.3 that a determining sequence remains so after a change 
of density, and determine the form of the limit conditional characteristic 
function of the sequence after the density change. We give in Theorem 3.4 a 
necessary and sufficient condition for a sequence to have an almost i.i.d. 
subsequence after a change of density, and then deduce the result concerning 
"/P-sequences in L 1'' in Corollary 3.5. The next three results were discovered 
after our original version of this work was completed. Lemma 3.6 shows that 
exchangeable sequences remain so after a tail-measurable density change; 
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Lemma 3.7 shows that if (X j) is an integrable sequence of random variables 
with [X~h ~ 1 weakly so that (X j) is almost exchangeable after a change of 
density, then (Xi) is already almost exchangeable. Theorem 3.8 solves the 
problem of determining the appropriate density change as follows: suppose (Xj) 
is a uniformly integrable determining sequence of random variables with 

IXil dP= 1 for all j. Then if (Xj) has a subsequence almost exchangeable after 
a density change, it has one almost exchangeable after the change of density 
~0, where [X~I tends to ~o weakly as j tends to infinity. 

The motivation for studying this question and indeed almost ex- 
changeability in general derives from Banach space theory. Suppose that (Xj) is 
a normalized weakly null sequence in L 1 so that (Xj) is almost exchangeable 
after a change of density. Then (X~) is a small norm-perturbation of an 
isometrically symmetric sequence in the Banach-space sense, and hence (X j) is 
itself a symmetric basic sequence (see [14] for definitions and related results; 
also see [2], [10] and [18] for related results). 

Section 3 concludes with three examples of determining sequences with no 
almost exchangeable subsequence. (Aldous also gives an example of such a 
sequence in [1]). The first is actually i.i.d, after a change of density, while the 
second consists of a sequence of indicator functions with no subsequence 
almost exchangeable after a change of density. The third example, new with 
this version of our results and considerably more elaborate than the previous 
two, produces a sequence of indicator functions which is conditionally indenti- 
cally distributed with respect to its limit tail field (but definitely not con- 
ditionally identically distributed with respect to its tail field in view of Corol- 
lary 2.11). We note finally some complements of our work as yet unpublished. 
W. Henson has proved that any uncountable family of integrable random 
variables contains an infinite sequence which is almost exchangeable. The 
second-named author has shown that if X is a subspace of L 1 spanned by an 
exchangeable sequence and isomorphic to Hilbert space, then every norm- 
bounded sequence in X has an almost exchangeable subsequence. 

w 1. Conditional Distributions 

The purpose of the present section is to give some basic definitions and to 
prove preliminary results for conditional distributions which will be needed in 
the proof of our main results in Sect. 2. 

Let (f2, 9.I, Q) be a probability space. Slightly changing the standard defini- 
tion, an n-dimensional conditional distribution with respect to Q (i.e., with 
respect to (~2, ~I, (2)) will be meant in the sequel as a map ~ from ~(R") (the 
Borel subsets of R ") to LI(~, 9.I, Q) such that ~(R")= 1 a.s., ~(B)>0 a.s. for any 

~(Bi) a.s. for any disjoint B1,B 2 ....  in ~3(R"). BsfS(R") and ~ Bi =i  
i = 1  

Thus, we shall not assume regularity which will not have any importance for 
our purposes. Given an n-dimensional conditional distribution #+, we define its 
associated (ordinary) distribution # by #(B)=ETt(B)= S ~(B)dQ. We refer to a 

1-dimensional (conditional) distribution simply as a (conditional) distribution. 



Almost Exchangeable Sequences of Random Variables 477 

From now on, let (f2, 50, P) denote a fixed probability space. Given 9/, a a- 
subfield of 5 a, let Coa and N~ denote conditional expectation resp. conditional 
probability with respect to N. For  random variables X 1 .. . .  , X,  on O, we define 
~=c . (9 / )  dist(X1 . . . . .  X,) by ~ ( B ) = ~ [ ( X 1 , . . . , X , ) ~ B ]  for all Be~B(R"). Ob- 
viously, ~ is a conditional distribution with respect to Q = P I N  (i.e., with 
respect to (f2, P/,P[9~)). If ~=c.(92) dist(X 1 . . . . .  X,) and # is the associated 
distribution of ~ then p=d i s t  (X 1 .. . .  ,X,), the ordinary distribution of 
(X 1 . . . . .  X,). If 9.I is understood, we denote c.(9~) dist(X 1 . . . .  ,X,)  by 
c.dist(X~ ... .  ,X,) and also drop the index 9.1 from g~ and ~ .  We let 5 ~+ 
denote the family of S e Y  with P(S)>0. Given Se5  e+, we define the probabili- 
ty PIS on 5 p by 

(PIS)(D)=P(Sc~D)/P(S) for all DeSk. 

Given an n-dimensional distribution ~ with respect to ((2, ~[, Q) and A~9.1 +, we 
define R(A)~  to be io~ where i: LI(Q)~LI(QIA ) is the natural identity in- 
jection. In other words, (R(A)~(B)=IA~(B)  where I A is the indicator function 
of A. Clearly, R(A)~  is an n-dimensional conditional distribution with respect 
to QIA. Finally, given a a-subfield 9 / c 5  p, S~5 ~+ and random variables 
X 1 , . . . , X  . on I2, we set A = s u p p ~ ( S )  ( = [ ~ ( S ) # 0 ] )  and define V=c.(gA) 
dist(X~ . . . . .  X,)IS as the n-dimensional conditional distribution with respect to 
PIg.IIA given by 

~(V(Xl .... ,x . )~B]~s)  
(c. (9~) dist(X1, ..., X,)[S)(B) = for all BE~3(R"). 

~,(s) 

If ~1 is understood, we again drop the indices 9/ on the right-hand side and 
write c .d i s t (X1 , . . . ,X , ) ]S  on the left-hand side. We call ~ the conditional 
distribution of (X 1 . . . . .  X,) relative to S (with respect to 9X). Since ~ ( S ) > 0  a.s. 
with respect to P]A, 1 /~(S)  in the above formula is well defined; it is also 
worth noting that I s < I A a.s. where A = supp ~0a(S). 

Given sequences (X~) and (Yj) of random variables, each defined on a fixed 
but possibly different probability space, we say that d is t (X)=dis t (Y)  if dist 
(X, . . . .  ,X , )=d i s t  (]11 . . . . .  Y,) for all n. 

We give first a streamlined proof of the fundamental result of de Finetti 
(cf. [12]) as extended by Dacunha-Castelle and Krivine [5]. 

Theorem 1.1. Let ( X )  be a sequence of random variables with tail field d .  
Assume that for all positive integers k and Jl .... ,Jk with Jl < J 2  < " '"  <Jk, 
dist(X1,. . . ,  Xk)= dist(Xj~, .... X j~). Then ( X )  is conditionally i.i.d, with respect to 
rid; consequently ( X )  is exchangeable. 

Proof. For each n, let ~ ' , = a ( { X ; :  j=n ,  n + l ,  n + 2  . . . .  }) and o~,=~_~.; also 6 ~ 
= ~ r  as usual. Say that Y , ~ Y  strongly if y IY,-YIdP--*O. We first need an 
elementary lemma, the first assertion of which follows from standard mar- 
tingale results (or Schauder decomposition theorems in Banach space theory) 
and the other assertions of which each follow easily from the preceding 
assertion. 

Lemma 1.2. Let (q~,) be a uniformly bounded sequence of random variables and g 
an integrable random variable. Then 
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(a) g ,g  ~ gg  strongly.  
(b) (g,g) (p, - ( g g )  q0,~ 0 strongly.  
(c) g [ (g ,g ,  qL] - (gg) (gqL)  ~ 0 strongly.  

In the following, we let f l ,  f2 .... range over bounded continuous functions 
from N to N. 

We first prove that the joint conditional distributions of any q of the X j s  
in increasing order, are the same. (In particular, this shows the XSs are 
conditionally identically distributed). Analytically, this is equivalent to the 
following assertion: 

For all positive integers q, Jl < . . .  <Jq and f l  .. . .  ,f~, 

g ( f  l ( X  1 ) ' . . . . f q (Xq) )  = g ( f  l ( X  j l ) ' . . . . f q ( X j ) ) .  (1) 

To see this let n >jq. By (a) of the lemma it suffices to show that 

d~,(fl (X 1)"-...fq(Xq)) = g , ( f  a ( X  j , ) . . . . . f q ( X j ) ) .  (2) 

By a standard approximation argument, to show (2) it suffices to show that for 
any k and q): P,,g+ 1--,IR bounded continuous, 

f ~ ( X  1 ) ' . . . . f q (Xq)  qo ( X  . . . . . .  X ,  + k) d P  

= ~ f l ( X j , ) . . . . . f q ( X j )  (p(X . . . . . .  X ,+k )  dP.  (3) 

But (3) follows immediately from the assumption that d i s t ( X ~ , . . . , X q ,  
X , ,  . . . ,  X , + k ) =  dist(Xil, ..., X j, ,  X , ,  . . . ,  X ,+k) .  

To complete the proof, it suffices to prove that the following statement 
holds for all positive integers q: For any f l  . . . .  ,fq, 

g ( f  l (X1)  " ... " fq(Xq)) = g f l (X1)  " ... " g f q ( X  q). (4) 

Suppose q > 1 and (4) has been proved for all q '<q.  Fixing f l , . . . , fq ,  we 
have by (1) that for all positive integers n, 

g ( f  l ( X  ~) . ... . f q ( X  q)) = g ( f  l ( X  1) " f 2 ( X  2 + , ) . . . . f ~ ( X q  +,)) 

= ~ ( 6 . ( A  (x  l ) . A ( x  ~ +.). ... . f . (x  ~+.)) 

=~([~.L(xl)].A(x~+.). . . .f~(x~+.)).  (5) 

Now setting g = f l ( X 0  and ( p , = f z ( X z + , ) . . . . . f q ( X , + , ) ,  we have by (5) and 
(c) of the lemma that 

g ( f l ( X  1 ) ' . . . . f q (Xq) )  - (#  g)(g ~~ --, 0 (6) 
strongly. But 

(7) 

for all n by (1) and the induction hypothesis. (6) and (7) show that (4) holds, 
completing the proof. 

Our next result is a generalization of a lemma of Maharam [15]. We say 
that 90 is a tomless  over a sub-or-algebra d (w i th  respect  to P )  i f  f o r  every  B e 5  '~ 
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of positive measure there exists an F e 5  p with F c B  so that there is no A in d 
with F = B • A  (i.e. precisely, Iv=IBn A a.e.). 5 ~ is called atomless provided 5 p it 
atomless over the trivial algebra. (The utility of this concept is found in the 
following elementary fact: Let ( f2 ,~ ,P)  be an atomless probabili ty space and 
(~2 ' ,d ,P ' )  another probabili ty space; let d x f2={A x ~2: A ~ d } .  Then in the 
product probabili ty space, the product a-algebra d x ~  is atomless over 
d x f Z )  

Theorem 1.3. (The Maharam Lemma). Let d be a a-subaIgebra of 5 ~. Let 5/ be 
atomless over d ,  S~5 ~, and f an d-measurable function so that 0 < f < ~(S) a.e. 
Then there exists a Ds5  e with D c S  so that ~ ( D ) = f  a.e. 

Before giving the proof, we note an immediate consequence. 

