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Summary. A method for construction of almost periodic points in the shift space on two 
symbols is developed, and a necessary and sufficient condition is given for the orbit closure 
of such a point to be strictly ergodic. Points satisfying this condition are called generalized 
1V[orse sequences. The spectral properties of the shift operator in strictly ergodic systems 
arising from generalized Morse sequences are investigated. I t  is shown that under certain 
broad regularity conditions both the continuous and discrete parts of the spectrum are non- 
trivial. The eigenfunctions and eigenvalues are calculated. Using the results, given any sub- 
group of the group of roots of unity, a generalized Morse sequence can be constructed whose 
continuous spectrum is non-trivial and whose eigenvalue group is precisely the given group. 
New examples are given for almost periodic points whose orbit closure is not strictly ergodic. 

Introduction 

I n  order to explain our results we shall need some notation.  A sequence 
b = ( b e  . . . .  , b i n )  of zeroes and ones is called a block. The block obtained f rom b 
by  changing zeroes into ones and vice-versa is called the mirror image of  b and 

denoted by  b. A fixed block c = (co . . . .  , Cn)  m a y  be used as a rule to  construct  
new blocks from old ones : if b is a block, then we form the block b • c by  put t ing  

n q- 1 copies of  either b or b next  to each other, choosing the i tn copy as b if c~ = 0 

and as b if ct = 1. Now if Co = 0, then the block b X c is s imply an extension of  
the block b. 

Using the notat ion,  we m a y  define the well-known Morse sequence x (see 
e.g. [4], [7], [8]) as an infinite "p roduc t "  of  blocks: set b ~- (01) and x ---- b x b 
x b x . " .  I n  words, this rule says:  first write down 01, and then at  each 
succeeding step write the mirror image of  the complete previous product ion to 
the r ight  of  the same. The first 32 members  of  x are 

e l  I IO I lOOl I lOOlOllO I IOOlOlXOOmOlOOl 1 . . . .  
Let  us denote by  O the space of  two-sided sequences of  zeroes and ones, and 

by  T the shift t ransformat ion on O. The following results were announced by  
S. KAKUWA~I in [4]. I f  the Morse sequence x is continued to the left in a suitable 
manner  to produce a point  of  s then the orbit  closure 0x of  this point  under  T 
is a str ict ly ergodic subsystem of (~Q, T). Fur thermore,  T possesses par t ly  contin- 
uous and par t ly  discrete spectrum on (r with respect to the uniquely determined 
probabi l i ty  measure on &x, and the group ~x of  eigenvalues of  T on @z coincides 
with the  group of  all 2~-th roots of  uni ty .  

I n  this paper  we consider the infinite sequences which can be produced by  the 
above-ment ioned method of  generating new sequences f rom old ones. For  instance, 
if we set b = (001), then x = b • b • b • . . .  defines a " t e rna ry"  sequence 

x----(001 001 110 001 001 110 110 110 001 . . . ) ,  

23* 
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and the statements above are shown to be valid for this x, the group of eigenvalues 
this t ime being the group of all 3~-th roots of unity. In  general, ff b0, b 1, ... are 
blocks all beginning with a zero and having length greater than two, then 
x ~ b0 • b 1 • b 2 • ... defines an infinite sequence. We determine a necessary and 
sufficient condition for x to be periodic. Then, restricting our at tention to non- 
periodic x, we show tha t  a necessary and sufficient condition for the corresponding 
(canonically defined) subset (~x of Y2 to be strictly ergodie is tha t  a sufficient 
portion of both zeroes and ones occur in the blocks b 0, b I . . . .  which define x. I f  
ro(b), rl(b) denote the relative frequencies of occurrence of zeroes and ones 
respectively in the block b, then this condition is simply tha t  the sum 

~ min (ro (bt) , r l (bt) ) 
t~O 

diverge. Non-periodic sequences x for which this condition is satisfied are called 
(generalized) Morse sequences. 

I f  x is a Morse sequence, then we show that  the spectrum of T on the subspaee 
of functions invariant  under mirroring is discrete; the eigenvalue group is the 
group of all n(b ~ n (bl). . .n(bt)-th roots of unity, where n (b) denotes the length 
of a block b. 

We derive a necessary and sufficient condition on x for T to have continuous 
spectrum on the orthogonal complement of the above subspace 1. I t  is somewhat 
surprising tha t  T always has continuous spectrum on this subspace i f  n (b t) is 
even for an infinite number  of t; ff this is not the case, then the condition is, 
roughly speaking, tha t  a sufficient portion of odd (or even) zeroes and ones exist 
in the blocks b 0, b 1 . . . .  and is expressed in a sum as above. In  the course of in- 
vestigation we prove tha t  ff (~90, To) is any strictly ergodie system and if n is 
such tha t  T~ is ergodic, then (tg0, T~) is strictly ergodie. 

We show tha t  the entropy of T on (Px is zero ff x is a Morse sequence. 
In  answer to a question raised by  K. JACOBS as to which groups of roots of 

uni ty can possibly occur as eigenvalue groups of strictly ergodie subsystems of 
(~2, T), we construct, using the above results, for any infinite group of roots of 
unity a continuous Morse sequence having the given group as its group of eigen- 
values. 

Finally, the necessary and sufficient condition for strict ergodicity of Ox and 
the fac~ tha t  &x is always a minimal set provide numerous examples of minimal 
sets which are not strictly ergodic. We give these and other examples and discuss 
further problems in the last paragraph. 

w 1. Preliminaries 
We shall be dealing with finite or infinite sequences b ---- (b0, bl, ...) of zeroes 

and ones, called finite or infinite blocks. Let  B be the set of finite blocks, X the 
set of infinite blocks. The ]ength of b E B is denoted by n(b). Denote by  ~(2 the 
set of two-sided sequences of zeroes and ones. We have 

X - ~ I  {0, 1) = {x ~- (x0, x l , . . . ) ]x~  ~ {0, 1) (i eN)} 
AT 

= ] - [  (0, l )  = = ( . . . .  {0 ,1 )  z ) } ,  
Z 

1 Such sequences are called continuous Morse sequences. 
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where Z denotes the integers, N the non-negative integers./2'  will stand for either 
/2 or X and Z' for Z or N respectively in parallel statements abou t /2  and X. 

Provided with the product topology, /2' is a compact, metrisable, totally 
disconnected ttausdorff space, a elopen base for the topology being given by the 
set of all (finite-dimensional) cylinders 

p t 

t[b] : = {o~' e / 2 ' [  ~ t  = bo . . . .  , ~ t + n  = b n }  , 

heN,  teZ ' ,  b=(bo, bl . . . . .  bn)eB. 
We define T :/2' -->/2' by 

(T(o')i : = w~+l (i e Z ' ) ,  

the shift. T -1 carries cylinders into cylinders and thus T is continuous. On tg, 
T is a homeomorphism. 

