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Summary. A method for construction of almost periodic points in the shift space on two
symbols is developed, and a necessary and sufficient condition is given for the orbit closure
of such a point to be strictly ergodic. Points satisfying this condition are called generalized
Morse sequences. The spectral properties of the shift operator in strictly ergodic systems
arising from generalized Morse sequences are investigated. It is shown that under certain
broad regularity conditions both the continuous and discrete parts of the spectrum are non-
trivial. The eigenfunctions and eigenvalues are calculated. Using the results, given any sub-
group of the group of roots of unity, a generalized Morse sequence can be constructed whose
eontinuous spectrum is non-trivial and whose eigenvalue group is precisely the given group.
New examples are given for almost periodic points whose orbit closure is not strictly ergodie.

Introduction

In order to explain our results we shall need some notation. A sequence
b = (bo, ..., by) of zeroes and ones is called a block. The block obtained from b
by changing zeroes into ones and vice-versa is called the mirror image of & and

denoted by b. A fixed block ¢ = (co, ..., ¢5) may be used as a rule to construct
new blocks from old ones: if b is a block, then we form the block b X ¢ by putting

n -+ 1 copies of either b or b next to each other, choosing the ¢*% copy as b if ¢; = 0

and as b if ¢; = 1. Now if ¢ = 0, then the block & X ¢ is simply an extension of
the block b.

Using the notation, we may define the well-known Morse sequence z (see
e.g. [4], [7], [8]) as an infinite “product” of blocks: set b = (01) and z = b X b
Xbx . In words, this rule says: first write down 01, and then at each
succeeding step write the mirror image of the complete previous production to
the right of the same. The first 32 members of z are

01]10] 1001 | 10010110] 1001011001101001 | ... .

Let us denote by {2 the space of two-sided sequences of zeroes and ones, and
by T the shift transformation on (2. The following results were announced by
S. KaxuTaxt in [4]. If the Morse sequence 2 is continued to the left in a suitable
manner to produce a point of £, then the orbit closure ¢, of this point under 7'
is a strictly ergodic subsystem of (2, 7). Furthermore, 7' possesses partly contin-
ucus and partly discrete spectrum on 0, with respect to the uniquely determined
probability measure on @, and the group %, of eigenvalues of T on @, coincides
with the group of all 2-th roots of unity.

In this paper we consider the infinite sequences which can be produced by the
above-mentioned method of generating new sequences from old ones. For instance,
if we set b = (001), then = b X b X b X ... defines a “ternary” sequence

x = (001 001 110 001 001 110 110 110 001 ...),

23
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and the statements above are shown to be valid for this , the group of eigenvalues
this time being the group of all 3%5-th roots of unity. In general, if 89, b, ... are
blocks all beginning with a zero and having length greater than two, then
x = b0 x b1 X b2 x ... defines an infinite sequence. We determine a necessary and
sufficient condition for z to be periodic. Then, restricting our attention to non-
periodic z, we show that a necessary and sufficient condition for the corresponding
(canonically defined) subset @, of 2 to be strictly ergodic is that a sufficient
portion of both zeroes and ones occur in the blocks 49, 81, ... which define ». If
ro{D), r1(b) denote the relative frequencies of occurrence of zeroes and ones
respectively in the block b, then this condition is simply that the sum

> min (ro (59, 1.()

=0
diverge. Non-periodic sequences « for which this condition is satisfied are called
(generalized) Morse sequences.

If x is a Morse sequence, then we show that the spectrum of T on the subspace
of functions invariant under mirroring is discrete; the eigenvalue group is the
group of all n (b9) n(dL)...n(b%)-th roots of unity, where n(b) denotes the length
of a block b.

We derive a necessary and sufficient eondition on z for T to have continuous
spectrum on the orthogonal complement of the above subspacel. It is somewhat
surprising that 7' always has continuous spectrum on this subspace if »(bf) is
even for an infinite number of ¢; if this is not the case, then the condition is,
roughly speaking, that a sufficient portion of odd (or even) zeroes and ones exist
in the blocks b9, 81, ... and is expressed in a sum as above. In the course of in-
vestigation we prove that if (£, T') is any strictly ergodic system and if = is
such that T% is ergodic, then (2o, T%) is strictly ergodic.

We show that the entropy of T’ on @ is zero if # is a Morse sequence.