Corollary 1.4. Let 5P be atomIess over d and S ~ Y .  Let k be a positive integer 
k 

and f l  . . . . .  fk be non-negative sd-measurable functions with ~ S >  ~ f. a.e. Then 
i=1 

there exist disjoint subsets S 1 . . . . .  S k of S consisting of elements of 5 p with ~ S  i 
= f~ for all i. 

Proof. We do this by induction. The case k = l  follows from the Maharam 
lemma. Suppose the result proved for k and let f l  . . . . .  s  be non-negative..sC'- 

k+l 
measurable with ~ S >  ~ f~. By induction hypothesis, we may choose disjoint 

i=l 
subsets S 1 . . . . .  Sk_~, S of S, all belonging to 5Q with N S i = f  i for l < _ i < k - 1  
and ~ S = f k  +fk+~" By the Maharam Lemma, we may choose an Sk~SP with S k 
c S  and ~ S  k =fk '  We then simply set Sk+I = S ~ S  k. 

Proof of the Maharam Lemma. We give a functional analytic proof  inspired by 
an argument in [-13]. Let K denote the set of all measurable functions g 

supported on S with 0 < g < l  and g g = f .  Evidently ~ - - ~ . I  s belongs to K, 
D 

x / 

hence K is non-empty. K is a weak* compact  subset of L~176 (the weak*- 
topology refers to the topology induced in L~(P) by LI(P)). Thus by the Krein- 
Milman theorem there exists an extreme point g of K. We need only prove that 
g = I  D for some measurable set D. If not, there exists a set B c S  of positive 
measure and a 6 > 0 so that 6 < g < 1 -c5 on B. Since 5 ~ is atomless over d ,  we 
may choose a measurable F c B  so that there is no A in s~ with IF=IB~ A a.e. 
In turn, this implies that ~(F)IB~F#O. Indeed, if ~(F)IB~F=O a.e., 
~ (F)  ~ (B  ~ F ) =  0 which yields that ~ (F)  and N(B ~ F) are disjointly supported. 
But then letting A = s u p p  ~(F)  we have that ~ ( F ) = I A ~ ( B  ) a.e. which implies 
F=Bc~A.  

Now set ( p = ~ [ ~ ( F ) I ~ ~ v - ~ ( B ~ F ) . I ~ ] .  We have that ~0 is a non-zero 

element of L ~ with g (p=0 .  Since k01<6 and ~o is supported on B, g+~o and 
g-~0 both belong to K, contradicting the fact that g is an extreme point of K. 

Our next result shows that any conditional distribution is the conditional 
distribution of some random variable provided 5 ~ is atomless over the con- 
ditioning subfield d .  It is a natural generalization of (and implies) the result 
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that on an atomless measure space, any distribution is the distribution of some 
random variable defined on the space. 

Theorem 1.5. Let d be a ~-subalgebra of SC Let 5 P be atomless over d ,  S~5 ~ of  
positive measure, A=suppg;~(S) and ~: ~ L I ( P [ ~ 4 ] A )  be a conditional distribu- 
tion. Then there exists a random variable X supported on S with c. dist X IS = #~. 

Proof. We shall construct a sequence (X,) of random supported on S 
with the following properties: 

There exists a random variable X so that X , ~ X  in probability. (8) 

For each integer j and non-negative integer k, 

\2 - 2 / 2 V - J )  ~(S) (9) 

for all n sufficiently large. 
It then follows that 

c .d i s tXlS=~ .  (10) 

Indeed, (9) implies that for any integer j and non-negative integer k, 

strongly. Now let t be a real number so that P([-X=t])=0.  Then (8) implies 

J< that ~ ( [ X ,  < tl c~ S) ~ ~ ( [ X  < t] c~ S) strongly. It follows, using (9), that if 2k = t, 
then 

�9 

while if t < ~ ,  then ~ - o %  9~(S)>~([X<t)c~S) .  Thus if t is also such 
=2  

that ~'({t})=0, then f i ( ( -oe , t ] )~ (S)=~( [X<t ]c~S) .  Since the set of t's satisfy- 
ing both properties is dense in IR and t ~ ~ ( - o e ,  t] ~(S) is a right continuous 

function, ~ ( - o %  tJ = ~ ( [ X  < t] c~S a.e. for all real t, which implies (10). 
~(s) 

To achieve the construction of (X.) we build a family of measurable subsets 

{83:--22"~j=<22n --1, n=0,  1,2,...} 

of S so that for all n and --22n<~j<=22n--1, 

(a) ~(S~) = ~ ( ( j j + 1 ] 
\ ~2 ~, ~ - j  ! ~(s). 

(b) S~ ~ S~, = ~b for all j '  +j.  
(c) ~._~.+1 S.+l ~ j  - - ~ 2 j  k..) 2 j +  1 '  
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22n--1 j + l  
We then set X, = ~ 2~;- Isy for all n. It is evident that the X,'s satisfy 

j= -2  2~ 
(9). To verify (8), it suffices to show that the sequence (X,) is Cauchy in 

22n -- 1 
probability. Set S, = ~) S~. for all n. Fix k < n, and let # be the distribution 

j= ---2-- 2n 
associated with 2. Then 

NOW on 
1 

IX.-X~l =<~ 

P(X.~Sk)<=#({t: Itl > 2k}). (12) 

k X J +1  J < X , < ~  This implies that the set S;, k = ~ g -  while 2 = 2 ' 

on Sk; hence by (12), 

(13) 

This of course implies (8). 
We construct the S~'s by induction on n. By the corollary to the Maharam 

Lemma, we may choose S~ and S o disjoint measurable subsets of S with 
_ 0 --* n ~(S  ~ 1 )=~( ( -1 ,  0])N(S) and ~(S0)=#((0,  1])~(S). Suppose Sj have been con- 

structed satisfying (a) and (b) for all - 2  ~" < j_<22" -  1. Fix -22"__<j =< 22" -  1 and 
choose (again using the corollary) disjoint measurable subsets v ,+l  and q,+l  ~2j ~2j+1 
of S~ with 

_~[[ 2j 2 j + l ]  _~{[2j+l 2 j + 2 1 ]  
~ ( S ~  1 ) = #  L k 2 ~ l ,  2 ~ - i  ] )~(S) and N(S~.+la)=p k k ~ '  2 ~ 7 ] ]  ~(s).  

Since 

~ ((22@1, 2 j +  11 /2j+l 2j+21 j~l] 

by induction hypothesis, it follows that (c) holds. 
22~- 1 

Now set S ,=  U2 sy. We have by induction hypothesis that ~ (S , )=  
j = - 2  ~ 

g(( - 2", 2"]) ~(S). Let G= {k: kr a, 22"+ a), ke[-22"+ 2, 22"+ 2), k an 
integer}. Then 

( k + l ]  . 
E ~ \ 2 k l '  ~+] - J  r 1 6 2  . 

k e g  

Hence by the corollary to the Maharam Lemma, we may choose subsets $7, +* 
of S ~ S, for all keg  with S~,+ 1 m S~, + 1 =0  for all k ' #  k and 

_~ k k + l ]  
~(s~§ (2~  ~(s) , F ; r j  

for all keG. It follows that the family {S~,+I: -22~+2<k<22~+2} satisfies (a) 
and (b) for " n +  1" replacing "n' This completes the construction of the S~'s; it 
follows by induction that (a)-(c) are satisfied. Q.E.D. 
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We present now a useful characterization of conditional distributions. Its 
proof is rather routine and will be omitted. 

Proposition 1.6. Let (f2, 9.I,Q) be a probability space and let T: Co(IR)--* L~(Q) be 
a bounded linear operator satisfying the following conditions: 

(a) T is positive of norm one. 
(b) IIio Tll =1, where i:L~(Q)~LI(Q) is the canonical injection. Then there is 

a unique conditional distribution ~ with respect to Q so that 

Sqod-fi=Tcp for all ~oeC0(lR ). (14) 

Conversely if -fi is a given conditional distribution and T is defined by (14), then T 
satisfies (a) and (b). 

Let g be a conditional distribution with respect to (f2, 9.1, Q) and let F: 
R--*LI(Q) be its associated distribution function, i.e., F (x )=~( ( -0% x]), Let T 
be the operator associated to ~ defined by (14) and # the associated ordinary 
distribution of g. We define the associated field of ~, denoted by d ; ,  to be 
a({g(B): BEN}). It is easily seen that sd;=a({T~0: (PeCo(N)})=a({F(r): reD}) 
for any dense subset D of IR. Evidently g can be regarded as a conditional 
distribution with respect to Qlsd~. We also note that for xe l ( ,  g{x} =0  a.s. if 
and only if # ( Ix] )=0;  i.e. x is a point of continuity of the conditional distribu- 
tion function F if and only if it is a point of continuity of its associated 
ordinary distribution function. 

We pass now to the crucial concepts of weak and strong convergence of 
conditional distributions. Let (f2, ~ ,  Q) be a fixed probability space. Given f 
and (fj) in LI(Q), recall that we say fj--*f strongly if EIf-fj l--~0. We say f j - - . f  
weakly if f F * f  weakly in LI(Q); i.e. if E g f ~ E g f  for all g~L ~ It is worth 
pointing out that if the fn's are uniformly integrable, then f n ~ f  strongly if and 
only if fn ~ f  in probability. Moreover, if the fn's are uniformly bounded, then 
f , - * f  weakly if and only if f ,--~f weak* in L~(Q) (with respect to LI(Q)). 

Definition. Let #, #1, #2,.. .  be conditional distributions with respect to Q. We say 
that the sequence (~,) converges strongly (resp. weakly) to ~ if ~(-oo,x]--* 
f i ( -oo,x]  strongly (resp. weakly) for all real x with ~({x})=0 a.s. (Of course 
when the fij's are ordinary distributions, this coincides with the notion of 
complete convergence.) 

We say that a sequence (~j) of conditional distributions is tight if its 
associated sequence of ordinary distributions is tight. It is evident that a 
sequence of conditional distributions is tight provided it converges weakly. We 
require the following fundamental compactness result: 

Theorem 1.7. Let (~) be a tight sequence of conditional distributions with respect 
to (f2, sd, Q). Then (~) has a weakly convergent subsequence. 

Proof. We use the classical facts that a tight sequence (v j) of ordinary distri- 
butions converges completely provided lira v~(-oo, x] exists for all xeD, where 

j ~  co 

D is some dense subset of N, and that a uniformly bounded sequence of 
random variables has a weakly convergent subsequence. By a standard diago- 
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nalization argument, we may choose a subsequence (~) of (/7) so that for every 
rational number r, ( ~ ( - o e ,  rl) converges weakly in LI(Q). It follows that the 
ordinary distributions associated to (~}) converge completely to some distribu- 
tion denoted #. Let D={x :  #{x}=0}.  Now fix SEal  + and set vj(B) 

1 
-Q(S) Els~j(B) for all BeN.  Then (v) is a tight sequence of distributions, so 

by the classical fact mentioned above, there is a distribution v so that vj~v 
completely. Now if x~D, then v{x}=0. Indeed, let 5>0  and choose 6 > 0  so 

that # ( [ x - 3 ,  x+3])_-<e. Then vj((x-3, x + 3 ) ) < ~ E ~ j  ( ( x -3 ,  x + 3 ) ) =  
4 

1 - (2 (  ) 
Q(S) #~((x - 6, x + 6)) for all j and ~-**lim #~((x - fi, x + 6)) <__ #(Ix - 6, x + 6]) __< e since 

3 - -  3))< ~=-~,. > o  X + ~  # ~ #  completely. Thus v x - 2 ,  -< lira v j ( (x-6 ,  x +  Since c 

is arbitrary, v({x}) = 0. Hence lim v j ( ( -  o% x]) exists. Thus lim EI s ~ ( -  o~, x] 
j~o~ j ~ o  

exists. Since Sso~ + was arbitrary and (~) ( -oc ,  x]) is a uniformly bounded 
sequence of random variables, ( ~ ( - o %  x]) converges weakly to some random 
variable, denoted F(x). 