The orbit (P(oY) of a point m ' e / 2 '  is given by 

•(eo') : = {Tto~'l t~Z'},  

its orbit closure is 0(o/) .  
We use the symbol " ~ "  to designate mirroring, i.e. interchange of zeroes and 

ones, in all situations. Thus 

5=1, i=0, 
(J~')~ = 1 - oJ~ (o~' e / 2 ' ,  i e Z ' ) ,  

A C / 2 ' - §  = {~'[ co' ~A},  

7(c9') = /((~') (co'~/2', [ a function on /2 ' ) ,  etc. 

We shall need the following definitions and theorem only for /2' and T;  for 
a general t reatment and proofs see GOTTSCgALK-It]~DLVND [2]. A subset/20 of 
/2' is invariant if T/2o __C/2o. 

Definition 1. A subset M of Z' is dense if  there exists a D ~ N such that  t ~ Z' 
implies {t, t ~- 1 . . . . .  t -~ D} (~ M 4: 0.  

Definition 2. A point co' of /2 '  is almost periodic if U open, co' e U implies that  
{t e Z' [ T t co' e U} is dense. 

Definition 3. A subset/20 of /2 '  is minimal ff it is non-empty, closed, invariant, 
and contains no proper subset with these properties. 

Theorem 1 (GoTTSC~K [1]). (P((O') is minimal i/ and only i[ co' is almost 
periodic. 

We fix now the notation used for calculating relative frequencies of occurrence 
of blocks in points of B, X, and D. I f  ~o' e B, X, or /2  and t e Z, n e N, then we set 

/ t t 

~' (t, n )  = (cot, o~t+l . . . .  , ~ t + ~ )  

whenever it  is possible, and anything not occurring in this exposition otherwise. 
I f  b e B  and t e Z ,  let 

[1 if b---- (o'(t,n(b)--1) 
ldb ](co') : = ~0 otherwise. 
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I f  t ---- 0, then  it  is omi t t ed  along with the square brackets .  We say t ha t  b occurs 
in (9' a t  t i f f  

1,[b] (co') = 1. 

I f  c e B, then  i t  is obvious t h a t  the quan t i t y  

1 n(e ) -~  
r~(c) : - -  n(c) ~ l'[b](e) 

t = 0  

is the relat ive f requency of occurrence of b in c. I n  this vein, r0 (c) and  r l  (c) denote 
the relat ive frequencies of  zeroes and ones in c respect ively;  moreover ,  

r0 (c) + r l  (c) = 1 .  

For  a point  09' E D '  we set  
t - - 1  

rb(~O'): ---- lira 1 ~, l b ( T J w ' )  
t--~ co $ ~'~"~ 0 

if this l imit  exists, and say then  t h a t  r0 (co') exists. The existence of r0 (w') is 
obviously equivalent  with the existence of 

(1) l im r~ (09' (t, n)) 
~----~ r 

for any  one t E Z ' ;  in this case all the l imits (1) are equal, rb(09') is said to exist  
uni formly  if the  l imits (1) are uni form in t e Z' .  I n  keeping with the  usual  ter- 
minology we make  the  following definitions (for details see OXTOBr [10]). 

Definition 4. a)' e D '  is quasi-regular if  rb (09') exists for each b e B. 

Definition 5. 09' e I2' is s tr ict ly t rans i t ive  if rb (09') exists uni formly  for each 
b e B .  

Turning now to measure- theoret ical  propert ies  of  D we denote by  ~ the s e t  
of  Borel subsets of  D. All measures  considered will be defined on ~ ,  normalized,  
and T- invar ian t  (i. e. ff m is a measure,  then  it  is to be unders tood t h a t  m (D) --~ 1 
and  re(A) = m ( T A )  (A e ~ ) ) ;  for shor t  we say s imply  invar ian t  measure.  For  a 
deve lopment  of  the  following in a more general set t ing and proofs see OXTO~Y [10], 
KtCYLOFF-BOGOLIOUBOFF [6]. 

An invar ian t  measure  is ergodic i r a  ~ ,  TA = A implies m (A) m (/2 - -  A) = 0. 

Definition 6. A compac t  invar ian t  n o n - e m p t y  subset  Do of D is 

a) uniquely ergodie if there  exists exac t ly  one i ava r i an t  measure  carried by  Do, 

b) strictly ergodie ff Do is uniquely ergodic and minimal .  

Theorem 2 (OxToBY [10], see also KAKUTA~I [4]). 
Let 09 be a point o /D.  Then 
a) ~ (~o) is uniquely ergodie i /and  only i/09 is strictly transitive, 
b) ~ (m) is strictly ergodic i] and only if e9 is strictly transitive and almost periodic. 

We remark  here t h a t  if  09 is s t r ict ly transi t ive,  then  

L(1,[b] ) : = r~(w) 

defines a posit ive T- invar ian t  linear form L on the set of  all (continuous) indicator  
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functions of  cylinders with L(1) = 1. Since the linear hull of  this set is dense in 
the space of  continuous functions on Y2, L can be extended to a positive invar iant  
normalized functional  on the continuous functions, which is nothing other than  an 
invar iant  measure on ~ .  We denote this measure by  m~.  Thus the unique measure 
of  a cylinder t[b] is given in this case by  

m .  (rib]) ---- ro (w); 

more generally, if ] is a continuous funct ion on 6 (o~), then 

]/dmo~ = l i m  1 t - :  ~ T ~ / (TJco) .  

m~ is obviously carried by  0 (co). 
I t  is clear t ha t  ff 0 (co) is uniquely ergodic, then the unique invar iant  measure 

m~ is ergodie. Denote  by  ~e~ the space of  complex-valued square integrable 
functions with respect to m~ on (P (co), and suppose tha t  ~ and mo~ are invar iant  

under  mirroring, i.e. (~ (co) = 0 (co), m~ = m~.  Then T a n d "  ~ "  induce isometrics 
in Lf 2. Set 

Since T and " ~ "  commute,  ~ and ~ are T-invariant .  I t  is easily shown tha t  
~ and ~ are closed linear subspaces of  2~,  and t h a t  

~ = , ~ ,  | ~ .  

w 2. Block Arithmetic and Recurrent Sequences 

For  b ~ B, c ~ X ~J B we define 

b + e : = (bo, b l ,  . . . ,  bn(b)_l,  co, e l ,  . . . )  

b x ( 0 ) : = b  

b x ( 0 : =  

b x e:  = (b X co) + (b x e l ) + " ' .  

I f  c e B ,  then b + c, b X c E •  and 

n(b + c) - :  n(b)  + n(c)  

n (b • c) = n (b) n (c) .  

Suppose now tha t  bO, b 1, . . .  ~ B and tha t  the first member  of  each bi is a zero. 
Since it  is easily shown tha t  the operat ion " X "  is associative, 

x :  = b  0 x b 1 x b2 x ""  

defines a sequence x of  zeroes and ones in an obvious manner.  I f  n (b 9 ~ 2 for 
all i, then  x e X.  

Definition 7. E v e r y  sequence of  the form x = b 0 x b 1 x b 2 X ""  ~ X is called a 
(one-sided) recurrent sequence. 
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W e  now hs t  some e l emen ta ry  formulas  for ca lcula t ing re la t ive  frequencies 
which can easi ly be checked b y  the  reader .  Suppose  t h a t  b, c, d z B. Then :  

r0 (c) + r l  (c) = 1 

ra (c) = r~ (c) 
n(b) n(c) 

ri(b -t- c) --  n(b)q-n(c) ~'l(b) -[- n(b) q-n(c) rf(c) (i = 0, 1) 

ro (b X c) = ro (b) ro (c) -~- rl  (b) rl  (c) 

r l (b  X c) = ro (b) rl  (e) ~- rl (b) ro (c).  