In answer to a question raised by K. Jacoss as to which groups of roots of
unity can possibly occur as eigenvalue groups of strictly ergodic subsystems of
(Q, T'), we construct, using the above results, for any infinite group of roots of
unity a continuous Morse sequence having the given group as its group of eigen-
values.

Finally, the necessary and sufficient condition for strict ergodicity of 05 and
the fact that @5 is always a minimal set provide numerous examples of minimal
sets which are not strictly ergodic. We give these and other examples and discuss
further problems in the last paragraph.

§ 1. Preliminaries

We shall be dealing with finite or infinite sequences & = (b, b1, ...) of zeroes
and ones, called finite or infinite blocks. Let B be the set of finite blocks, X the
set of infinite blocks. The length of b € B is denoted by #(b). Denote by £ the
set of two-sided sequences of zeroes and ones. We have

X =[]{0,1} = {5 = (w0, 21, ..) | {0, 1} (e M)}
iy

.Q:H{O, I'={w=(.., 01,0, 01,...) | 0;€{0,1} (i € L)},
z

1 Such sequences are called continuous Morse sequences.



Generalized Morse Sequences 337

where Z denotes the integers, N the non-negative integers. £2’ will stand for either
Q or X and Z’ for Z or N respectively in parallel statements about £ and X.

Provided with the product topology, £ is a compact, metrisable, totally
disconnected Hausdorff space, a clopen base for the topology being given by the
set of all (finite-dimensional) cylinders

[0 = {a)’eQ’|wzzbo,...,w;ﬂ:bn},

nelN, teZ’, b=(bo,b1,...,b,)e B.
We define T': 2" — ' by

(Tw)i:=wip; (Ge'),

the shift. 7'-1 carries cylinders into cylinders and thus 7 is continuous. On £,
T is a homeomorphism.
The orbit 0(w’) of a point w’ € Q' is given by

Olw):={Ttw'"|tel'},

its orbit closure is 0 (w’).
We use the symbol “~" to designate mirroring, i.e. interchange of zeroes and
ones, in all situations. Thus

0=1, 1=0,
(@)=1—w; (e, icl),
ACQ A ={3'|wed},
?(w') = f(w") (0’ €8, f a function on 2), ete.
We shall need the following definitions and theorem only for £’ and 7T'; for

a general treatment and proofs see GorrscHark-HEDLUND [2]. A subset 24 of
L2 is invariant if 70y C Q.

Definition 1. A subset M of Z’ is dense if there exists a D e N such that t e Z’
implies {f,t 4+ 1,....t+D}NM +0.

Definition 2. A point w’ of Q' is almost periodic if U open, o’ € U implies that
{teZ'|Ttw' e U} is dense.

Definition 3. A subset 2y of £’ is minemal if it is non-empty, closed, invariant,
and contains no proper subset with these properties.

Theorem 1 (GorrscHALK [1]). O(w’) ts minimal if and only if o' is almost
periodic.

We fix now the notation used for calculating relative frequencies of occurrence
of blocks in points of B, X, and Q. If w’ € B, X, or Q and t € Z, n € N, then we set

7 7 ’
@ (£, n) = (W, Wgy1, v Oppn)

whenever it is possible, and anything not occurring in this exposition otherwise.
If beB and teZ, let

n. J1 i b=ow'{nd)—1)
L (@) : = {O otherwise.
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If ¢ = 0, then it is omitted along with the square brackets. We say that b occurs
in @' at £ iff
L (o) =1.

If ¢ € B, then it is obvious that the quantity

is the relative frequency of occurrence of b in ¢. In this vein, 7o (c) and 7; (¢) denote
the relative frequencies of zeroes and ones in ¢ respectively; moreover,

ro(c) +r1(e) =1.
For a point o’ € £2" we set
=1
ro(@’) : = lim % S (T o)
=0

{—co

if this limit exists, and say then that ry(w’) exists. The existence of ry(w’) is
obviously equivalent with the existence of

(1) lim 7y (' (£, 7))

n—>co

for any one { € Z'; in this case all the limits (1) are equal. ry(w’) is said to exist
uniformly if the limits (1) are uniform in ¢ € Z'. In keeping with the usual ter-
minology we make the following definitions (for details see OxrosY [10]).

Definition 4. o' € ' is quasi-regular if ry (w’) exists for each b € B.

Definition 5. ' € £’ is strictly transitive if (') exists uniformly for each
beB.