It follows easily that F: D ~ L~(Q) is an increasing function with 0 < F(x)< 1 
and EF(x)=#(-oo, x-1 for all xcD. The latter equality shows that lim F(x) 

x ~  - - c o  

x $ D  

= 0  and lira F ( x ) = l  strongly. Moreover this equality yields that F is right 
X ~ + o 0  

x ~ D  

continuous on the set D. We now define #(x)=F(x+) for all x~IR. I.e. P(x)_ 
--lira F(d) for all x~lR. The usual standard arguments show that FID = F and F 

d .Lx  
d ~ D  

has all the properties stated above for F, but without the restriction x~D. 
Using the existence of a regular version of F, it is easily seen that there is a 
conditional distribution ~ with P as its corresponding conditional distribution 
function, and then, of course, # is the ordinary distribution associated with 
and ~ ( - c ~ ,  x] ~ ( - c ~ , x ]  for all x~D. As noted above, ~{ x } =0  if and only 
if # {x} = 0, so #~ --,/~ weakly, completing the proof. 

Remark. It is possible to give an alternate proof based on Proposition 1.6. 
Thus, one chooses Y a countable subset of Co(F,, ) with linear span Z dense in 
C0(R ) and a subsequence (ft~) of !~j) so that (~q)d~) converges weakly in L~(Q) 
for all 9 ~ Y. It follows that ~ ~o dg~ converges weakly to an element denoted T o 
for all ~0sZ. One then verifies that T: Z--,L~(Q) is a norm-one linear operator, 
hence has a unique linear extension (also denoted T) to all of Co(R ). Then T 
satisfies the conditions of 1.6. Employing standard arguments, it follows that 
(g)) converges weakly to the conditional distribution ~ corresponding to T as 
in 1.6. 

We conclude this section with a summary of some equivalent formulations 
of weak and strong conditional convergence. The proofs are routine extensions 
of the classical equivalences for complete convergence, and shall be omitted. 

Proposition 1.8. Let #, #1, #2, " ' "  be conditional distributions with respect to Q. 
Then the following are equivalent: 
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(a) ft, ~ ~ strongly (resp. weakly). 
(b) f t , ( -  o% x] --*~(- o% x] strongly (resp. weakly) for all x~D, where D is a 

dense subset of lR with g{x} =O for all x~D. 
(c) Let ~ be the smallest algebra of subsets of N containing all finite open 

intervals (a,b) with g{a}=g{b)=0  and all singletons {x} with #{x}=0. Then 
g,(G)--, g(G) strongly (resp. weakly) for  all G~(~. 

(d) ~ (p d-~, ~ ~ (p d~ strongly (resp. weakly) for every cp~ Co(N ). 
(e) The same as (c), except "~0" ranges over all bounded continuous real 

valued functions. 
(f) ~ e itx d-~,!x)--, ~ e "~ dg(x) strongly (resp. weakly) for  every real t. 

Remarks. 1. If (f2, 91, Q) is a probability space and the field 91 is atomic, then 
by a standard result in functional analysis, weak and strong sequential con- 
vergence coincide in La(Q). Hence in this case weak and strong convergence of 
sequences of conditional distributions with respect to Q coincide. This is the 
only case in which we have this general coincidence. 

2. Let us say that a family F of conditional distributions with respect to Q 
is strongly conditionally compact if every sequence in F has a strongly con- 
vergent subsequence. It follows easily from our discussion that F is strongly 
conditionally compact if and only if F is tight and for every (p~Co(lR) and 
sequence (fi) in F, (~ ~ d~)  has a strongly convergent subsequence. Also, if (~) 
is a sequence of conditional distributions whose associated distributions con- 
verge completely to some distribution #, then F = { g l , g 2  ... .  } is strongly con- 
ditionally compact if and only if for some dense subset D of IR with #{x} =0  
for all xeD, (g) ( -o%x])  has a strongly convergence subsequence for all x~D 
and subsequences (~)) or (~j). 

3. Let g, (gi) be conditional distributions with respect to (f2, 5 ~, P) and let 
d be a a-sub-algebra of 5C Then g ~ g  is a conditional distribution with 
respect to PLd. Suppose g j ~  weakly (resp. strongly). Then g ~ g j ~ ( ~ g  
weakly (resp. strongly). It may happen, of course, that C d g j ~ g d g  strongly 
even though ~j-+--~ strongly. It is natural to study the question of when 
E d - ~ j ~  in the case where s~ is the field associated with ~, (so ~ f i = ~ ) .  We 
draw the consequences of this phenomena in a fairly general setting in the next 
section. 

w 2. The Main Result 

The main object of this section is to formulate and prove the basic criterion for 
almost exchangeability discussed in the Introduction. Throughout, we let (~2, 
5 ~, P) denote a fixed probability space. We first require the following funda- 
mental concept: 

Definition. A sequence (Xn) of random variables defined on (2 is said to be 
determining/f dist(X.]S) converges completely for every S~Sf+ 

Evidently a determining sequence of random variables must be bounded in 
probability. We shall see momentarily that any sequence of variables bounded 
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in probability has a determining subsequence. We first present some equivalent 
formulations of this concept, phrased in terms of the results of Sect. 1. 

Proposition 2.1. Let (X,) be a sequence of random variables defined on f2 and 
assume that the sequence (dist X,) converges completely to a distribution #. Let D 
be a dense subset of IR so that #({x})=0 for all x6D. The following are 
equivalent: 

(a) (X,) is determining. 
(b) (I[x,=<~l) converges weakly for every reD. 
(c) There is a conditional distribution fi with respect to P so that 

c. (5 P) dist X,--*fi weakly. 

Proof. This follows easily from the arguments and results of the previous 
section. Let Se5 ~+. By definition there is a distribution #s so that 
P([X n <= r) c~ S) 

P(S) *#s(-C~,r]  when r is such that #s{r}=0. It follows easily that 

#{r} =0  implies #s{r} =0, whence reD implies that (P([X, <r)c~S)) converges, 
hence I[x,_<d converges weakly. Thus (a)~(b). Now let fi = e . ( Y)  dis tXj  for 
all j. (Of course e-(Y) distXj(B)=I[xj~ m for all Be2 . )  Then (fij) is a tight 
sequence. It follows from the proof of Theorem 1.7 that there is a conditional 
distribution fi with respect to P so that f i j~fi  weakly. Thus (b)~(c). Assuming 
(c), then of course, if t2 is the distribution associated with fi, dist X,--@, so 
fi=/~. If reD and SE5 f+, then by definition, I[x<=rl~fi(-oo, r ] weakly, hence 
lim E(I[x,<=~ I. Is)= lim P([-X,<r] n S)=E(Is- f i ( -  o% r]). Since D is a dense sub- 

set of IR and (X,) is bounded in probability, so is (X, IS), hence setting #s(B) 
1 

=p(s~EIsg(B)__ we have that dist X ,  IS--*#s completely. This completes the 

proof. 

The next result (noted first by Baxter-Chacon [3]) is an immediate con- 
sequence of Proposition 2.1 and Theorem 1.7. 

Theorem 2.2. Every sequence of random variabes that is bounded in probability 
has a determining subsequence. 

Remark. Of course all the other equivalent conditions of Proposition 1.8 apply 
to determining sequences of random variables. It follows from 1.8 and the 
proof of 1.7, for example, that (X,) is determining if and only if (go(X,)) 
converges weakly for every bounded continuous go (resp. every go~C0(IR)). We 
focus on condition (b) of Proposition 2.1 because it provides a constructive 
procedure for finding a determining subsequence. Thus, if (X,) is a sequence of 
random variables and # is a distribution with dist X,--*#; we let D be a 
countable dense subset of {xMR: #({x})=0} and choose a subsequence (X',) so 
that (I[x;~<~) converges weakly for all reD. Then (X',) is determining. 

We arrive now at the crucial concepts enabling us to provide the desired 
criterion for almost-exchangeable subsequences. 

Definition. Let (X,) be a determining sequence of random variables and let fi be 
the conditional distribution so that c.(5~) distX,---,g weakly. We call ~ the limit 
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conditional distribution of (X,). Let d be the rr-field associated with -ft. We call 
d the limit tail field of(Xn). 

We may "compute"  the limit tail field of (X,) as follows: let F be the limit 
conditional distribution function of (X,), i.e. F(r) = ~( - o% r] for all r~]R. Let/2 
be the limit distribution of the sequence of distributions of the X~'s and D be a 
dense subset of {x~N: 12({x})=0}. Then d = r  reD}). Of course F(r) 
= lira Itx.~ n for all reD, the sequence Itx.~=n converging weakly. If we set Top 

n ~ c o  

= lira q0(X,) for all ~PECb(IR ) (Cb(~) denoting the set of bounded continuous 
n ~ c o  

real-valued functions), it is easily seen that also 

d=cr{T~0:  ~o~Cb(lR)}=~{T(o: q0~Co(lR)} 

(and of course T o = ~ ~0 dg for all ~0 ~ CdlR)). 
We summarize some of the permanence properties of the limit conditional 

distributions and limit tail field in the next result. 

Proposition 2.3. Let (X~) be a determining sequence of random variables with 
limit tail field d and limit conditional distribution -ft. Then d is contained in the 
tail field of (X,). Let (Y,) be a sequence of random variables so that there is a 
subsequenee (X'n) of (Xn) with X ' , - Y , ~ O  in probability. Then (Y,) is also de- 
termining with limit conditional distribution ~ (and consequently also d = t h e  
limit tail field of (Y~)). 

Proof. Let F be the limit conditional distribution of (X,) and r be a point of 
continuity of F. Then F( r )=weak  limit (Itx,<=n) is contained in the tailfield of 
(X,), hence d is contained in the tail field of (X,). Since (ltx;,<=n) also converges 
weakly, (X',) is of course determining with F as its limit conditional distribu- 
tion function so (X'~) has the same limit conditional distribution as (X,). If 
~o~ Co(N ) and S e ~ ,  then since X ' , -  Y ~ 0  in probability, 

[(p (X' , ) -  q~ (Y,)] dP~O. 
S 

Thus (p ( Y,)--+ T q) weakly (where Tq~=~od-fi for all q~eCo(lR)). This shows that 
(I1,) is determining with the same limit conditional distribution as ~. 

Remark. It is easily seen that if (Xj)_is determining and_(X~) is another 
sequence of random variables with dist(Xj)= dist (X j), then (X j) is determining. 
Indeed, we have that (X j) is determining if and only if 

lim E(cp ~ (X ~) ... q)k(Xk) q~k + a (X,)) 
n ~ o o  

exists for all k and ~pa,..., ~Pk+ ~ bounded continuous functions. 

Definition. A sequence (X,) of random variables is almost exchangeable if there 
exist sequences of random variables (X,) and (I1.) defined on some (possibly 
different) probability spaces so that 

(a) dist (X,) = dist(X,) 
(b) Y, is exchangeable 

and 
(c) SIJ;.  - Y.I < oo a.e. 
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We may now formulate our main result. 