F o r  technica l  purposes  we define 

sa(b) : = Ira(b) - -  rh (b ) ] .  

Obvious ly  sa(b) -~ s~(b) = sa(b) = s?t~b), and  i f  d = (0), t hen  so(b) measures  in 
a cer ta in  sense the  "ba l ance"  of  zeroes and  ones in the  block.  W e  have  

so(b ~- e) < max(s0(b) ,  so(c)) 

So (b X c) = So (b) so (c). 

I f  we assume t h a t  b is long compared  wi th  d, t hen  we ob ta in  approx ima t ions  
, ,  . n(d) 

of the  above  rules for a r b i t r a r y  d. More precisely,  suppose may  n~bT < ~. Then 

I ra (b X c) - -  {ra (b) ro (c) q- r~ (b) rl  (c)} l < s 
I rd (b • c) - -  {ra (b) r l  (c) -I- rh (b) ro (c)} I < s ,  

and  consequent ly  

(2) [ sa (b x c) - -  sa (b) so (c) I < 2 s .  

We now prove  some lemmas  a b o u t  re la t ive  frequencies in recur ren t  sequences 

and  a lmos t  per iodic i ty .  I n  t he  following suppose t h a t  

x = b ~ X b 1 X b 2 • "'" 

is a r ecur ren t  sequence. W e  set  et = bOx bl x ""  X bt (t z N,). 

L e m m a  1. x is periodic i / a n d  only i / t here  exists a k ~ N such that either 

a) b ~ • b ~+1 x b ~+2 X . . . .  ( 0 , 0 , 0 , 0  . . . .  ) ,  or 

b) b ~ X b ~+1 x b k+~ X . . . .  (0, 1,0, 1 , . . . ) .  

P r o o / E i t h e r  a) or b) is obvious ly  sufficient for per iod ic i ty  of  x. Thus  we assume 
t h a t  x is per iodic  wi th  min ima l  per iod  p and we choose t such t h a t  n (e t) > 19. 
Select  now q wi th  0 < q < 19 and  q =  n ( c t ) m o d p .  I f q  = 0, t h e n i t  is clear t h a t  
b t+l x b t+2 x . . . .  (0, 0, 0, 0 . . . .  ), so assume q > 0. Then  we asser t  t h a t  2q = ~. 

One w a y  of  seeing this  is the  following : 
On the  one hand,  

x ( n ( c t ) , p - - l ) - ~ x ( O , p - - 1 )  or x(0,  p - - 1 )  

because x ~-- c t x b t+l X b t+2 X " ' ;  
on the other hand, 

x(n(ct) ,  p - -  1) ~-- (Xq ,Xq+l , . . . ,  x p - l , x 0 , . . . ,  Xq-1) 
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because of  the p-periodicity of  x. I t  follows tha t  the funct ion n -+ xn defined on 
{0, 1 . . . . .  p -  1} is invariant  under  translat ion by  2 q m o d p .  Therefore, the 
greatest  common  divisor of  2q  and p is a period of  this function, and since p is 
the smallest period, we have 2 q = p. 

I t  follows tha t  n (e t) = ~- mod p;  

(xo , . . . , x~ /2 -1)  = (zp/2 . . . .  , x ~ - 0 ,  

and b t+l X b t+2 • . . . .  (0, 1, 0, 1 . . . .  ). _J 

Lemma 2. Every  recurrent sequence is almost periodic. 

Proof.  Let  x = b 0 x bl x b2... be a recurrent  sequence. Since the set of  
cylinders 0[c t] (t e N) forms a base of  neighborhoods for x e X, it suffices to show 
tha t  for each t e N, the set 

is dense. Fix t and look at  bt+l • bt+2 • . . . .  I f  this sequence is (0, 0, 0, 0 . . . .  ), 
then c t occurs quite regularly in x and the given set is dense. I f  not,  then choose 
s > t such tha t  bt+l • . . .  X bs contains both  a zero and a one. Then  the blocks c t 

and ~ both  occur in c s, hence also in ~.  But  

x = c s X (b s+t X b s+~ X "")  

m a y  be considered as an infinite sum of the blocks c s and c s, and each of these 
blocks contains the block c t. I t  follows tha t  the given set is dense. __J 

Lemma 3. Suppose  that x is non-periodic. Then  x is strictly transitive i / a n d  only i f  
c o  

min (to (bk), rl  (bk)) 
k = 0  

diverges. 

Proof.  I. Suppose tha t  the given sum diverges. 

1. We show tha t  l im ro (e t) ---- �89 
t 

Obviously lim ro (c t) ~ �89 iff l im so (e t) -~ O. But  
t 

t t 

so(c,) = ] - [  so(b ) = H I ro(b ) - I = 
k = 0  k = 0  

t 

= ] - [  {1 - -  2 rain (r0 (b~), rl  (b~))}, 
k = 0  

and this p roduc t  "converges"  to zero if the given sum diverges, according to the 
well-known product  convergence criterion (see e.g. K ~ o r P  [5]). 

2. l imsa (c  t) = 0 for every d E B .  
t 

.,~ n(d) 
To show this, let ~ > 0 and select T w~m ~ < e. We set 

e t : - ~ b  T + l X b  T + 2 X . . .  x b  t for t >  T. 

Then c t = c T • e t (t > T)  
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because of  associativity and therefore 

l ~,~ (ct) - ~,~ (c ~) 80 (~) l  < 2 
by  way  of  (2). Now if 

then 

oo 

~ ,  rain  (ro (b~), r l (bk) ) = oo ,  
k = O  

~ m i n ( r o ( b k ) ,  rl(b~)) = oo,  
k = T + l  

and we m a y  apply  1. to  the sequence b P+I, b ~'+e . . . .  to  obtain 

lims0 (d) ----- 0 .  
t 

Therefore 
sct (ct) < 3 e 

for sufficiently large t, which implies 

lim set (c t) = O . 
t 

3. lira ra (c t) exists for each d e t3. 
t 

Let  e > 0 and choose according to 2. T such tha t  

(3) s~(c  T) = ]rd(c r)  - -  r[l(c T) < e 

and 
n(d) 

n(cT) < s .  

and 
n(d) 

Then 

I r~ (~t) _ {r~ (~T) r0 (~) + r~ (c ~') rl (e0} [ < 

for t > T, where e t = b T+I • b T+2 • . . .  • bt. Because of  (3) and r0 (e t) + rl  (e t) = 1, 
we conclude t h a t  

I r~(c9 - r~(c ~') [ < 2 ~ (t > T ) ,  

and thus  for t and t' larger than  T, we have 

[ra(c t ) - r a ( c  t')] < 4e.  