Turning now to measure-theoretical properties of £ we denote by % the set.
of Borel subsets of . All measures considered will be defined on &%, normalized,
and T-invariant (i.e. if m is a measure, then it is to be understood that m () = 1
and m{A4) = m(T A) (4 € B)); for short we say simply invariant measure. For a
development of the following in a more general setting and proofs see OxronY [10],
KrYLOFF-BoGOLIOUBOFF [6].

An invariant measure is ergodic if 4 € Z, TA = A implies m (4)m (2 — A) = 0.

Definition 6. A compact invariant non-empty subset £ of £ is

a) uniquely ergodic if there exists exactly one invariant measure carried by o,

b) strictly ergodic if Qg is uniquely ergodic and minimal.

Theorem 2 (OxToBY [10], see also KARUTANT [4]).
Let o be a point of 2. Then

a) O(w) ts uniquely ergodic if and only if w is strictly transitive,
b) O(w) is strictly ergodic if and only if w is strictly transitive and almost periodic.
We remark here that if o is strictly transitive, then

L(lz[b]) I=Tp (C())

defines a positive T-invariant linear form L on the set of all (continuous) indicator
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functions of cylinders with L (1} = 1. Since the linear hull of this set is dense in
the space of continuous functions on Q, L can be extended to a positive invariant
normalized functional on the continuous functions, which is nothing other than an
invariant measure on . We denote this measure by m . Thus the unique measure
of a cylinder 4[] is given in this case by

M (0]) = ry(w);

more generally, if f is a continuous function on @ (w), then

—>

[fdmy = lim %t_zlf(wa).
t—>oo = j=0

Mg is obviously carried by @(w).

Tt is clear that if 0 (w) is uniquely ergodic, then the unique invariant measure
mg is ergodic. Denote by #2 the space of complex-valued square integrable
functions with respect to mq, on 0 (w), and suppose that @(w) and m, are invariant

under mirroring, i.e. O(w) = O{w), My = me. Then T and ““ ~”’ induce isometries
in #2. Set

wi={fe Lt f=F}
Co:={feLL|f=—{}.

Since 7' and “ ~" commute, P, and €, are T-invariant. It is easily shown that
Dy and € are closed linear subspaces of & 2 and that

L =Dy D€

§ 2. Block Arithmetic and Reeurrent Seqnences
For be B, ce XU B we define
b4-c:=(bo,b1,..., b, ~1,C0,¢1,...)
bx(0):=b
bx (1):=b
bxer=(bXco)+ (bxe)t .
If ceB,then b4 ¢, b xceB and

n(b + ¢) = n(b) + n(c)
n{b X ¢) =n(b)n(c).
Suppose now that 69, b1, ... € B and that the first member of each &t is a zero.
Since it is easily shown that the operation ““X” is associative,

x::bOxblbex...

defines a sequence z of zeroes and ones in an obvious manner. If # (b%) = 2 for
all £, then x € X.

Definition 7. Every sequence of the form = == 89 X b1 x b2 x -++€ X is called a
(one-sided) recurrent sequence.
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We now list some elementary formulas for caleulating relative frequencies
which can easily be checked by the reader. Suppose that b, ¢, d € B. Then:
ro(c) +ri(c)=1

ra(e) = 13 @)
b .
b+ o) = )+ g O =01

ro (b X ¢} = ro{(b) ro{c) + r1(b)
r1(b X ¢) = ro(b) r1(c) + r1(b)

For technical purposes we define
sa(b): = |ra(b) —rz(B)} -

~ ~

Obviously sg(b) = s3(b) = sq(b) = s3(b), and if d = (0), then so(b) measures in
a certain sense the “balance” of zeroes and ones in the block. We have

so(b + ¢) =< max(sg(b), s0(c))

s0(b X ¢) = so(b) so(c) -

I

If we assume that b is long compared with d, then we obtain approximations
n{d)

of the above rules for arbitrary d. More precisely, suppose thatn—(bT << &. Then

[ra(d X ¢) — {ra®) ro(c) +ra@®) ri(0)}| <e

{725 x ¢) — {rad) ra{e) + ra@)role)}| <e,
and consequently
(2) [sa(bxc) —sa(b)so(e)]| <2e.

We now prove some lemmas about relative frequencies in recurrent sequences
and almost periodicity. In the following suppose that
xIbOXb1Xb2X"'

is a recurrent sequence. We set ¢t = b0 x bl x --- X bt (t € N},

Lemma 1. z is periodic if and only if there exists a k € N such that either

a) bF X BEHL x bEt2 x -+ =(0,0,0,0,...}, or

b) bF x DE+L X bE¥2 % --- = (0,1,0,1,...).