Theorem 2.4. A sequence of random variables has an almost exchangeable sub- 
sequence if and only if it has a determining subsequence whose conditional 
distributions (with respect to the limit tail field of the subsequence), relative to 
any set of positive measure, converge strongly. 

In the sequel, unless stated otherwise, we shall consider conditional distri- 
butions of a determining sequence as taken with respect to its limit tail field; o ~ 
(resp.~) shall denote conditional expectations (resp. conditional probability) 
with respect to this field. 

Remark. Let us say that a sequence (X)  is trivially almost exchangeable if 
there exists a random variable X with Z I X j - X ]  < de a.e. Evidently, (X)  has a 
trivially almost exchangeable subsequence if and only if (Xj.) has a subsequence 
converging in probability. Suppose (X)  is a determining sequence of random 
variables with limit conditional distribution g. Let us say that g is trivial if for 
all Borel B, there is an A in the limit tail field of (X)  with ~fi(B)=I A a.e. It is 
evident that if (X)  converges in probability, ~ is trivial. The converse is also 
true; thus ( X )  has a trivially almost exchangeable subsequence if and only if ~ is 
trivial. First note that e.g. by the proof of Theorem 1.5 if g is a trivial 
conditional distribution, there is a random variable X with g(B)= Itx~B ~ a.e. for 
all Borel sets B. The fact that (X)  converges in probability to X if g is trivial, 
now follows immediately from the following elementaty result. 

Fact. Let X, X a, X 2 . . . .  be random variables on Q such that I[x,<tl---~I[x<tl 
weakly for every t such that P([X = t ] )=  0. Then X , - - ,X  in probability. 

Proof. We first observe that if S,, and S are measurable subsets of Q such that 
I s ~ I  s weakly, then I s ~ l  s strongly i.e. in probability. For then P(S , )~P(S)  
and also P(S,c~S)--+P(S), hence P(S, AS)~O.  Now let e>0 ;  we may choose 
real numbers ao <a 1 < ... < %  so that P[X6(ao,am] ] <e, P([X=ai])=O and a i 
- a i _ l  <e  for all i (resp. 1 <i). Now choose M so that n > M  implies 

P([(ai_l<X,<_ai] ] A[(a i_~<X<ai]] )<--  for all l<_i<_m. 
m 

Since 

[Ix.  - x l  >~] = [Xr aml] u ~) I-(ai_ 1 < X .  <a~ll ~ [(a~= ~ < X  <a3l, 
i = l  

P ( [ I X , - X ]  >~])<2e.  This proves the Fact. 

Henceforth, for determining sequences (X,) with limit tail field 91, con- 
ditional distributions, expectations and probabilities shall be taken with respect 
to 91. 

Before passing to the proof of 2.4, we wish to draw a number of simple 
consequences. Let us say that a determining sequence (Xn) is strongly con- 
ditionally convergent in distribution (abbreviated s.c.c.d.) if (c.distXnlS) con- 
verges strongly for any set S of positive measure. Thus 2.4 may be rephrased: 
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(X,) has an almost exchangeable subsequence if and only if (X,) has an s.c.c.d. 
subsequence. It is easily seen that a determining sequence is already weakly 
conditionally convergent in distribution. Indeed, we have the following simple 
result: 

Proposition 2.5. Let (X,) be a determining sequence with limit conditional distri- 
bution -fi and limit tail field ag. Then for any S of positive measure, 

c-dist X,IS--+ R(A) ~ (15) 

weakly where A = supp Ca(S). 

Proof Let r be such that g{r}=0.  Then IEx<=rF-+F(r) weakly, where F(r) 
= g ( - o % r ] .  Thus also Irx<=rl. Is-+F(r).ls weakly. Hence ca([X,<r]c~S) 
= g(ILx" <= rf Is) --+ g(F(r). Is) = F(r) g I  s = F(r) Ca(S) weakly. This implies 

ca ( [x .  __< r] c~ s) 
I A F(r) 

ca(s) 
with respect to PId]A. 

Since weak and strong convergence coincide with respect to atomic fields, 
the next result is an immediate corollary of the two preceeding ones. 

Corollary 2.6. Let a determining sequence have an atomic limit tail field. Then 
the sequence has an almost exchangeable subsequence. 

Remarks. Evidently, if the tail field of a sequence is atomic, then so is the limit 
tail field of any subsequence. We thus obtain immediately the following result 
of D. Aldous [1]: A sequence (X,) of random variables has an almost-exchange- 
able subsequence provided it is bounded in probability and has an atomic tail 
field. 

The following notion derives its motivation from Banach space theory. We 
say that an integrable sequence (Xn) of random variables is norm-almost ex- 
changeable if there exist sequences of random variables (J(,) and (Y,) on some 
probability spaces so that 

(a) dist(X,) = dist(J~,) 
(b) (Y,) is exchangeable 

and 
(c) Z E ( I R . -  Y.I) < ~ .  

It is easily seen that if (X,) is norm-almost exchangeable, then (X,) is 
weakly convergent. If then X,--+0 weqkly but E[X,] > c5 > 0 for some fi > 0 and 
all n, there is an N so that (X,),~ N is a symmetric basic sequence, in Banach 
space terminology. The following result shows that the study of norm-almost 
exchangeable sequences reduces easily to that of almost exchangeable se- 

quences. 

Proposition 2.7. A sequence of random variables has a norm-almost exchangeable 
subsequence if and only if it has a uniformly integrable almost-exchangeable 
subsequence. 
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Proof. Suppose first that (X,) is norm-almost exchangeable, and let ()(n), (Y,) as 
in the above definition. Then E(XIX,-Y,I)< oQ by Beppo-Levi's theorem, hence 
2 I J~ , -Y , [<  oe a.e., so (X,) is almost exchangeable. (In) is uniformly integrable 
since (Y,) is identically distributed and Y~ is integrable. Since EIX , -Y , I~O,  
()(,) is also uniformly integrable, hence so is (Xn). Suppose now that (X,) is 
uniformly integrable almost exchangeable; let (J(,) and (Y,) be as in the 
definition of almost-exchangeability. Then since d is t (X, )=dis t ( J ( , )~dis t  YI, YI 
is integrable. Thus ( J ( , -  Y,) is uniformly integrable and 3 : , -  Y,,---, 0 a.e. Hence 
E([kT,-Y,I)--+0. Choose then h i < n 2 < . . ,  with X E I X , - Y ,  iI<oo. Then (X,,) is 
the desired norm-almost exchangeable subsequence. 

The following result is thus an immediate consequence of Theorem 2.4. 

Corollary 2.8. (X,) has a norm-almost exchangeable subsequence if and only if 
(X,) has a subsequence that is uniformly integrable and s.c.c.d. 

We present next some further criteria for the s.c.c.d, condition. 

Proposition 2.9. Let (X,) be a determining sequence of random variables with 
limit conditional distribution ~. Let D be a dense subset oflR so that g{d}=O for 
all deD. Let ~ be as in Proposition 1.8 (c). Let Y be the tail field of (X,) and 
also ~ a subaIgebra of S: with cr(d/:)=Y. Then the following are equivalent: 

(1) (X j) is s.c.c.d. 
(2) ~( [ -XFG ] ~ H) ~ fi( G) ~(H) strongly for all H ~oU: and GeN. 
(3) c.dist X j [S~ f i  strongly Jbr all S in 5" with ~ S > 0  a.e. 

Proof. (1)~(2)  follows easily from Proposition 2.5 and evident approximation 
arguments. Of course (1)~(3) so it remains to check that (3)~(1). So we 
assume (3). We first note that if S ~ :  -+, then c.distXj]S~R(A)-~ strongly 
where A = supp ~(S). Indeed, let Ge~ .  Then 

~([X:eG]c~S)+N[[X:eG]c~ ~A]---~fi(G)NS+-fi(G).I~ A (16) 

strongly, since A is d-measurable  ( d  being the limit tail field of (X)). Since 

supp ~ [Xj~ G] c~ S) ~ supp ~(S) = A 

for all j, it follows that ~([XjeG]c~S)~g(G)~(S) strongly, whence 
c .d i s tX j lS~R(A)~  strongly. We next note by standard approximation argu- 
ments that 

g(IEx:G l.f) ~ fi(G) ~ f strongly (17) 

for any Y--measurable integrable random variable f, any G~N. Finally let g be 
an arbitrary integrable random variable and let gj denote conditional expec- 
tation with respect to a{X,: n=j; j +  1 .... }. Also let f = g : g .  Then 

g ,g  --+f strongly. (18) 

Now let G~N and qoj=Ifx:G ~ for allj. 
Evidently it suffices to show that 

g(~o,, g) ---, ~(G) g g  strongly. (19) 
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Now by (17), g(cp.f)--+g(G)gf=-fi(G)gg. Thus to show (19) it suffices to 
show that 

g [(P,g - q)nJ] ~ 0 strongly. (20) 

Since d c J-,  it suffices to show 

g~-[tp,g - ~onJ] ~ 0 strongly. (21) 
But fixing n, 

~9- [(P, g - q)nf] = ~9- [C, (q~, g - qo,f)] = g y  [(p,(g~ g - J)]. 

Hence (21) follows from (18) and the fact that (~0,) is uniformly bounded. 
We now draw further immediate consequences of Theorem 2.4 and the 

above. 

Corollary 2.10. Let (X,) and J" as in 2.9 with d the limit tail field of (X,). 
Suppose (c.dist X,) converges strongly and every set in ~-- differs by a null set 
from a set in d .  Then (X j) has an almost exchangeable subsequence. 

Corollary 2.11. Suppose (X j) is conditionally identically distributed with respect 
to its tail field. Then (X j) has an almost exchangeable subsequence. 

Remarks. 1. In the third example at the end of Sect. 3, we construct a determin- 
ing sequence (X j) with no almost-exchangeable subsequence so that (X j) is 
conditionally identically distributed with respect to its limit tail field; thus in 
particular (c.dist X j) converges strongly. This answers a question posed in a 
previous version of this paper, and shows that it is essential to consider 
(c.dist XjIS) for a suitable class of sets S, in order to discover if (X j) has an 
almost exchangeable subsequence. 

2. It follows easily from 2.5 and 2.9 that if (X j) is determining and no t  
s.c.c.d., then (X j) has a subsequence (X)) so that (X~) has no almost exchange- 
able subsequence. Indeed let r be such that g { r} =0  and S~5 P+ so that 
~ ( [ X j  __< r] ~ S) +*~(S) ~( - o% r] strongly. Now 2~([Xj < r] c~ S) ~ ~(S) ~( - o% r) 
weakly. Hence we may choose a subsequence (X~) and a 6 > 0  so that 
E[~([X~<r]~S)-~([X'k<=r]c~S)>c5 for all j=t=k. It follows that 
(~([X~. < r ]  mS)) has no strongly convergent subsequence, hence (X)) has no 
almost exchangeable subsequence. We thus obtain a Ramsey-type dichotomy: 
every sequence of random variables has a subsequence which is either almost 
exchangeable or has no further almost exchangeable subsequences. 

3. It follows easily from the equivalences in 2.9 and the proof of 2.3 that if 
(X j) is s.c.c.d, and (Yj) is such that X ~ - Y j ~ 0  in probability, for some sub- 
sequence (X}) of (Xj), then (Yj) is s.c.c.d.; also if dist(J(j)=dist(X~), then (J~j) is 
s.c.c.d. 