Therefore lim ra (c t) exists. 
t 

4. x is str ict ly transitive. 
To show this, let d be an arbi t rary  finite block and e > 0. According to 2. 

and 3., lim sa (c t ) - - - -0  and lim r~(c  t) = ~ for a suitable ~. We m a y  therefore 
t t 

choose T such tha t  

l ~ -  ~(~)] < 
I ~ - r ~ ( ~ ) l  < ~ ,  
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1 
N e x t  choose M such t h a t  M ~ 2 2  < e and  set  No = M T .  F o r  any  n > No 

any/c ,  the  b lock  x (/c, n) can be wr i t t en  as a sum of  blocks as follows : 

a' + a I -t- a 2 -1- "'" @ a  m @ a" ,  

where m => M - -  2, n (a ' ) ,  

e i ther  c ~ or c ~ .  This  follows 

and  

n ( a " ) < n ( c f ) ,  and  where each a I ( l _ < i _ < m )  is 

because we m a y  wri te  x in the  form 

c T X (b T+I X b s X " " ) .  

Using now the  formulas  a t  the  beginning of  this  p a r a g r a p h  along wi th  a b i t  of  
e lbow grease, one calculates  wi thou t  diff icul ty  t h a t  

Io~ -- rc~(x(k,n))] < 6 s .  

This implies,  since e was a rb i t r a ry ,  t h a t  r~(x) exis ts  tmfformly  for  each d E B, 
i .e .  x is s t r i c t ly  t rans i t ive .  A n  app l ica t ion  o f L e m m a  2 produces  the  des i red  resul t .  

II .  Suppose  t h a t  x is s t r i c t ly  t r ans i t ive  and  set r0 (x) = g. F o r  e > 0 there  
exists  an M such t h a t  

1~ - r0(x(k, ~)) 1 < 

for al l  n => M and  all  k E N. Select  t such t h a t  n ( d )  >= M.  Then  

Is  - ro (c~) I < 

and,  since x is no t  periodic,  b t+l • b t+2 •  contains  a t  leas t  one 1. I t  follows 

t h a t  c t occurs in x a t  a cer ta in  place,  thus  

We conclude t h a t  

ll--z--r0(ct) l<e 
and  

1 1 - 2 ~ 1 < 2 c .  

This implies  t h a t  r0 (x) = ~ = i or 

l im So (c t) = 0 .  
t 

Using the  reverse  impl ica t ion  of  the  p roduc t  convergence cri ter ion,  e i ther  the  
given sum diverges  and  we are  finished, or there  exis ts  a k wi th  ro (b ~c) = �89 I n  
the  l a t t e r  ease, we s imply  a p p l y  the  above  a r g u m e n t  to  the  (s t r ic t ly  t rans i t ive)  
sequence b e+l • b ~+~ • .-- to  conclude t h a t  there  exis ts  a k '  > / c  wi th  ro (be') = �89 
B y  induc t ion  i t  follows t h a t  there  exis t  inf in i te ly  m a n y  k 's  wi th  th is  p rope r ty ,  
i .e .  the  sum in quest ion diverges.  __] 

w 3. Morse Sequences and Strictly Ergodie Subsets of s 

Le t  co' be a po in t  of  sQ, X,  or B. Then  we define the  set  Boy C B as the  set  of  
all finite b locks  occurr ing in co': 

B~, : = {b e B] there  exists  a k e Z such t h a t  co'(/r n(b) -- 1) = b}.  

F o r  each x e X define now a subse t  0x o f / 2  b y  se t t ing 

O x : =  {co~D[ Bo~C B x } .  
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Definition 8. A one-sided non-periodic recurrent  sequence x = b o • b 1 • b 2 • . . .  
is called a (one-sided) Morse sequence if  

min  (r0 (b ~) r l  (b~)) - -  r , �9 

k = 0  

The points  of (~x are then  called two-sided Morse sequences. 
I n  the following x = b0 X b 1 • b 2 • "" is a recurrent  sequence; 

e t = b  ~ 2 1 5  t; n t = n ( c  t) ( t ~ N ) .  

Lemma 4. There exists an o) e Ox with x = (coo, col, co2 . . . .  ). 

Proo/. Obviously we m a y  assume t h a t  x is non-periodic.  For  a ny  

b = (be . . . . .  bn) z B set b = (b, . . . .  , be). 

Define for i e N 

b~ f f  b n ( b g _  1 = 0 
di :  = 

i i f  bin(bg_l : 1 .  

Then  ~ :  = ~o • d ~ • ~9 X - "  is well defined and  belongs to X. Define now co by :  

(w0, col, . . .) : = x 

(o)-1,co-2 . . . .  ):  = ~ .  

To show t h a t  co e (~x i t  suffices to prove t ha t  for a ny  t e N there exists a /c e N 

such t h a t  
x(lc, 2n~ - -  1) : co(-- nt ,  2n~ - -  1). 

Bu t  if  b, c e B, t hen  b : b, b • e = b X c, and  b X c = b • c, as is easy to see, 

and  by  definition of co we have 
I ^  A I  

co(-- n t ,  2 n ~ - -  1) : (d o • ~z • . . .  • d t) _~ c ~ 

= (do • d 1 •  • d ~ ) §  c~. 

~ ~ ~ 

Also f i b ,  c e  B, then  b • c ~- b • c : b • c ~-- b • c, so t ha t  

d 0 •  l • 2 1 5  t-~c~ or c t 

since each d ~ is ei ther b t or ~ .  I t  follows t h a t  

co(- -n~,2n~-- l )=--c~-~-c~ or ~ + e  ~. 

Bu t  since x is no t  periodic, bo th  the blocks (00) and  (10) appear in  b t+l • b~+2 • ...,- 
namely,  since every sequence b~' • b~'+l • . . .  contains a one, the s t a t emen t  "(00) 
appears"  is equivalent  with the s t a t ement  "(11) appears"  and  likewise for (01) 
and  (10). I f  only (00) and  (11) appear, then  each b~' consists only of zeros; if  only 

(01) and  (10) appear,  then  b t+l • b~+2 • . . . .  (0, 1, 0, 1 . . . .  ). 
Therefore there exists a/c  e N such t h a t  

x(k,  2 n t - -  1 ) - -  co(-- nt ,  2 n t - -  1). _J 

Theorem 3. Suppose that x is a non-periodic recurrent sequence. Then C)x is 
strictly ergodie i / a n d  only i / x  is a Morse sequence. 
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Pro@ By Lemma 4 there exists an co ~ (~x with x = (w0, col, ...), which 
implies B~ = Bx.  But  by  definition of  the topology on Q, 

so tha t  0x is the orbit  closure of  co in Y2. Since x is a recurrent  sequence, x is almost  
periodic, and the fact  t ha t  x is a Morse sequence implies t h a t  x is str ict ly transit ive 
(Lemmas 2 and 3). F r o m  the definitions follows easily t ha t  co is almost  periodic 
and strict ly transitive, and Theorem 2 shows then tha t  (~x = 0,) is s tr ict ly ergodic. 