Proof Either a) or b) is obviously sufficient for periodicity of z. Thus we assume
that z is periodic with minimal period p and we choose ¢ such that n(ct) = p.
Select now ¢ with 0 =< ¢ < p and g= n(c¢t)mod p. If ¢ = 0, then it is clear that
B+l bt+2 x ---= (0,0, 0,0, ...), so assume ¢ > 0. Then we assert that 2q = p.
One way of seeing this is the following:

On the one hand,

2m(e),p—1) =20,p—1) or z0,p—1)

because x = ¢t X bt+l x Bi+2 3 «.;
on the other hand,

x(n(ct)’p - 1) = (xq:wq+1> ey Tp—1, %0, ---;xq-—l)
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because of the p-periodicity of z. It follows that the function % - z, defined on
{0,1,...,p — 1} is invariant under translation by 2¢ mod p. Therefore, the
greatest common divisor of 2¢ and p is a period of this function, and since p is
the smallest period, we have 29 = p.

It follows that = (¢t) = % mod p;

(.’L‘o,...,xp/z_l) = (xp/g, ...,:Upﬂl) ’

and bl x btt2 X+ = (0,1,0,1,...). _

Lemma 2. Every recurrent sequence is almost periodic.

Proof. Let x =00 x b1 xb2... be a recurrent sequence. Since the set of
cylinders o[¢?] (¢ € N) forms a base of neighborhoods for z € X, it suffices to show
that for each £ €N, the set

{k| T*xco[ct]}

is dense. Fix ¢ and lock at b#*1 x bt+2 x .-+, If this sequence is (0,0, 0,0, ...),
then ¢t occurs quite regularly in 2 and the given set is dense. If not, then choose
§ > t such that bt+1 X --+ X bs contains both a zero and a one. Then the blocks ¢

and ¢t both occur in ¢$, hence also in ¢5. But
X =S X (bs-!»l X §5+2 % )

may be considered as an infinite sum of the blocks ¢t and ¢3, and each of these
blocks contains the block ¢f. It follows that the given set is dense. _I

Lemma 3. Suppose that x is non-periodic. Then x is strictly transitive if and only if

S min (ro (5¥), r1 (6%))
k=0

diverges.
Proof. 1. Suppose that the given sum diverges.
1. We show that lim 7o (c¢!) = {
¢

Obviously limrg(ct) = 1 iff limsg(c?) = 0. But
¢

t ¢
=1 o065 =1 1o —ra9)] =
k=0 k=0
t
=TT{1 — 2min(ry (b%), r, (B¥))},
k=0

and this product “converges” to zero if the given sum diverges, according to the
well-known product convergence criterion (see e.g. Kxore [5]).

2. limsg(cf) = 0 for every de B.
t

To show this, let ¢ > 0 and select 7' with :((:2) < &. We set

et =pT+1 s pTH+2 % ..o xx bt for t> 7.

Then cd=cTxe (t>1T)
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because of associativity and therefore

[sa(ct) — sa(c”) so(eh)| < 2¢
by way of (2). Now if

s

min (rg (b¥), 71 (b¥)) = oo,

k=0

I

then

S min (rg (bF), r1 (b¥)) = oo,
E=T+1

and we may apply 1. to the sequence 67+1, 87+2, |, to obtain
limsg(et) = 0.

{
Therefore

sg(ct) < 3e
for sufficiently large ¢, which implies

limsg(ct) =0.
t

3. limrg(c*) exists for each d € B.

t
Let £ > 0 and choose according to 2. 7' such that

3) sa(cT) = |ra(c?) —rz(c™)| < e
and

n(d)

(el <&
Then

|ra(ch) — {ra(c") ro(et) +ralc™) ri(e)}| <e

fort > T, where ¢t = bT+1 X bT+2 x +++ X bt. Because of (3) and ro(ef) 4 r1(ef) =1,
we conclude that
[ra(e)) —rac)| <2 (¢>1),

and thus for £ and ¢’ larger than 7', we have
|ra(ct) —ra(ct)| < 4e.

Therefore limry(ct) exists.
t

4. x is strictly transitive.
To show this, let d be an arbitrary finite block and ¢ > 0. According to 2.
and 3., lim sg(ct) = 0 and lim r4(c?) = o for a suitable «. We may therefore
¢ t
choose T such that
| —ra(c?)| <e
| —rzeh)] <&,
and
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Next choose M such that j[—l_—z < ¢ and set No = MT. For any n > Ny and
any k, the block x(k, n) can be written as a sum of blocks as follows:

o +al+ a2+ +am+a”,
where m = llif — 2, n(a), n(e”’) < n(cT), and where each af (1 <i < m) is
either ¢ or ¢”. This follows because we may write z in the form

e X (BTFE X BTTEx ).