We pass now to the proof of Theorem 2.4. It follows rather easily from our 
above results that if (X j) is almost exchangeable, (X~) is s.c.c.d. Indeed by 
Remark 3 above it suffices to prove that if (Y,) is an exchangeable sequence, 
(Y,) is s.c.c.d. We prove this "fairly" standard result for the sake of complete- 
rless. 
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L e m m a  2.12. Let (Y,) be an exchangeable sequence of random variables. Then 
(Y,) is determining and its limit tail field coincides with its tail field up to null 
sets. (c .d is t  Y, IS) converges strongly to c .d i s t  I11 for every set S of positive 
measure, where A = supp ~(S).  

To  prove  2.12, let 3-  denote  the tail field of  (Y~) and ~ = a ( { Y ; :  j = n ,  n 
+ 1  . . . .  }) for all n = l , 2 , . . . .  Let  o~=o~-= and ~ . = ~ -  . Let  (0 be a bounded  
cont inuous  function and S a set of posit ive measure.  Then  as observed above,  
since ~ ( S ) - ~ m ( S ) - ~  0 strongly, 

8~  [q0 (I1,) ~ ,  S - (o (Y,) ~ j  (S)] --+ 0 (22) 
strongly. 

But for each n, 

~x[~o(Y,) Is]=~y<(~o(Yn)Is)=gg-[(o(Y,)<IsJ=g~[(o(Y,)~,S]. (23) 

Moreove r  since the Y,'s are condit ional ly identically dis tr ibuted with re- 
spect to 3-  by de Finett i 's  theorem (see Sect. 1, T h e o r e m  1.1) 

• [(o (Y,) 2 g S ]  = 2~(S)  C(o(Y , )= 2y(S)  # j  (o (Y1) (24) 

for all n. (22)-(24) imply that  #9-[q~(Y,) Is]  ~ #9-(S) Nm (P(Y1) strongly. 
Of  course this establishes that  (Y,) is determining and  in fact since d ,  its 

limit tail field, is conta ined  in 3-, we obta in  tha t  au tomat ica l ly  
c .d i s t  Y, IS~R(A)  c .d i s t  I11 strongly for any set S of  posit ive measure  with A 
= supp ~(S)  (the condi t ioning now being with respect  to d ) .  Thus  the fact that  
d = 3 -  up to null sets isn't  really needed for the proof ;  for the sake of 
completeness,  we sketch an argument .  

We first observe that  for any n and  bounded  cont inuous (p: IR"--+~, 
#9-cp(yl . . . . . .  y,) is measurab le  with respect to d .  Indeed, it is enough to prove  
this assert ion provided  (#(r 1 . . . . .  rn)=rPl(rl).....cp,(r=) where (Pl . . . . .  ~0, are 
bounded  cont inuous functions defined on IR. Since (Y,) is exchangeable,  for any 
m 1 < m 2 <  . . . < m , .  

g ~  [g~ (YI ) "  --. ' q~,(Yn)] = g~J- [ (P l (Ym, ) ' . . - "  ~o, (Ym,)]. (25) 

But for  any q~: IR--+IR bounded  continuous,  there is an d - m e a s u r a b l e  
function denoted as T o so that  (p(Yj)--+Tg0 weakly;  this implies also that  
h.q~(Ya)~h. T(o weakly for any bounded  r a n d o m  variable  h. Hence  

lim ... l im [(ol(Yml)-... "(on(Ym,)] = Tgo~..... Tgo, 
m l  ~ oO m n ~  oo 

weakly. But then 

Sx[cp~(Y~).. . . .  cp,(Y,)] = r162 �9 ... - T(0 , )=  Top1 �9 ... - Top, (26) 

since Top1-... .  Top, is d ,  and  hence 3- -measurable .  
Finally, given D~3- ,  we m a y  choose a sequence of bounded  cont inuous  

functions cp,: R = ~ R with Cpn(Y1 . . . . .  I1,) ~ I D strongly. Hence  also 
#J-q),(Y1 ... .  , Y , ) o I  D strongly, whence since #r . . . . .  Y~) is d - m e a s u r a b l e  
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for all n, I D differs from an d-measurable  function by a null-function. This 
completes the proof. 

We now procedd to the proof of the direct assertion of 2.4; that is, if (Xj) is 
s.c.c.d, then (Yj) has an almost exchangeable subsequence. We require two 
preliminary results which show essentially that i f  the conditional distribution of 
Y is close to the conditional distribution of X (in probability), then there is a 
random variable Z with the same conditional distribution as X, with Z close 
to Y itself in probability. 

Lemma 2.13. Let  ~d be a a-subalgebra of  ~ with 2P atomIess over d ,  f2oeSr 
(F 1 . . . . .  Fro) and (E 1 . . . .  ,Era) measurable partitions of  Y2 o and t/>0. Assume that 
E]~(EI)-~(FI)i_<r / for  all i (where ~ denotes conditional probability with re- 
spect to ~r Then there exists a measurable partition (H 1 . . . . .  Hm) of  Y2 o so that 
~(Hi)=~(Ei )  and P(Fi A H i ) < t l  for  all i. 

Proof. For functions f and g, f /~  g denotes the minimum of f and g. First 
observe that for f ,  g => 0, 

I f - g [  = f - ( f  A g ) + g - ( f  A g). (27) 

Now by the Maharam Lemma (Theorem 1.5), choose for each i a measur- 
able set D i c e  i with ~ ( D i ) = ~ ( F i ) / x  ~(Ei).  Since U E i -  ? Di=~2 o -  ? Di, 

~(Ei)  - N(D~) = N(Y2 o ~ ~ D~). (28) 

Thus by a consequence of Maharam's Lemma, Corollary 1.6, we may 
choose a measurable partition (B 1 . . . .  ,Bin) of Q o ~ u D  i with r 
- ~ ( D i )  for all i. Now set H i = D i u B  i for  all i. Fix i. Since D i and B i are 
disjoint, ~(H~) = ~(Di)  + 2~(B,) = ~(E~). F~ AH~ c (Fi ~ Di) w B~. Hence 

~(F~ A Hi) _<_ ~(F~) - ~(Di) + ~(Bi) 

= ~ ( F , )  - (~(F~)  A ~ ( e , ) )  + ~ ( e l )  - ( ~ ( 5 )  ~ ~ ( e ~ ) )  

=l~(Fi)--~(E/)l by (27). 

Thus P(F/AHI)= E ~ ( F  i/kill) ~ r/by our hypothesis. 

Lemma 2.14. Let  ~r and <9 ~ be as in the previous result and S ~ 6  r o f  positive 
probability; set A=supp~(S) .  Let  X ,  X 1 , X  2 . . . .  be random variables on g2 so 
that c . ( ~ r  c .d i s tX strongly and let e>0. Then there exists a 
simple Borel function q~=~o~: ~ I R ,  depending only on e and dist X (neither on 
the sequence (X~) nor on S) so that P [ I X - q o ( X ) l > e ] < e  and such that for  all n 
sufficiently large there exists a simple random variable h, with 

h, supported on S 

c-(~r dist h, IS =R(A) c. dist q) o X and (29) 

P [ i X , I  s - h , I  >~] <~. 

Proof. We take our conditional distributions and probabilities with respect to 
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Let  ~ = ~ .  Choose m and real numbers  c~ < c 2 <  ... < %  so that  

P[,X=ci]=O for all i, ci+l--Ci<(~ for all l<_i<_m-1 
and (30) 

P['X r < 6. 

Now set G i = [c i, ci+ 1) for 1_<iN m -  1 and G m = IR ~ [-c 1, %); then set 

m--1  

qo= ~ cjloj. (31) 
j = l  

Evidently I-IX - (p  (X)I >e ]  ~ [X(~[c 1, %)] so P[IX -~o(X)[ > e l  <e. 
Now it follows from our  assumptions (c.f. Proposi t ion 1.8) that 

~([X,~Gi] c~S)~N([X~Gi]  ) :~(S) in Ll -norm for a l l / ( w h e r e  N denotes ~ ) .  
Thus for all n sufficiently large and all 1 _< i _< m, 

EI~([,X,~Gi] ~S) - ~ ( [ X ~ G ~ ] )  ~(S)l <t/  (32) 
e 

where ~/=2ram" 

By Corol lary 1.4 we may choose (E 1 . . . . .  Era) a measurable part i t ion of S 
with ~(Ei)=C~[X~Gi]N(S) for all l<i_<m. Let  Fi=[X,,~Gi]nS for all i. Then 
by (32), (E 1 . . . .  ,Era) and (F 1 . . . . .  Fro) satisfy the hypotheses of the previous 
lemma. Hence we may choose a measurable part i t ion (H1, . . . ,  Hm) of S satisfying 

m--1  

the conclusion of L e m m a  2.13. Now set h , =  ~, cjlnj. Since ~(Ei)=~(Hi)  for 
all i, c. dist h,,IS = R(A) c. dist q~ o X. ~= 

If i < m, then 
[IX. - h,I > 8] n F~ c F~ - Hg. (33) 

Since N[X~Gm] < c5, 

P([IX,  - hn[ > c~] c~ Fro) < ~(Fm) < c5 + r/ (34) 

by (32). Hence since P(FiGH~)<r 1 for all i, P([ lX , -h , [>6)c~S)<(m-1)r l+6 
+ t / = e  by (33) and (34), proving (29). 

Remarks. Of course the conclusion of the L emma  implies the hypotheses. In 
the case of d the trivial algebra, this lies deeper than the usual equivalences 
for convergence in distribution, and may also be deduced from results of 
Strassen [,191. 

Proof of the Main Result (Theorem 2.4): We now assume that  (X j) satisfies the 
hypotheses of 2.4; in view of our  later observations, this means that  (X j) is 
s.c.c.d. As always, our probabil i ty  space is denoted (f2, 5 P, P); sd denotes the 
limit tail field of the Xj's. After enlarging the space if necessary, we shall 
construct  a sequence (I, Vj) of r andom variables condit ionally i.i.d, with respect 
to ~r and a subsequence (X}) of (Xj) with 2;[Xj-Vr < co a.e. By enlarging 
if necessary, we may assume to begin with that 9~ is atomless over 9.I. (Ac- 
tually, if we let F be an uncountable  index set and simply take f2={0,  1} r 
endowed with the F-product  Lebesgue measure on the F-produc t  of the Lebes- 
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gue mesurable sets, then 5 p is automatically atomless over any countably 
generated a-subalgebra of 5~. We could just work with Xj's on this measure 
space; then the WSs could be produced with no enlargement.) 

Now let ~ denote the limit conditional distribution of the Xjs. It follows by 
Theorem 1.5 that we may choose a random variable X on ~2 with c-dist X =~. 
Hence X, X1, X2, ... satisfy the hypotheses of the previous lemma for any SsSP 
of positive probability. 

Now let (ek) be a sequence of positive numbers with Ze k< oo. We first 
construct an increasing sequence (nk) of positive integers, a sequence (Ok) of 
Borel simple functions, and a sequence (Yk) of simple random variables so that 
(Yg) is conditionally independent (with respect to s~) so that for all k, 

P[IX,~--Ykl>ek]<ek, P[[OkoX--XI>e~]<ek 
and (35) 

c. dist Yk = C. dist 0k o X. 