Conversely, ff 6x is str ict ly ergodic, then x is strictly transit ive (because co is 
str ict ly transitive) and L e m m a  3 shows t h a t  x is a Morse sequence. _J 

w 4. The Discrete Spectrum of 0x  

Let  x = b0 • b I • . . .  be a fixed one-sided Morse sequence; c t = b0 • . . .  X bt; 
nt = n (c t) (t E N); denote by  mx the unique normalized T-invar iant  measure on 
(~x. The purpose of  the following two paragraphs  is to investigate the spectrum 
of the operator  induced by  T on ~f2 ((~x, mx) = ~q~. We denote this operator  by  

T also. First  of  all i t  is obvious, since x is no t  periodic, t ha t  ~ appears in x for 
each t e N; it follows from this t ha t  Bx = B~ and thus •x is invar iant  with respect 
to  " N " .  Moreover, ff d e B and t e Z, then the measure of  the cylinder t[d] is 
given by  

m~ (t[d]) = r~ ( x ) ,  
and therefore 

m~ (tEd]) = r ,~ (~). 

B y  vir tue of 1.2. in the proof  of  Lemma 3, however, we have 

r~ (x) = r~ (x ) ,  

so tha t  the mapping  " , , , "  preserves measures of  cylinders. Since the set of  cy- 
finders is intersection-stable and generates the complete (~-field, we have mx = rex. 
The following theorem is a collection of the s ta tements  above. 

Theorem 4. Let x be a Morse sequence and (~x the corresponding strictly ergodic 
subset o/Y2. Then (~x is mirror-invariant ( " ,~" )  and mirroring preserves the unique 
invariant measure rex. 

As a consequence (see the end of  w 1), the space of  mx-square-integrable 
functions on Oz (which we denote by  Lf~) is the direct sum of the two T- invar iant  
subspaces 

and 

Since we are assuming tha t  x is non-periodic, we m a y  also assume (by grouping 
the b~ into new products  in a suitable manner)  t ha t  each of  the four blocks of  
length two occur in each b / (i a .N). (See end of  proof  to Lemma 4.) 

Now let t be fixed and choose an ~ ~ (Px with x = (too, ml, co2 . . . .  ). We define 
the sets Do, D1 . . . . .  D ~ _  1 as follows: 

D k : = { T k + i m c o l i ~ N }  ( O ~ ] ~ < n t ) .  
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-1 ] 
Lemma 5. D o  - - - -  Tin'(o[ct+L] U o[O~]) fl &x 

[ i=o 

Proo/. Call the set on the r ight .hand side D' .  Then D '  is closed as a finite 
union of  cylinders, and since 

(o)0, o)1 . . . .  ) = x = e t+l X @+2 • ...) 

consists of  a sum of c t and c t .  we have t h a t  T i~' o) e D '  for all i ~ N. Thus  Do C D'.  
To prove D '  C Do it suffices to prove t h a t  

(o[ct+l] ~j 0[ct+l]) (3 r C Do,  

since T in` Do C Do (i ~ N). Suppose t h a t  ~ ~ 0x (~ o[d +1] (the case where ~ ~ (~x 

(3 o[ct+l~] is handled analogously), and let ki e N be a sequence such tha t  T~ 'w-+~.  
Since o[C t+l] is open, we m a y  assume tha t  T ~' o) e o[c t+l] for all i. Now bt+l contains 
the blocks (00) and (11) and therefore either the block (001) or the block (110). 

I t  follows tha t  either c t -~ c t -}- "d or ~ -4- ~ -~ c t occurs in c t+l. Bu t  each of  the 

blocks c t A- c t, c t A- c ~,  c "7 -~ c t, c ~ -4- c ~ occur in each of  the blocks c t -4- c t + ~,  

+ ~ + c t at  mos t  one time, namely  either at  the beginning or at  the end, 
because no block is equal to  its mirror image. Since Tk'~o e 0[c t+l] and since 
(o)o, o)l . . . .  ) = c t • (bt+l • bt+2 • ...), we conclude t h a t  ki = 0 rood nt for all i. 
This implies t ha t  T k' o) ~ Do and hence ~ e Do. _J 

Note  t h a t  we have also proved tha t  ff ki e N is a sequence such tha t  T ~' o) 
converges to a point  in Do, then kl - 0 rood nt for sufficiently large i. I n  particular, 
if T~o)e  Do, then k = 0 rood nt, a fact  we shall need in the proof  of  the next  
lemma. 

Lemma 6. (Do, D1, . . . ,  Dm_l  ) is a Tartition o[ d)x into open and closed subsets 
o] ~)x such that 

TD~-I  = D~ (1 ~ k < nt) 

TDn,_I  = Do.  

Proo/. Since T is a homeomorphism and since 

T~Do = D~ (1 ~ k < nt) ,  

L e m m a  5 shows indeed t h a t  the sets Do, . . . ,  Dn~-i are open and closed. Also 

n , - - I  

U n~ C 0x ,  
k = 0  

and since the union on the left is closed and contains T* m (] e N), we have 

nt--I 

(J D~ = @z. 
k=0 

Now if Do (3 D~ # 0 for some k, then, since Do r D~ is open, there exists an 
i e I~ such that T~+~n~o) ~ Do. The remark after the proof of Lemma 5 shows 
t h a t  k = 0. Hence Do, D1, . . . ,  Dm_l  are pairwise disjoint. Finally, since TDn~_ 1 
C Do and since T is a homeomorphism, TDn, - I  : Do. -J 
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Theorem 5. For each t ~ N, ~ ~ exp (2rei/n~) is an eigenvalue o / T  corresponding 
to a continuous eigen/unetion belonging to 9 x .  

Pro@ Let t be fixed and construct the sets Do, . . . ,  Dn~-i as above. Set 
n t - - 1  

/t: = ~ ~k 1 ~ .  
k = 0  

T h e n / t  is a continuous eigenfunction with eigenvalue ~, and since 0z is mirror- 

invariant  a n d / ~  = Dk (Lemma 5), we obtain It ~ 9 x .  

Theorem 6. T has pure point spectrum on 9 x  and the eigenvalue group o/ T 
on ~ x  is given by 

~x  = {exp(2zck i/nt) l tc3~,  0 <= k < ~t} .  

Pro@ Let 9 denote the closed subspace of ~ spanned by the functions ]k t 
for t ~ N and 0 =< k < nt, the functions [t being those defined in the proof of 
Theorem 5. I t  suffices to show tha t  ~ x  = 9 .  According to Theorem 5, 9 C ~ x .  
]?or fixed t, 

/ i t - - 1  1 

k = 0  

so tha t  1D~ ~ ~ (0 =< k < nt). For any block b ~ B, we set 

Eb: = 0[hi u 0[b]. 

Since T is an isometry on the T-invariant  subspace 9 z  of ~q~z e ~nd since the set 

{TklE~lb e B ,  k ~ Z }  

spans 9 x ,  it suffices to show tha t  1E~ ~ 9 for b z B. 
Now let b be fixed and choose t such tha t  

I r ~  (Eb) - -  [rb (c9 + r~ (et)] I < e .  