Using now the formulas at the beginning of this paragraph along with a bit of
elbow grease, one calculates without difficulty that

| —rglz(k,n))| <6¢.
This implies, since ¢ was arbitrary, that rz(2) exists uniformly for each d e B,
i.e. x is strictly transitive. An application of Lemma 2 produces the desired result.

II. Suppose that z is strictly transitive and set ro(x) = «. For &£ > 0 there
exists an M such that
o — ro(@(k,n))| <e

for all n = M and all k € N. Select ¢ such that n (¢!} = M. Then
| —rolch)| < e

and, since x is not periodie, b*+1 X bt+2 X -+ contains at least one 1. It follows
that ¢t ocours in # at a certain place, thus

lo — ro(ch)] <e.
We conclude that
|1 —a—ro(ch)| <e
and
|1 —2a| < 2¢.

This implies that ro(z) = a = § or
limsp(ct) = 0.

!
Using the reverse implication of the product convergence criterion, either the
given sum diverges and we are finished, or there exists a k with r¢(b%) = 1. In
the latter case, we simply apply the above argument to the (strictly transitive)
sequence b¥+1 X bk+2 x -« to conclude that there exists a &' > & with ro(6%') = 1.
By induction it follows that there exist infinitely many £’s with this property,
i.e. the sum in question diverges. N

§ 3. Morse Sequences and Striefly Ergodic Subsets of

Let o be a point of 2, X, or B. Then we define the set By C B as the set of
all finite blocks occurring in w”:
By : = {b € B| there exists a ke Z such that «'(k,n(b) — 1) =b}.
For each xz € X define now a subset 0, of 2 by setting
Op:={we2|B,C B;}.



344 M. Kgaxe:

Definition 8. A one-sided non-periodic recurrent sequence xz==549% X 41 X b2 X ++-
is called a {one-sided) Morse sequence if

> min (rg (bk), r1 (BF)) = oo .
£=0
The points of 0 are then called two-sided Morse sequences.
In the following # = 6% X b1 X b2 X --- is a recurrent sequence;
et =00 X -+ xXbt; ng=mn(ct) (teN).
Lemma 4. There exists an w € Oy with x = (wo, w1, Wz, ...).
Proof. Obviously we may assume that x is non-periodie. For any
b= (bo,...,bn) € B set b= (b, ..., bo).
Define for s N

di . bi jf b;:t(b‘)—l = O
) b@ if b:z(b’)—l == ]. .

Then  : = d0 X d1 X d2 X -+ is well defined and belongs to X. Define now o by:
(wo,a)l,...):zx
(-1, w-2,...): = z.
To show that w € 0, it suffices to prove that for any ¢t € N there exists a ke N

such that
2k, 27— 1) = w(— m,2m; — 1).

2 A A N %
But if b, ce B, then b =5, b Xc=>bxXc¢, and b X¢c=DbXe¢, as is easy to see,

and by definition of w we have
w(—n, 2n— 1) = (Joxélx---xzit)+ct
= (dOx dl XX df)y+ct.

~—~—~— A

Alsoifb,ceB,thenbxc:ngszgngc,sothat
Oxdx-Xd=c or

since each d* is either ¢ or Bt. Tt follows that
w(—mng, 2ng— 1) =ct+ ¢t or ;—]—ct.

But since 2 is not periodic, both the blocks (00) and (10) appear in b#+1 X ht+2 x -+ +;
namely, since every sequence bt X b#'+1 x --- contains a one, the statement *‘(00)
appears” is equivalent with the statement “(11) appears” and likewise for (01)
and (10). If only (00) and (11) appear, then each b*’ consists only of zeros; if only

(01) and (10) appear, then b+l x bt+2 x .- = (0, 1,0, 1, ...).
Therefore there exists a & € N such that
z{k, 2ns — 1) = w(—ng, 2ns — 1) . |

Theorem 3. Suppose thot = is a non-periodic recurrent sequence. Then Oy s
strictly ergodic if and only if x is a Morse sequence.
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Proof. By Lemma 4 there exists an w e 0, with 2 = (wp, w1, ...), which
implies B, = B;. But by definition of the topology on £,

so that 0, is the orbit closure of w in . Since z is a recurrent sequence, z is almost
periodic, and the fact that = is a Morse sequence implies that x is strictly transitive
(Lemmas 2 and 3). From the definitions follows easily that w is almost periodic
and strictly transitive, and Theorem 2 shows then that 0, = 0, is strictly ergodic.