Let 01=~o~1 of Lemma 2.14. Letting S=f2, choose n 1 so that n=n 1 satisfies 
the conclusion of 2.14; then let Y~=h,c Now suppose k > l ,  n~,...,nk_ ~ and 
simple variables Y~ ... .  , Yk-a have been chosen. Let S~ .. . .  , S m be the atoms of 
a(Y~ ... .  , Yk-O. Applying Lemma 2.14 separately to each of the sets S i and then 
taking n = n  k large enough, we obtain the existence of an n k>n k_l, a Borel 
simple function 0k and random variables f~ supported on S~ so that for all i, 
P[lX,kls~-fl] >ek] <g'kP(Si), P[ll/IkO X - X ]  >ek] <ek and c-dist f~lS I=R(A 3 
c. dist 0k o X where A i = supp ~(Si). (Precisely, Ok = Cp~ where e = min P(S~) ek). 

Now set Yk = f/. Fixing B a Borel set we have that ~([Yk~B]c~Si) 

=~[OkoX~B]  N(Si) for all i, whence c-dist Yk=c.dist  OkOX since ~(Si) 
~) i=1 

=1. Since [IX,--YkJ>ek]C []X,~ls--f~[>ek], (35) holds. It also follows that 
i=1 

Yk is conditionally independent of a(Y 1 . . . . .  Yk-1); indeed for all i and Borel 
sets B, 

~ ( [  YkeB] c~ Si) = ~@([f~eB) c~ Si) = ~ [Oko X eB] ~@(Si). 

This completes the construction of (nk), (Yk) and (0k) by induction; (35) holds 
for all k and (Yk) is conditionally independent (c.f. Proposition 1.1). Now (35) 
implies that ZIX,~-Ykl < oe a.e. Hence to prove that (Xnk) is almost exchange- 
able it suffices to show that (Yk) is almost exchangeable. Again by enlarging the 
probability space if necessary, we may choose Z1, Z 2 .. . .  i.i.d, uniformly distrib- 
uted variables with a ( Z )  independent of ~r(Yk). (The enlargement can be ac- 
complished by simply taking the product of ~ with the unit interval.) 

Fix k and let 5Pk denote the a-field generated by d ,  Yk and Z k. Since d 
c a(Y), Z k is independent of ~ and hence since Z k is uniformly distributed, 
is atomless over d .  Let 0 = l / / k ,  C 1 . . . .  , c, the distinct values of 0, Di=[Yk=Ci] 
and E~= [0o X =c~]. (We may and shall assume that P(E 3 >0  for all i.) Now 
since c. dist Yk = C. dist 0 ~ X by (35), 

~(Di) = ~(Ei) for all 1 _< i _< n. (36) 
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By Theorem 1.5 we may choose an 5~k-measurable function q~ supported on D~ 
with 

c.distqilD~=c.distXlE~ for all i. (37) 

Now set W k= ~ ql. Then of course by (37), c-dist W k =c.  dist X. Moreover 
i = 1  

dist (#/~ X, X) = dist (Yk, Wk); indeed dist Wkl [ Yk = cl] = dist X I I0  ~ X = cl] for all i 
by (36) and (37). Hence P(I W~ - Ykl > ek) -- e [IX - Ok o XI > ek) < ek" 

We have thus established that (Wk) is conditionally identically distributed 
with respect to d and SlWk-Y~l<oo a.e. To complete the proof we need to 
show that (Wk) is conditionally independent with respect to d .  Now each W k 
may be obtained as a pointwise limit a.e. of a sequence of linear combinations 
of functions of the form hk=Ukfk(Yk)gk(Zk) where u k is bounded d-measurable  
and fk and gk are bounded Borel functions. But it is evident that any such 
sequence (hk) satisfies g(hl'... "hk)=O~hl"... "o~hk for all k. The conditional inde- 
pendence of (Wk) now follows by routine approximation arguments, completing 
the proof. 

w 3. Complements 

We begin by discussing the special case of almost exchangeability which 
motivated this work. We say that a sequence (X,) of random variables is almost 
independent-identically-distributed (almost i.i.d.) if there exists an independent 
identically distributed sequence (I1,) defined on the same probability space with 
SIX, - I1,1 < oo a.e. 

Theorem 3.1. A sequence of random variables on an atomless probability space 
has an almost i.i.d, subsequence if and only if it has a subsequence whose 
distributions relative to any set of positive mesure, converge to the same limit. 
That is, (X,) has an almost i.i.d, subsequence if and only i f (X,)  has a subsequence 
(X',) such that there exists a distribution # with 

d i s tX ' , lS~#  for every S t Y  with P(S)>0.  

Remark. The "if" part of this theorem was proved independently by D. Aldous 
[ I ] .  

Proof. Suppose first that (Yn) is i.i.d, and X , - Y n ~ O  in probability. Then of 
course (X,) is tight; letting Y= Ya, we shall show that d is tX,  lS~d i s t  Y for all 
S of positive probability. 

Fix S of positive probability. Let d n = a { Y , ,  Y,+I, " '} ;  then (~ d , ,  the tail 
field of (Y.), is trivial by the zero-one law, and .= 1 

g~ I s ~  P(S ) a.e. (38) 

Now let q0 be a continuous function on ~ vanishing at infinity; then by 
(38), 

E(q9 (Y,) [g~ I s - P(S)]) ~ 0. (39) 



496 I. Berkes and H.P. Rosenthal 

But Ecp(Y,)=Ecp(Y) and E(cp(Y,)Is)=E(~p(Y,)g~Is). Thus by (39), 

E(q~ (Y,) Is) ---, P(S) E (p (Y). (40) 

Since Xn-Yn--+O in probability, ~o(Xn)--(p(Yn)-+O in probability also, whence 
E(((p(Xn)-(P(Yn)) I s ) ~ 0 .  Thus by (40), we obtain that E((p(Xn)Is)--+P(S)E(p(Y), 
which shows that dist Xn]S ~ dist Y. 

Suppose now that there is a distribution # so that dist X,]S--+# for all S of 
positive probability. It follows that for each r with # { r} =0  that I~x<_,.j~ 
# ( -  c~, r ] .  1 weakly. Hence (X,) is determining and in fact the limit tail field ~r 
of (X,) is trivial; thus (X,) is s.c.c.d. Now our proof of Theorem 2.4 shows that 
after a suitable enlargement of the probability space, there exists a subsequence 
(X',) of (Xn) and a sequence (W,) of random variables conditionally i.i.d, with 
respect to d so that ' X]X n -W~] = oo a.e. Since d is trivial, (W~) is of course 
i.i.d. A simple modification of the proof shows, however, that no enlargement 
of the probability space is necessary. Indeed, in the first part of the proof, we 
obtain (X)) and a sequence (Yj) of independent simple random variables with 
X I X ) -  Y~[ < oo a.e. If infinitely many of the Yfs are constant, evidently (X)) has 
an almost i.i.d, subsequence. 

Suppose only finitely many of the Yj's are constant. Let V1,V 2 ....  a 
sequence of infinite disjoint subsets of positive integers and for each j let d j  
=o-{Yi:ieVj}. Also let (ej) be a sequence of positive numbers with 2e j<oo .  
Then, ( f~ ,dj ,  P l d j )  is an atomless probability space for all j. Since dist Yk--*#, 
standard arguments (and also our proof of Theorem 2.4) show that we may 
choose ml <m 2 < . . .  SO that for all j, mfiV;, and there is a variable Wj which is 
d r measurable and satisfies dist W~=# and P[IWj--Ym]>~j]<~ j. Since (Yk) is 
independent, (Wj) is i.i.d., hence (X~2) is almost i.i.d. 

Remark. It follows easily from the above arguments and our main results that 
a determining sequence of random variables has an almost i.i.d, subsequence if 
and only if it has a trivial limit tail field. We mention the following con- 
sequence of this, (also discovered independently by D. Aldous): I f  a sequence of 
random variables is bounded in probability and has a trivial tail field, it has an 
almost i.i.d, subsequence. 

Our next result shows that any subsequence of (sin2~nx) has an almost 
i.i.d, subsequence (relative to [0, 1], i.e. the standard atomless probability 
space). This perhaps explains why (sin 2~nkX ) behaves like a sequence of i.i.d. 
variables for (rig) thin enough. It would be desirable to give effective criteria to 
insure that a sequence (sin 2~nkx ) is almost i.i.d.; or simply that it satisfies the 
weaker condition that for some i.i.d, sequence (Yk), sin2~nkX--Yk ~ 0  in proba- 
bility. 

Corollary 3.2. Let h be a period-one Borel measurable function on the real line 
and let (X,) be defined on [0, 1] by X , ( t )=h(n t )  for all t. Then any subsequence 
of (X,) has an almost i.i.d, subsequence. 

Proof. It suffices to show that dist X,[S ~ dist h for any S of positive measure, 
by Theorem 3.1. By the definitions involved it suffices to show that 
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1 

~o(X.) dt--* P(S) ~ (p(h)dt 
S 0 

for any S of positive measure and 
bounded continuous (p. (41) 

But fixing (p, (41) is equivalent to the assertion that cp(X,) tends to the constant 
1 

(p(h)dt in the weak*-topology of L~~ 1] (with respect to LI[0, 1]). It follows 
0 

that it suffices to prove 

b 1 

~<p(X,)dt~(b-a) ~q~(h)dt for all real a,b with 0_-<a<b_-<l. (42) 
a 0 

(So far these conditions are completely general; a sequence (Z,) on [0, 13 has 
an almost i.i.d, subsequence if and only if it has a subsequence (Xn) so that for 
some variable h on [0, 1], (42) holds for all (p.) But by just changing notation, 
(42) is simply the assertion that for any bounded measurable period one 
function g, 

b 1 

~g(nt)dt-~(b-a) ~g(t)dt for all 0<a<b__<l. 
a 0 

Fix n and let m=m(n) be the largest integer less than or equal to n(b-a). Since 
na+m<__nb<na+m+l we have that 

b 1 n a + m  nb  

~g(nt)dt=n ~ g(x)dx+l- ~ g(x)dx 
a na  n n a + m  

m ig(t)dt+e ~ where [e.[< 1- sup ]g(x)[. 
n o n o_<x_<l 

1 m 
But b - a - - < - - < b - a ,  hence (42) follows. Q.E.D. 

n n 

We consider next the problem of when a sequence of random variables has 
an almost-exchangeable subsequence after a change of density. As we show in 
the first example at the end of this section, there exists a sequence of random 
variables with no almost exchangeable subsequence, yet the sequence is in fact 
i.i.d, after a change of density; thus the "true" nature of the distribution of an 
infinite sequence may only be revealed after a change of density. The precise 
formulation is as follows: we say that a sequence of random variables (Xj) on 
(f2, 5 P, P) is almost exchangeable after change of density if there exists a strictly 
positive probability density (p on f2 so that defining the probability Q by dQ 
=(pdP, then (Xj~o) is almost exchangeable with respect to Q. We shall show 
that if (X) is uniformly integrable and determining, there is a canonical change 
of density which works, if anyone does; after making this change of density, we 
obtain essentially that [Xil~c weakly for some constant c. We show that if 
IXjl ~c weakly, then if (X j) is s.c.c.d, after a change of density, it is already 
s.c.c.d. 

We first employ yet one more equivalence for a sequence (X) of random 
variables to be determining: (e itxj) converges weakly for all real t. When this 
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occurs, we define h(t)=h(t, co)= l i m e  itxJ and call ~ the  limit conditional charac- 
j~ov 

teristic function of (X j). If the probability space is large enough, that is, if 5 ~ is 
atomless over d ,  the limit tail field of (X j), then we know that there is a 
random variable X with c. dist X = ~ where g is the limit conditional distribu- 
tion of (X j) (see Theorem 1.5 and the definitions preceding Proposition 2.3). 
Then ff is simply the conditional characteristic function of X with respect to 
saC: h ( t ) = ~ e  itx for all real t. 