This is possible because (~x is strictly ergodic and therefore 

rb(c t) + rg(ct)-->mx(jEb) aS t-->oo,  

I f  b occurs in c t or # at k, then 0 =< k < nt - -  n (b), and according to Lemma 5, 
we have T~Do = D~ O Eb. Let  E~ be the union of all D~ such tha t  b occurs in c t 

or J a r  k. Because of Lemma 6, mz(D~) = 1/nt for 0 =< k < nt, and thus 
t 

mz(Eb) = rb(c t) + rg (ct) . 

i 

But  E b C E~ and 1E, ~ ~ 9 .  I t  follows tha t  

f (1~ - -  1E,,) dmx --- ] mx (So) - -  [rb (cO + rg (ct)] [ < ~. 

Since e was arbitrary, 1E~ ~ 9 .  _j 
I t  remains to be noted tha t  Theorem 5 and Theorem 6 are true when we remove 

the restriction, made at  the beginlfing of this paragraph, tha t  each block of length 
two occurs in each b~ (i e N). This is true because the process of grouping the bi 
does not  change the group f~z itself, but  only the generators. 
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w 5. The Continuous Spectrum o~ 0x  

As in the preceding paragraph ,  let x = b 0 • b 1 • b u •  be a fixed Morse 
sequence; e t ---- b 0 • . . .  • b t (t ~ N) ; nt ~ n (ct) ; m x  the unique T- invar ian t  prob- 
abi l i ty  measure  on 0x. Our goal is now to determine a necessary and sufficient 
condition for T to have  continuous spec t rum on the subspace (#x of ~ .  

Firs t  of  all, we prove  a general  theorem on powers of  s t r ict ly ergodic t rans-  
format ions  which we shall need la ter ;  a l though the proof  is simple, this theorem 
does not  seem to have  appeared  in the l i terature yet .  

Theorem 7. Suppose that ZQo is a strictly (uniquely) ergodic set under the homeo- 
morphism To; denote by mo the unique To-invariant probability measure on Y2o. 
Then/or any n >--_ 2, ~o is strictly (uniquely) erffodic under T~ i /and  only i/ f2o 
is erffodie under T~ with respect to mo. 

Proo/. Since T~mo = too, str ict  (unique) ergodicity implies mo-ergodicity. 
Now suppose t h a t  T~ is m0-ergodic on ~Q0, and let v be a probabi l i ty  measure  on 
~Q0 with T~v ---- v and such t h a t  T~ is v-crgodic. We wan t  to show t h a t  v = m0. Set 

v + Toy + ... + T~-~v 
V0" 

Then Tovo ---- vo, and  since Qo is s t r ict ly (uniquely) ergodic under  To, we have  
vo = too. This implies t h a t  v is absolute ly  continuous wi th  respect  to mo ~ vo; 
since T~ is bo th  v-ergodic and  m0-ergodic, and  since different ergodic measures  
are mu tua l ly  singular, we conclude t h a t  v = m0; i.e. ~Q0 is uniquely  ergodic 
under  T~.  Now suppose t h a t  ~Q0 is s t r ict ly ergodic under  To; in the presence of 
unique ergodicity, s tr ict  ergodicity is equivalent  with the  s t a t ement  t h a t  all open 
sets have  posit ive measure  (see e.g. OXTOBY [10]). Bu t  this remains  true,  no 
m a t t e r  whether  we are considering To or T~;  thus  ~Qois str ict ly ergodic under  T3. -J  

We now set 2t ~- n (bt) (t ~ N) ; obviously 2t and nt are connected b y  
t 

n t = ~ t  (teN). 
t ' ~ 0  

Oddly enough, a necessary condition t h a t  ~x  have  some point  spec t rum is t h a t  
a lmost  all ~t be odd;  this is shown b y  the  following lemma.  

L e m m a  7. / ]  {t] ~t even} is infinite, then T has continuous spectrum on ~x.  

Pro@ Suppose t h a t  / e (~x is an eigenfunction of T with eigenvalne 0 : 

TI=OI. 
Then/9.  ~ ~ x  and T/u = 02/2 or 02 ~ f~x, ~x being the  group of eigenvalues of  T 
on ~ x  as defined in Theorem 6. Now mult ipl icat ion of / b y  an a rb i t r a ry  eigenfunc- 
t ion i / o f  ~ x  produces another  eigenfunction of ~x ;  choosing g sui tably  and re- 
placing / b y / g ,  we m a y  assume t h a t  

0 ---- exp \ 2 nt / 

for suitable t e N (0 = 1 is out  of  question since T is ergodic on (gx and the  con- 
s tants  do no t  belong to ~x).  Bu t  if  t' > t is chosen such t h a t  ]~t" is even, then  
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is a contradict ion to the  simplici ty of  the  eigenvahie 0 (which is a consequence of 
the  ergodici ty of  T). 

We  r e m a r k  t h a t  ff ~ x  possesses a n y  point  spec t rum,  then  the above  proof  
shows t h a t  for some t e N, 

0 - - - -  exp t ~ ]  

is an eigenvahie of  T on ~x ,  and then  ~t, is odd for all t' > t. Le t  us t ake  a look 
a t  the  Morse sequence 

y -~  b t+l • b t+2 x . . .  

and the  subset  
Do = {T~n, c o ] i z N }  

of ~x defined in w 3, co being a poin t  of  ~0x with  x ----- (coo, col . . . .  ). The  transfor-  
ma t ion  T n* maps  Do into Do, and if  / is an  eigenfunction of ~x  with  T / =  0], 
t hen  the  r e s t r i c t ion /o  of  / to  the  subset  Do fulfills Tnt/o -~ - - / o .  We define a 
m a p p i n g  ~ : d~ v --> Do b y  setting, for ~ ~ (?v, 

{c~ if  , ~ = - 0  
[ ~ ( ~ ) ] ( i n t , n t - - 1 ) =  ff ~ i = l .  

W h a t  this mapp ing  does is to replace the zeroes in ~ b y  copies of  c t and the ones 

in ~ b y  blocks c t. 

L e m m a  8. yJ is a measure-preserving homeomorphism between the strictly ergodic 
set ~)u with its unique probability measure and the set Do with the normalized measure 
given by the restriction o] n tmx  to Do; the trans/ormation T on (~u is carried by ~f 
into the trans]ormation T nt on Do; ~fl commutes with mirroring. 

Pro@ The proof  is s t ra ight forward  and  we leave the  details to the  reader.  
The  above lemma,  in addi t ion to showing t h a t  the subset  Do of (~x is s t r ict ly 

ergodic under  T m, has reduced our  p rob lem of finding out  when T has continuous 
spec t rum on ~x  to the case where all n (b~) are odd;  indeed, as r emarked  above,  
ff / is an eigenfunction of ~x ,  t h e n / 0  is an eigenfunction of (Do, T ~) wi th  eigen- 
value - -  1, ~f carries ]0 into an eigenfunction on (@u, T) wi th  eigenvalue - -  1, and 
this funct ion belongs to ~#y since ~p preserves mirroring,  moreover  all n (b t') are 
odd for t' > t. Conversely,  given a t such t h a t  n (b t') is odd for t' > t and  an 
eigenfunetion belonging to cdu with  eigenvalue - - 1 ,  then  the  process is easily 
reversed to  construct  an eigenfunction ] ~ cd x wi th  eigenvalue 0. Therefore  we 
restr ict  our a t t en t ion  to  sequences for which all n (b i) are odd. 