Conversely, if 0, is strictly ergodic, then # is strictly transitive (because w is
strictly transitive) and Lemma 3 shows that x is a Morse sequence. .

§ 4. The Diserete Spectrum of O,

Let 2 = 60 x b1 X --- be a fixed one-sided Morse sequence; ¢t =50 X +++ X bt;
ng = n(c*) (¢ € N); denote by m, the unique normalized 7'-invariant measure on
0z. The purpose of the following two paragraphs is to investigate the spectrum
of the operator induced by 7' on Z2(0,, my) = F2. We denote this operator by

T also. First of all it is obvious, since # is not periodic, that ot appears in z for
each t € N; it follows from this that B, = Bj; and thus @, is invariant with respect
to “~”". Moreover, if d € B and t € Z, then the measure of the cylinder ;[d] is
given by

Mz ([d]) = ra (@) ,
and therefore

my(i[d]) = r3(x).
By virtue of L.2. in the proof of Lemma 3, however, we have

tq (%) =713 (‘Z) »

so that the mapping “~” preserves measures of cylinders. Since the set of cy-
linders is intersection-stable and generates the complete o-field, we have my = .
The following theorem is a collection of the statements above.

Theorem 4. Let x be a Morse sequence and Oy the corresponding strictly ergodic
subset of Q. Then Oy is mirror-invariant (‘‘ ~"’) and mirroring preserves the unique
invariant measure my.

As a consequence (see the end of §1), the space of mg-square-integrable
functions on O, (which we denote by #Z) is the direct sum of the two 7'-invariant
subspaces

Do={feL5|f=1}

and _
Ca={lc L2 =T}

Since we are assuming that z is non-periodic, we may also assume (by grouping
the &% into new products in a suitable manner) that each of the four blocks of
length two ocecur in each 6% (i € N). (See end of proof to Lemma 4.)

Now let ¢ be fixed and choose an w € 0, with x = (wq, w1, w2, ...). We define
the sets Dy, Dh, ..., D, as follows:

Dp:={T*"plicN} (0<k<mny).
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n(bt+1)—1
Lemma 5. Do = U T (o[et+1] U o[cFH]) | A 0.

Proof. Call the set on the right-hand side D’. Then D’ is closed as a finite
union of cylinders, and since

(@0, W1, ...) = & = P+l X (B+2 X -+1)

consists of a sum of ¢f and ¢f, we have that T & D’ for all i & N. Thus Dy cD.
To prove D’ C Dy it suffices to prove that

(o[e#1] U o[é1]) N 0, C Dy,

since T Doy C Dy (¢ € N). Suppose that 5 € 0 N o[ct*!] (the case where 7 € Oy
N o[éﬁf] is handled analogously), and let k; € N be a sequence such that T%w .
Since o[¢ct+1] is open, we may assume that 7% w e o[¢t1] for all 7. Now b?+1 contains
the blocks (00) and (11) and therefore el’oher the block (001) or the block (110).
It follows that elther ¢t - ¢t + ¢ or o -+ ct -+ ¢f oceurs in ct+1l, But each of the
blocks ¢t 4 ¢t, ¢t - c", ct -+ ¢, ct -+ ¢ oceur in each of the blocks ct 4 ct-i-ct,
¢ 4 ¢t + ¢ at most one time, namely either at the beginning or at the end,
because no block is equal to its mirror image. Since 7% @ € o[ct1] and since
(w0, w1, ...) = ¢t X (bt+l X bi+2 x --+), we conclude that %; = 0 mod n; for all 7.
This implies that T* w € Dy and hence 7 € Dy. __I

Note that we have also proved that if k; € N is a sequence such that 7% e
converges to a point in Do, then &; = 0 mod »; for sufficiently large ¢. In particular,
if T*w € Dy, then & = 0 mod n;, a fact we shall need in the proof of the next
lemma.