Lemma 3.3. Let (X j) be a determining, sequence with limit conditional character- 
istic function h(t, co) and let ~o be a strictly positive density; let Q be the 
probability with dQ=q)dP. Then (Xj/~o) is determining with respect to Q, with 
limit conditional characteristic function h(t/~o(co), co) = h(t/qo). 

Proof. Since (X j) is bounded in probability so is (XJrp) with respect to ~o (i.e. 
with respect to Q). We thus need only establish that 

e i*xdo ~ h (t/(p (co), co) (43) 

weakly with respect to ~0, for all real t. 
Now if q0 is a simple density, this is evident. Indeed, suppose q)= ~ CjIsj 

j = l  
with c~>0 for all j and S 1 ... .  , S, is a measurable partition of f2. For each j, we 

have that eitX"/r162 weakly, hence ei'X"/r ~, K(t/cj)lsj 
= h(t/~o(co), co) weakly, j= 1 

We next claim that for q0 arbitrary strictly positive, there exists a sequence 
(qSk) of strictly positive simple densities with the following properties: 

qSk~0 a.e. and in LI(P) (44) 
and 

for all t, [exp(itX,/~Ok) ] ~Ok--[exp(itX,/qO)] q~--*O in LI(P), (45) 

uniformly in n. 
Delaying the proof of this claim for the moment, to show (43) it suffices to 

show (using (45) and the fact that (43) holds for simple densities) that for every 
measurable S and real t, 

h(t/(Ok(co ), CO) (Ok(O) dP(co) ~ ~ h(t/~o(co), o) q)(o) dP(co). (46) 
S S 

(46) in turn follows from (44), the dominated convergence theorem, the fact 
that Ih(t, co)]<l for all t and the fact that for almost all co, t~h( t ,  co) is 
continuous in t. The latter can be proved e.g. by using regular conditional 
probabilities to see that for almost all co, (g~e itx) (co) is a characteristic function 
(where X is as given before the statement of 3.3). 

We pass finally to the proof of the existence of (qSk) satisfying (44) and (45). 
Evidently (45) holds trivially if t = 0 by (44) so suppose t ~ 0. 

Let e > 0. Choose 0 < t/< ~ so that 

F measurable and P(F) < ~/implies E(~o IF) <~. (47) 
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Next choose 1 < K < oo so that 

P [ I X j I > K ] < r  l for all j (48) 

This is possible since a determining sequence is automatical ly bounded in 
probability. 

Finally choose 0 < 6 < e so that 

Ix - Yl < 6 ~ le i~ --elY[ KS. (49) 

Now choose ~ = (?, a simple strictly positive density and G a measurable set 
satisfying 

P ( ~ G ) < t /  (hence E(~oI~a)<4 by (47)), (50) 

~(~I_G)<g, (51) 

and 

Then 

by (50), (51) and (53). 
Now fix n and let 

- < l e ~ -  on  G, (52) 

Iq~-gSl<e on G. (53) 

e e 3e 
E l t p - ( ? l < e + ~ + ~ =  2 (54) 

f l . = e x p ( i t X . / ( o ) ,  f l = e x p ( i t X . / q ) )  and F = [ I X . L > K ] .  

Then ft, (? - fl (p = ft.((? - ~0) + (ft. - fl) (p, so 

El/L(? -/~ol _-<El(? -q~[ +~l(& -/~) q~l < ~  +El(& -/~) el 
1 

Now by (48), (49), (52) and the definition of F, if Itl < - ,  

IP.-/~I<~ on ~F. 
By (47) and (56), 

Hence 

by (54). (55) 

E[(fl" - fl) q)[ = EL(fl" - fl) q~ I ~  v[ + El(fl" - fl) cP I r[ < e + 2 e-=34 2 e" 

(56) 

E l f i , ( ? - f i ~ o l < 3 e  by (55). (57) 

Evidently we thus obtain (44) and (45) by (54) and (57) if we simply let Z e  k < co 
and then set Ok = ~3~ for all k. This completes the proof of Lemma 3.3. 

Let us say that  a sequence (X,) of random variables in wide ly  almost  i.i.d, if 
there exists a set S of positive probabili ty so that  xlx.l(c0)< co for almost all 
coq~S and (X, IS),~=I is almost i.i.d, relative to PIS. The above lemma and 
Theorem 3.1 easily yield the following result; we leave the details of verifi- 
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cat ion to the reader  (note tha t  by 3.1, a determining sequence (X j) has an 
a lmos t  i.i.d, subsequence if and only if its limit condi t ional  characterist ic  
function h(t, co) is independent  of  co, and hence s imply the characterist ic  func- 
t ion of some r a n d o m  variable). 

Theorem 3.4. Let (X j) be a determining sequence of random variables on an 
atomIess probability space. Then (X j) has a subsequence which is almost (resp. 
widely almost) i.i.d, after change of density if and only if there is a characteristic 

function h of some random variable and a strictly positive (resp. positive) density 
u so that eitXn~h(tu) weakly for all real t. 

Our  next result derives its mot iva t ion  f rom Banach  space theory. Let  
1 __<p=<2, K <  oo, and  (bj) a sequence in some Banach  space B. (b~) is said to be 
K-equiva len t  to the usual /P-basis if there are posit ive numbers  a and b with 
b 
-<__K so that  for all n and  scalars c 1 . . . .  , cn, 
a 

a ( i ~  \lip , In  clbi  <b n 

1 p is sad to embed in B if there exists a sequence in B which is K-equiva len t  to 
the usual /P-basis ,  for some K < oo. 

Corol lary  3.5. Let (X j) be a uniformly integrable sequence on some probability 
space, 1 <p_-<2 and u a density so that 

eitX~e-lt lp" weakly for all real t. (58) 

Then for every ~>0 ,  (X,) has a subsequence which is l +e-equivalent in LI(P) to 
the usual lP-basis. 

Remarks. This result is essentially p roved  in [-6]. It  is also shown there that  if 
(X,) is an integrable sequence so that  for all n and  e > 0 ,  there exists an N so 
that  for all N < m  a < m e < . . .  < m , ,  all c a , . . . , c , ,  

/ n \ l /p / n \ l /p 
a ( ~= [ciff ) <SlSc,  Xm,[dP<b ti~=aici[P ) 

with b <  1 + e, then (X,) satisfies (58) and  hence has an lP-subsequence. Tha t  is, 
a 

in Banach  space terminology,  if a sequence in IJ has 1 v as its spreading model 
isometrically), it has an lP-subsequence. 

Proof. T h e o r e m  3.4 shows that  essentially some subsequence of (X,), after 
change of density, is a small pe r tu rba t ion  of a symmetr ic  p-stable i.i.d, se- 
quence, which proves  the result. N o w  we elaborate.  

Recall  tha t  a r a n d o m  var iable  X is symmetr ic  p-stable if it has a character-  
istic function h of the form h(t)=e -cltlp for some posit ive c. If  (Y~) is an i.i.d, p- 
stable sequence for l < p _ < 2 ,  then, as is well known  (cf. [16]) I11 is integrable 
and  (Yj) is 1-equivalent in L a to the usual/P-basis .  
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Now we may assume without loss of generality that the X,'s are defined on 
an atomless probability space. Then Theorem 3.4 yields that there is a sub- 
sequence (X,j) of (X,), a strictly positive density go, a subset (2 o of (2 of positive 
measure, and a p-stable i.i.d, sequence of random variables (Y~) defined on the 
probability space ((2o, 50[00, O) where 

so that 

and 

dQ=(godP[Oo)/ ~ godP 
Do 

~21(X./go)-Yjl< ~ a.e. on f2 o 

Z]X,j]<oo a.e. off Qo- 

The uniform integrability of the Xj's implies there are subsequences (X)) of 
(X, )  and (Yj) of (Yj) so that 

F, ~ I(X)/go)-gjlgodP<oo and ~ ~ IX)]dP<oo. 
j Oo J ~ o  

It follows from standard perturbation arguments that for each e >0, there is 
a k so that {Xygo:j=k, k + l  .. . .  } is l+e-equivalent  to the usual l p basis in 
L 1 (go dP), which implies immediately that {X~j: j = k, k + 1 . . . .  } is 1 + ~-equivalent 
to the usual/P-basis in LI(dP). Q.E.D. 

We need two more preliminaries before obtaining our general result con- 
cerning ahnost exchangeability after a change of density. 

Lemma 3.6. Let (X)) be an exchangeable sequence of random variables with tail 
field d and go a strictly positive d-measurable d nsity. Then (XJgo) is exchange- 
able with respect to go. 

The proof of this lemma is routine and is left to the reader. 
For the next preliminary, we need the following observation. Suppose that 

(X~) is a uniformly integrable determining sequence of random variables. Then 
we know that (go(Xj)) converges weakly for all bounded continuous go. The 
uniform integrability of (Xj) implies that go(Xj)) converges weakly for all 
go: ~-,--+]R continuous so that for some K <  0% [go(x)[<=K[x[ a l lx .  In particular, 
( [X f i ) j  ~176 1 converges weakly. 

Lemma 3.7. Let (X j) be a uniformly integrabIe determining sequence of random 
variables so that IX j[ ~ 1 weakly. I f  (X j) is almost exchangeable after a change of 
density, then (X j) is already almost exchangeable. 

Proof. Let go be a strictly positive density so that (Xjgo) is almost exchangeable 
with respect to go, i.e. with respect to Q where dQ =go dP, and let d be the limit 
tail field of (X i/go). By the proof of our main result, after a suitable enlargement 
of the probability space, there exists a sequence (Yj) of random variables 
exchangeable with respect to Q with d equal to the tail field of (Yj) so that 
X]XJgo-Yj] < oo a.e. Now, of course, (X//go) is uniformly integrable with re- 

1 
spect to go and determining by Lemma 3.3, hence we obtain that IXjl/go-,- 

go 
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, 

weakly, so q) is d-measurable.  Now -- is a strictly positive d-measurable  

density with respect to Q. Thus by the preceding result, setting Z j ~  for all 

j, then (Z j) is exchangeable with respect to q)dQ = dP. Of course Q and P have 
the same null sets, so SLXj-Z~l < oe a.e., showing that (X j) is almost exchange- 
able. 

The following result, in combination with Theorem 2.4, solves the problem 
of when a sequence or random variable has an almost exchangeable sub- 
sequence after a density change. 

Theorem 3.8. Let (X ~) be a uniformly integrable determining sequence of random 
variables and let ~o equal the weak limit of ([Xjl). I f  q)=0 a.e. (Xj) has a 
subsequence converging to zero almost everywhere and hence an almost exchange- 
able subsequence. I f  not, let A=suppq), Q the probability on 5Pc~A defined by 
Q(S)=Sq)dP(Sq)dP) -1 for all S~SP, S e A ,  and Xj=XJq) for all j. Then (Xj) has 

S 

a subsequence almost exchangeable after change of density if and only if (.~j) has 
an almost exchangeable subsequence with respect to Q. 