L e m m a  9. Let x ~ bO • b 1 • b 2 • . . .  be a Morse sequence, n (b~) being odd/or  
all i ~ ~. Then T has continuous spectrum on ~x  i] and only i/ T 2 is ergodic on (~x 
with respect to the probability measure rex. 

Proo/. According to the  remarks  af ter  L e m m a  7, ff T has an eigenvalue on ~ x ,  
then  for some t e N, 

0 -~ exp \ 2 nt] 

is an eigenvalue. Since nt is odd, On~ : - -  1 is also a (dx-eigenvalue and  T e cannot  
in this case be ergodic. Suppose conversely t h a t  T 2 is not  ergodic. Then there  

24 Z. Wahrscheinlichkei~stheorie verw, Geb., Bd. 10 
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exists a T2-invariant measurable partition {A, A'} of 0x such tha t  rex(A) > 0, 
mx(A ' )  > 0. But  A (3 T A  and A '  (3 T A '  are T-invariant  and T is ergodic; 
therefore m x ( A  (~ T A )  = m x ( A '  (3 T A ' )  = 0 and A '  = T A .  The function 
[ = I A  - -  1A, is an eigenfunetion with eigenvalue - -1  and must  belong to ~x  
because of the or~hogonality of eigenfunctions and because - -  1 ~ ~r (all nt are 
odd). _] 

Our next  task is to determine a necessary and sufficient condition for the 
strict ergodieity of ~gx under the transformation T 2, all n(b~) being odd. The 
method used is analogous to the one for determining the strict ergodicity of (9~ 
under T, and we content ourselves to give a sketch of the proof of the following 
theorem, referring the reader to Lemmas 2.3 and Theorem 3. 

Denote now for a block b = (bo, bl . . . . .  bn-1) ~ B the relative frequencies of 
even zeroes and ones, odd zeroes and ones, by 

and set 

1 n--1 1 n--1 

~o (b): = ~-~o= ~ '  e~ (b): = ~- ~=o y b~, 
keven keven 

~ _ _ ~ 1  1 n--1 
00(b): 1 b~, 0 1 ( b ) : = - - ~ b ~ ,  

n k = o  ~t k=O 
kodd kodd 

w(b): = min {eo(b) + 01(b), el(b) -4- 0o(b)}. 

Theorem 8. Let x = bO • b 1 • b 2 • . . .  be a Morse sequence, n (bi) being odd/or  
all i E N. Then ~)x is strictly ergodie under T ~" i] and only i/  

c o  

y w(bt) 
t ~ O  

diverges. 
Sketch o / p r o @  Corresponding to the function s o defined in w 2 to measure the 

balance of zeroes and ones in blocks, we define here 

so(b) :=  11 - 2w(b) I . 

Then it is also easy to show tha t  

s0(b • e) = so(b)so(e). 

Now suppose tha t  ~ w (bt) diverges. Then according to the product convergence 
criterion, 

t 

So (bO •  • b t) = ~ [  so (b J) ---> O, 
/ = 0  t->co 

which implies tha t  
1 

lim [e0 (e t) ~- 01 (ct)] = lim [el (c t) ~- 0o (ct)] = 2 " 
t t 

Putt ing this together with the known convergence of 

1 1 
e~176176  O~ 2 2n~' etc., 

one obtains easily the convergence of each of e0 (et), el (ct), 00 (ct), 01 (et) to 1. By 
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an approximation argument  similar to the one used in Lemma 3, it is easy to 
see tha t  the relative frequencies of odd and even occurrences of any fixed block 
in x exist uniformly and are equal to half of the rex-measure of the corresponding 
cylinder. In  this manner the set (gx can be shown to be strictly ergodic under the 
transformation T 2 (actually only the ergodicity is necessary because of Theorem 7). 

Conversely, if ~ w (b t) converges, then 

t 

(4) l iml-~s 0 (b~') > 0 ,  
t j = O  

since each so(b ~) > 0 (none of the w(b l) are equal to �89 because the n(bq are all 
odd). However, if  (~x were strictly ergodie under T 2, then e0 (ct), el (ct), Oo (ct), 01 (c t) 
would all have to converge to �88 and this contradicts (4). 

We collect the results of this paragraph in the following theorem; note tha t  
Theorem 7 is needed to put  Lemma 9 and Theorem 8 together. Also, according 
to the remarks after Lemma 8, the condition in Theorem 8 for T to have continuous 
spectrum on ~x is correct if  finitely many  n (bt) are even. 

Theorem 9. Let x = bO • bl • b 2 • . . .  be a Morse sequence and set ),t =- n (b t) 
(t ~ N). T possesses continuous spectrum on ~ x  i[ and only if  either 

1) there exist infinitely many  even ,~t, or 
r 

2) ~ w (bt) diverges. 
t = O  

A Morse sequence for which one of these conditions is satisfied is called continuous. 

w 6. Entropy 

In  this paragraph we prove tha t  ff x is a Morse sequence, then the entropy 
of T on the strictly ergodic set &x is zero. Let  x be a Morse sequence and denote 
by  B~ n the set of all blocks of length n which occur in x. 

Lemma 10. For each t, the number of blocks in B n~ is less than 4nt .  

Proof. Since x is an infinite sum of the blocks e t and ~ (of length nt), any block 

of length nt occurring in x must  occur in one of the four blocks c~ q- ct, ct + c t, 

~ c t, c ~" -4- st; the maximal  number  of blocks of  length n~ in these four blocks 
is less than 4nt.  

Theorem 10. I f  x is a Morse sequence, then T has entropy zero on the strictly 
ergodic set ~)x. 

Proof. The parti t ion of ~ into the cylinders 0[0] and 0[1] generates the a-field 
-~ of ~ .  Thus the entropy of T on &x is given by  the mean entropy of this partition. 
But  according to Lemma 10, the number  of cylinders of length nt with positive 
rex-measure is less than 4nt,  since a cylinder must  have rex-measure zero if its 
corresponding block does not occur at  all in x. We conclude that  the mean entropy 
of the said parti t ion is less than  

log 4 nt 
7~ t 

for each t, and this expression converges to zero as t goes to infinity. 

24* 
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w 7. Examples  and Problems 

1. Our  first example  is the  one which led us to  consider more general  sequences, 
the  or iginal  Morse sequence. Set  b ~ ~ b 1 - -  - -  (01); t hen  ro(bt)  ~- �89 n (b  t) -~ 2 
(t e N), and  x : b0 • b 1 • . . .  is in our  t e rmino logy  a cont inuous  Morse sequence, 
i ts e igenvalue group being the  group of  all  2~-th roots  of  uni ty .  These resul ts  were 
announced  wi thou t  p roof  b y  KAKVTA~I in [4] ; i t  was also s t a t ed  in [4] t h a t  the  
spec t rum of  T on (#x for th is  sequence is s ingular  wi th  respect  to  Lebesgue 
spec t rum,  and  o ther  sequences were given for which these  resul ts  are also t rue.  
I n  our te rminology,  those sequences m a y  be cons t ruc ted  b y  va ry ing  the  blocks b i, 
se t t ing  t h e m  ei ther  equal  to  (00) or  (01) according to  ano ther  f ixed sequence of 
zeroes and  ones, which could be given for  ins tance  b y  the  b i n a r y  represen ta t ion  
of a number  f rom the  un i t  in terva l .  