Lemma 6. {Dyg, D1, ..., Dy,_1} is a partition of Oy into open and closed subsets
of Oy such that
TDy1=Dr (1=k<m)

T'Dnt—l = .D() .
Proof. Since 7T is a homeomorphism and since

TeDy=Dr (1=k<mny,

Lemma 5 shows indeed that the sets Dy, ..., Dy, 1 are open and closed. Also

-1

UDICC@.’L,

k=0

and since the union on the left is closed and contains T%w (j € N), we have

fe~1

U Dk - 01; .

=0
Now if Dy N Dy + 6 for some k, then, since Dy N Dy is open, there exists an
i € N such that Tk+in. e Dy. The remark after the proof of Lemma 5 shows
that k& = 0. Hence Dy, Dy, ..., D,,_, are pairwise disjoint. Finally, since 7D, _,
C Dy and since T' is a homeomorphism, TDy,—; = Dy. |
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Theorem 5. For each t € N, { = exp(2ni[ny) is an eigenvalue of T' corresponding
to a continuous eigenfunction belonging to D.

Proof. Let t be fixed and construct the sets Dy, ..., Dy,—1 as above. Set

ne—1

fri= > {¥lp,.
k=0

Then f; is a continuous eigenfunction with eigenvalue £, and since @, is mirror-
invariant and Dy = Dy (Lemma 5), we obtain f; € 9.

Theorem 6. 7' has pure point spectrum on Dy and the eigenvalue group of T
on Dy is given by
Gy = {exp@ukifn)|tcN, 0 <k <mng.

Proof. Let 2 denote the closed subspace of #2 spanned by the functions f%
for teN and 0 < k < n, the functions f; being those defined in the proof of
Theorem 5. It suffices to show that @, = &. According to Theorem 5, ¥ C 9.
For fixed ¢,

so that 15, € Z (0 < k < n;). For any block b € B, we set
By = o[b] U o[b].
Since T is an isometry on the 7-invariant subspace 9, of £2 and since the set
{T*1g,|beB, keZ}

spans 2y, it suffices to show that 15, € @ for b € B.
Now let b be fixed and choose ¢ such that

| me () — [ro(ct) -+ 75 (¢)]] <e.
This is possible because @ is strictly ergodic and therefore
rp(ct) + rg(ct) —my(Bp) as t—o0.

I b oceurs in ¢ or ¢ at k, then 0 < k < ny — n(b), and according to Lemma 5,
we have T% Dy = Dy ngb. Let E,; be the union of all Dy such that b occurs in ¢?

or ¢t at k. Because of Lemma 6, mz(Dg) = 1/n; for 0 <k < ny, and thus
e (Bp) = ry(ef) =+ 15 (¢F) .
But B, C Bp and 15, € 9. It follows that
[ g, = 1g,) dma = | my (Bp) — [rs(e?) 4 15 ()] <&

Since ¢ was arbitrary, 15, € 2. R

It remains to be noted that Theorem 5 and Theorem 6 are true when we remove
the restriction, made at the beginning of this paragraph, that each block of length
two occurs in each b? (i € N). This is true because the process of grouping the bi
does not change the group ¥, itself, but only the generators.
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§ 5. The Continuous Spectrum of O,

As in the preceding paragraph, let o = b0 X b1 X b2 X -+ be a fixed Morse
sequence; ¢f = b0 X -+ X bt (t € N); ng = n(ct); m, the unique T-invariant prob-
ability measure on 0. Our goal is now to determine a necessary and sufficient
condition for 7' to have continuous spectrum on the subspace %, of Z2.

First of all, we prove a general theorem on powers of strictly ergodic trans-
formations which we shall need later; although the proof is simple, this theorem
does not seem to have appeared in the literature yet.

Theorem 7. Suppose that g is a sirictly (uniquely) ergodic set under the homeo-
morphism Ty; denote by my the unique To-invariont probability measure on £y.
Then for any n = 2, Q¢ is strictly (uniquely) ergodic under T if and only if 2o
18 ergodic under T with respect to my.

Proof. Since T%mo == myp, strict (unique) ergodicity implies mo-ergodicity.
Now suppose that 1% is mg-ergodic on £2¢, and let » be a probability measure on
0o with Ty = v and such that T is v-ergodic. We want to show that y = mg. Set

y -+ Tov 4+ oo+ To 4y
p .