Proof. We have that XjI~A~O in probability since ]Xfl~A-~0 weakly. Thus 
by passing to a subsequence if necessary, we may assume that Xj(co)-+0 for 
almost coCA, thus proving the first assertion. So assume S q)dP+0 and suppose 
without loss of generality that f is a strictly positive density so that (X j f )  is 
itself almost exchangeable with respect to f .  It follows that the exchangeable 
perturbation constructed in the proof of 2.4 must vanish on HA and hence 
(XJ f ) . I~  A is also almost exchangeable. In fact, [Xjl/f--,q)/f weakly, A 
= supp ~/f, and so A is measurable with respect to the limit tail field of (X J f). 
Now (X j) is a determining uniformly integrable sequence so that [Xj [~I  
weakly with respect to Q, and (2j) is almost exchangeable after the change of 

density f -  f/q)" IA Hence by Lemma 3.7, (i~j) is almost exchangeable. Suppose 
f/q) dP" 

A 

conversely that (X j) is almost exchangeable, and set c = j' q) dP. If P(A) = 1, ~ is 
1 1 c 

already a strictly positive density. If not, let f = 2 c  q) + 2(1 -P(A)) I~A" If follows 

easily that (X f f )  is almost exchangeable with respect to f, completing the 
proof. 

Remarks. 1. Of course Lemma 3.6 shows that if (X j) is almost exchangeable, 
then (Xfq)) is almost exchangeable with respect to q) for any limit-tail measur- 
able strictly positive density q). 

2. If (X j) is an integrable sequence of random variables, and q) is a strictly 
positive density, then the map X ~X/q) is an isometry from the closed linear 
span of the Xfs  in LI(P) to the closed linear span of the Xj/q)'s in Ll(q)dP). 
Another natural isometry is provided by multiplying all the random variables 
by some "change of sign"; i.e. by a measurable real valued function a with 
[~(o~)[=1 for all ~o. But if (X j) is a s.e.c.d, sequence, so is (aXj) since then 
(c-dist Xj]S) converges strongly for all S, in particular for S c  [~= 1] and S ~ [ ~  
= - 1 ] .  (In fact, by approximating with simple functions, we see that (gXi) is 
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s.c.c.d, for any measurable g.) Thus if (X j) has an almost exchangeable sub- 
sequence after a change of sign, it has one without a change of sign. 

We conclude with three different examples of determining sequences of 
random variables with no almost exchangeable subsequence. 

Example 1. Let (I1,) be a sequence of independent standard normal random 
variables defined on [0, 1]. Let Q be the Borel probability measure such that 
dQ(x)=2xdx and let X,(x)= Yn(x)/2x for all n and 0 < x <  1. Then the sequence 
(X,) has no almost exchangeable subsequence with respect to Q. (Of course 
(X,) is i.i.d, after a change of density.) 

Indeed, e~trn~e -~2/2 weakly for any real t. Hence by Lemma 3.3, (X,) is 
determining and eltX"-~e-t2/a~2 weakly in LI(Q), for all real t. Taking t =  1 and 
letting d denote the limit tail field of (X,), we have that the function 
o ~ e  --1/s~2 is d-measurable. Hence d = ~ [ 0 ,  1]. Thus if (X,) had an almost 
exchangeable subsequence, (cp(X',)) would converge in probability for every 
bounded continuous (p. This in turn implies that (X',) itself converges in 
probability, which yields that (Y,) has a subsequence converging in probability; 
this is absurd. 

Example 2. Let (S,) be a sequence of Borel measurable subsets of [0, 1] such 
that Is--* f weakly where f (x )=x  for all 0_<x_<l. Then (Is,) has no sub- 
sequence which is almost exchangeable after a change of density. Suppose (S',) 
is a subsequence of (S,) and (p is a strictly positive probability density so that 
(Is;,/q)) is almost exchangeable with respect to Q, where dQ =(pdx. We shall 
show that 1 - f  is measurable with respect to d ,  the limit tail field of (Is;'/~o). 
Let e>0  and choose K so that ~ qodP<~. Choose z a continuous function 

[~o>-Kl 
on the reals with 0_<z_<l, z(0)=l ,  and v(x)=0 if Ixl>l/K. Let g 
= lira r o (ls,/Cp), the weak limit in U(Q); g is d-measurable.  Now for each n, 

the set where the functions zO(Is./O ) and 1 - I s ;  , differ is contained in the set 
where (p is larger than K. Hence [p(~o (Is,/~o))-(1-Is;')llL~(e) < a  It follows since 
1 - 1 s a ~ l -  f weakly, that [Ig-(1-f)llL~(e)<e. The implies that 1 - f  is d -  
measurable, which in turn yields that d = ~ l [ 0 , 1 ] .  But then (ls,/Cp) must 
converge in probability since flO(Is;'/cp) converges in probability for each 
bounded continuous fl; in turn this yields that (Is;') itself converges in probabil- 
ity. Since Is; , ~ f  weakly, Is; , ~ f  in probability, hence f must be an indicator 
function, which is absurd. (It is easily seen that (Is,) is determining. What we 
have actually proved is that for any strictly positive density p, the limit tail 
field of (Is,/Cp) coincides with NI[0, 111.) 

Such a sequence (S,) may be constructed as follows: fix n and choose a 
[ j - 1  L ]  j/2" 

measurable subset Aj,. of [ 2" '2 "] so that yI&, dx= ~ xdx; then set Sn 
2~ ( j -  a)/2~ 

= U Aj,  n" It follows that for any fixed k and 1 <j<2 k, 
j = l  

j / 2  k j / 2  k 

lim y Is.dx= ~ xdx 
n ~  m ( j_  1)/2 k ( j -  1)/2 k 

which implies that Is---* f weakly. 
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Example 3. This is considerably more involved than the previous two examples, 
and answers an open question raised in an earlier version of this paper. We 
construct a determining sequence (Xn) of random variables with no almost 
exchangeable subsequence, so that (Xn) is conditionally i.i.d, with respect to its 
limit tail field. Thus trivially we have that (c.distXn) converges strongly; this 
shows that the condition "relative to any set of positive measure" in the 
statement of our main result Theorem 2.4, cannot be deleted in general (except 
in special cases, such as the limit tail field coinciding with the ta i l  field). We 
shall take our X,'s of the form IE. for some sequence (En) of measurable sets. It 
is easily seen that such a sequence is determining if and only if it converges 
weakly. Suppose then (X,) converges weakly to f ;  the limit tail field d of (Xn) 
is simply a( f ) ,  the field generated by f. (X,) is then s.c.c.d, if and only if the 
sequence (~(E,c~S)) converges strongly for all sets S of positive measure. 

We now take the unit square [0, 1] x [-0, 1] with Lebesque measure on its 
Borel sets as our probability space. Let f(x,y)=x for all O<x,y<l, we shall 
construct a sequence of Borel measurable subsets (En) of the square so that 

IE. ~ f  weakly. (59) 

This shows that ~r the limit tail field of (IE.), is simply the field of vertical sets; 
i.e. ~4 = {S x [0, 1] : S is a Borel subset of [0, 1]}. We shall construct the Eh's to 
have two further properties: first, 

1 

~l~.(x,y)dy=x for almost all x, all n. (60) 
0 

(60) means that ~E,=f a.e. for all n; that is, (IE,) is conditionally i.i.d, with 
respect to ~r 

Second, let S =  {(x, y): 0 < x ,  y__<�89 We shall insure that 

(N(Enc~S)) has no subsequence convergent in probability. (61) 

Thus (59)-(61) imply that (X,) has the desired properties, where Xn=I~. for all 

For  each n and l__<j,k<2" let B~.k= , x , . To obtain (59) 
it suffices to have 

P(E.c~B~,k)= it xdxdy. (62) 
B~,k 

Indeed, it then follows that also 

B~, k 

for all r_>n, hence I~,~f weakly. For  1 < j < 2  "-1, let fl~=]/~2_j+ 1/2. Then fl~ 
_ = = 2 n 

] ~ 2  ~_ b2 j - 1  j 2n-* [ J ' -1  fij] 
=v~.--wherea=2~-andb=~'LetG"=j~=l [ 2" '2"]  " T ~ 1 7 6  it 

sulliccs to have 

~(E.~S)=flG . (63) 
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r Indeed, if F ,=  U ,J , then relative to [0,�89 (F,) is an independent 
j = l  

sequence of sets each of probability 1. 5, hence ( le . f )  has no subsequence 
convergent in probability. But for each n, 

1 2 n 1 

f ,  cG  n and P(G,~F,,)=2, 2 (]f); - J  ~ - (J - �89 
j = l  

_ 1  12"-1V' 1 n 

2" 4 j~l ~ _ j + � 8 9  l 2" 

which implies that SII(IF-IG~)fl]a<~, so ( l v - l G , ) f ~ O  ae. and hence 
(fiG,) has no subsequence convergent in probability. 

We now define E, by specifying 

n _ n Ej, k -E .~Bj ,  k for all l <=j,k<2 n. 

Suppose first that j > 2"- ~ + 1. Define a, b, c, d by 

j - 1  b j" k - 1  k a = - -  c=  and d = - - .  
2" ' - 2 " '  2" 2" 

Define E~, k by 

E~,k= (x,y):c<y< ~ x + c , a < x < b  . (64) 

Suppose next that j =<2"-1. If  k <2"-1 also, letting a, b, c, d as before (64), 
define Ej, k by 

E~,k = (x,y):c<Y<=2~=r+c, 

Finally, if k > 2" - 1, set 

E~,k = I(x, y): 
X a~ 

c < y < ~ + c , V  +b22 _<x<b} . (66) 

We now set E,=w{E~,k: l < j ,  k<2"}. It remains only to verify the conditions 
(60), (62) and (63). Suppose first that 2 " > j > 2 " - 1 + 1 .  Then by (64), 

x j - 1  < j  2~ 
I n ~j,k(x,y)dy=~ if 2 "  < x  But then for such x, IF,(x,y)= ~, IET, k(x,y ) 

=2n" k= 1 
1 b 

hence (60) follows if � 8 9  Also by (64), for any l_<k_<2", P(E~,k)=~j'xdx 
2 a j - 1  j 

= S~ x d x d y  where a = ~ - ,  b = ~ ,  hence (62) holds. 

Suppose now that j < 2  "-1. If "J~-<=x<fi2~, then by (65), ~ I~7,~(x,y)dy 
X 1 

-2 ,_1  if k<2"-~ ;  if k > 2  "-1, ~ I~y~(x,y)dy=O. Thus ~ IE,(x,y)dy=x, i.e. (60) 
' 0 

holds; also (63) holds on G,. If k < 2  "-1, 
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Fig. 1. E 4 is the shaded part of the square 

1/~+b ~ 
1 --  -2 1 b2--a 2 

P(Enc~B~)=P(E~k)=~._I  j xdx=2. 
' " z a 2 

x d x =  jJ x d x d y  2 n 
a B~, k 

/3j< < j  
(where a,b are as before  (64)), hence (62) holds,  F ina l ly  if ~ = x  ~ ,  IlzL~(x,y ) 

x 2"-1,  (60) holds  here  = 0  if k < 2  "-1  and  aga in  ~ I ~ 7 , ~ ( x , y ) d y = ~  f if k >  so 
2n-1  1 

too.  Since E.c~S= U E~,k, we also ob ta in  tha t  J I~ . (x , y )mSdy=O if xCG., 
j , k = l  

hence (63) holds.  A t  last  if k > 2" -  1 

1 b 1 b 2 - a  2 
P(E"nB~'k)=2 ~zT J x d x - 2 "  2 - ~ x d x d y ,  

+b 2 B~,k 1/~ 
so (62) ho lds  in this  case also. 

This  comple tes  the p r o o f  tha t  the example  has the des i red  proper t ies .  A 
p ic ture  is surely far more  intel l igible  than  the above  ana ly t ica l  deta i ls ;  we 
indica te  a sketch of the  set E 4 in Fig.  1 above.  
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