2. Le t  ~ be an  a r b i t r a r y  infini te subgroup  of  the  group of  all  (complex) roots  
of  un i ty .  Then  there  exists  a s t r i c t ly  ergodic subse t  of  t9 wi th  p a r t l y  cont inuous  
spec t rum whose eigenvalue group is exac t ly  ~ .  To see this,  choose a sequence 
2 ~ no < n l  < n2 < "'" of integers  such t h a t  nt d iv ides  nt+l (t e N) and  such 
t h a t  ~ is genera ted  b y  { e x p ( 2 ~ i / n t )  l t  e N} (note t h a t  ~ is countable) .  Then  set 

n t  
4o : = n o  7t : - -  - -  (t > 0 ) ,  

- -  ~ t - 1  

and  choose blocks b 0, b 1 . . . .  wi th  n (b t) ~- .~t (t e 1~) and  such t h a t  x = b ~ • b 1 • b2 •  
is a cont inuous  Morse sequence. F o r  instance,  i t  would  suffice to  set t he  first  [2t/2] 
componen t s  of  b t equal  to  zero and  the  res t  equal  to  one. Then  Theorem 3 shows 
t h a t  0x is s t r ic t ly  ergodie, Theorem 9 says  t h a t  T has  cont inuous  spec t rum on ~ x ,  

and  Theorem 6 provides  ~ x  = ~-  

3. Set  b 0 : b 1 - -  - -  (001); then  ro(b t) =- ~, w ( b  t) : ~,1 and  thus  the  con- 
di t ions  are fulfilled for x = bO • b 1 • . . .  to be a cont inuous  Morse sequence. The 
eigenvalue group ~ x  of  x is the  group of  all  3~-th roo ts  of  uni ty .  

4. Suppose  now t h a t  b0, bl . . . .  are chosen such t h a t  
c o  

~ min(r0(b~), r l (b~) )  < o o .  
k = 0  

This  is eas i ly  a t t a i n e d ;  for  ins tance  set  n ( b  ~) ~- 2 k+l a n d  b k ---~ ( 0 0 . . . 0 0 1 ) .  The 
above  sum then  reduces to  

2 ~ + ~  - -  1 .  
k = 0  

I t  follows t h a t  x = b 0 • b 1 • . . .  is no t  a Morse sequence. L e m m a  2 implies  t h a t  
Ox is a min ima l  set,  b u t  Theorem 3 shows t h a t  (gx is no t  s t r i c t ly  ergodic.  I n  th is  
manne r  we can cons t ruc t  a mu l t i t ude  of  min ima l  sets which are no t  s t r i c t ly  ergodie.  
The first example  of  a min ima l  b u t  no t  s t r ic t ly  ergodie set  was given b y  A. MARNOV 
(see [9], [10]); i t  canno t  be cons t ruc ted  in the  above  manner .  

5. F o r  some cont inuous  Morse sequences x = b0 • bl • . . .  we have  been able 
to  show the  s ingula r i ty  of  the  spec t rum of  T on ~ 'z ,  e .g.  1. and  3. above.  The  
proofs un fo r tuna t e ly  m a k e  use of  recurs ion formulas  for re la t ive  frequencies 
der ivable  because of  b0 = b 1 = . . . ;  the  idea for th is  m e t h o d  was d ivu lged  to  the  
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author  by  KA~:UTAXI. I t  would be interesting to determine whether  the spectrum 
of  T on ~ff, is singular for every continuous Morse sequence. 

6. The problem of i somorphy between str ict ly ergodic systems of  the type  
discussed here is connected with the problem in 5. as well as with the problem 
of representat ion of a given (continuous) Morse sequence x =-- b0 • b I • ... as a 
product  of  other  blocks than  the b~. How can an isomorphy s ta tement  of  the type  
given in [4] be generalized and proved ? 

7. Set b 0 = b  1 . . . . .  (010); then x = b  ~ 2 1 5  1 •  . . . .  ( 0 , 1 , 0 , 1  . . . .  ) is a 
periodic sequence of  period 2. This example induced us to prove Lemma 1, which 
says roughly  t h a t  this is the "only  t ype"  of  periodicity which can occur if  the b i 
are not  finally all zeroes. Looking at  2. above and t ry ing to  find a strictly ergodic 
system with a finite eigenvalue group, we have only been able to produce examples 
of  a periodic nature.  Is  it possible to construct  a strictly ergodic system with a 
finite eigenvalue group ? with continuous spectrum ? W h a t  is the eigenvalue group 
of  the str ict ly ergodic system given in [3] ? Is  there a connection between this 
problem and en t ropy  ? 

8. One can consider other  spaces than  ~9 ; the idea of  considering a state space 
of  n elements (instead of  2) is inviting, and produces more as symmet ry  in t ha t  
there are more permutat ions  of  the state space than  in the case of  two elements, 
where the only permutat ions  are the ident i ty  and mirroring. 

9. I t  is practical ly trivial t ha t  the str ict ly ergodic sets given here do no t  
exhaust  the strictly ergodic subsets of  f2 - -  it is only a beginning on the classifi- 
cation of  these subsets. 

Literature 

1. GOTTSO~LK, W. H. : Almost periodic points with respect to transformation semigroups. 
Ann. of Math., II. Ser. 47, 762--766 (1946). 

2. -- and G. A. HEDLU•D : Topological dynamics. Amcr. Math. Soc. Coll. Publ. 36, (1955). 
3. HAm% F. J., and Y. KATZ~ELSO~: On the entropy of uniquely ergodic transformations. 

Trans. Amer. math. See. 1~6, 335--360 (1966). 
4. KXKUTANI, S. : Ergodic theory of shift transformations. Prec. Fifth Berkeley Sympos. 

math. Statist. Probability II, 405--414 (1967). 
5. K~oPPP, K.: Infinite sequences and series. New York: Dover 1956. 
6. KRYLOF, N., eft N. BOGOr,IOUI~OFF: La ~heorie generale de la mesure dans son application 

a l'etude des systemes dynamiques de la mechanique non lineaire. A. of Math., II. Ser. 
38, 65--113 (1937). 

7. MORSE, M., and G. A. HEDLUND : Symbolic dynamics. Amer. J. Math. 60, 815--866 (1938). 
8. -- -- Unending chess, symbolic dynamics, and a problem in semigroups. Duke math. J. 

11, 1--7 (1944). 
9. NEM:fC~H, V. V., and V. V. STErA~OV: Qualitative theory of differential equations. 

Princeton Math. Ser. 22 (1960). 
10. OxTo~u J. C.: Ergodic sets. Bull. Amer. math. Soc. 58, 116--136 (1952). 

MICHAEL KEANE 
Dept. of Mathematics 
Yale University 
New Haven, Conn. 06520 