Vo: —

Then Tyve = vg, and since 2y is strictly (uniquely) ergodic under T, we have
vo = mg. This implies that » is absolutely continuous with respect to mg = o;
since T'% is both v-ergodic and me-ergodic, and since different ergodic measures
are mutually singular, we conclude that » = mg; i.e. £y is uniquely ergodic
under T%. Now suppose that £y is strictly ergodic under T'y; in the presence of
unique ergodicity, strict ergodicity is equivalent with the statement that all open
sets have positive measure (see e.g. OxToBY [10]). But this remains true, no
matter whether we are considering Ty or 7' ; thus Q¢is strictly ergodicunder 7'G. _|
We now set 4; = #n(b?) (i € N); obviously A; and n; are connected by

3
g 21—[ Ay (teN).
=0

Oddly enough, a necessary condition that ¢, have some point spectrum is that
almost all A; be odd; this is shown by the following lemma.

Lemma 7. If {t]|A; even} is infinite, then T has continuous spectrum on €.
Proof. Suppose that f € €, is an eigenfunction of T’ with eigenvalue §:
Tf=06f.

Then f2 € D, and Tf2 = 022 or 02 € ¥, ¥, being the group of eigenvalues of 7'
on 5 as defined in Theorem 6. Now multiplication of f by an arbitrary eigenfunc-
tion g of @, produces another eigenfunection of %;; choosing g suitably and re-
placing f by fg, we may assume that

27
6 = exp( 2n, )
for suitable t e N (f = 1 is out of question since 7' is ergodic on @, and the con-
stants do not belong to €,). But if ¢ > ¢ is chosen such that A, is even, then

D\ A1 Aaz o Ara (A0 2)
9 = [exp( P )}

T
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is a contradiction to the simplicity of the eigenvalue 0 (which is a consequence of
the ergodicity of T'). B

We remark that if €, possesses any point spectrnm, then the above proof
shows that for some ¢t € N,

27”')

0=exp<2m

is an eigenvalue of 7 on %, and then Ay is odd for all ¢ > ¢. Let us take a look
at the Morse sequence

y = b+l X b+ X e
and the subset

Dy = {T'"w|ieN}

of O defined in § 3, w being a point of O with = (wo, w1, ...). The transfor-
mation T™ maps Dy into Dy, and if f is an eigenfunction of ¥, with Tf = 07,
then the restriction fy of f to the subset Dy fulfills 7™f4 = — fo. We define a
mapping y : Oy — Do by setting, for n € 0y,
. ¢ if =0
['P(U)](Znhnt—l):{c”t o1,

What this mapping does is to replace the zeroes in % by copies of ¢? and the ones
in # by blocks ct.

Lemma 8. y is a measure-preserving homeomorphism between the strictly ergodic
set Oy with its unique probability measure and the set Dy with the normalized measure
given by the restriction of nymy to Do; the transformation T on Oy is carried by
into the transformation Tn on Dy; v commuies with mirroring.

Proof. The proof is straightforward and we leave the details to the reader. _|

The above lemma, in addition to showing that the subset Dg of 0 is strictly
ergodic under 7™, has reduced our problem of finding out when 7' has continuous
spectrum on €, to the case where all n (b%) are odd; indeed, as remarked ahove,
if f is an eigenfunction of €, then fo is an eigenfunction of (Dy, 7'™) with eigen-
value — 1, y carries fq into an eigenfunction on (@,, T) with eigenvalue — 1, and
this function belongs to %y since v preserves mirroring, moreover all n (bt') are
odd for ¢’ > #. Conversely, given a ¢ such that »n(b*') is odd for ¢’ > ¢ and an
eigenfunction belonging to %, with eigenvalue —1, then the process is easily
reversed. to construct an eigenfunction fe %, with eigenvalue 6. Therefore we
restrict our attention to sequences for which all # (b?) are odd.

Lemma 9. Let & = b0 X b1 X b2 X -+~ be a Morse sequence, n(b¥) being odd for
all i eN. Then T has continuous specirum on €5 if and only if T2 is ergodic on Oy
with respect to the probability measure my.

Proof. According to the remarks after Lemma 7, if 7' has an eigenvalue on €,
then for some t e N,

0 =exp (—22%:)

is an eigenvalue. Since n; is odd, 6% = — 1 is also a €,-eigenvalue and T2 cannot
in this case be ergodic. Suppose conversely that 72 is not ergodic. Then there

24 Z. Wahrscheinlichkeitstheorie verw, Geb,, Bd. 10
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exists a T2-invariant measurable partition {4, A’} of ¢, such that m;(4) > 0,
mz(4) > 0. But ANTA and A’ N TA" are T-invariant and 7' is ergodic;
therefore mz(A N TA) =mz(A’' N TA’)=0 and A" = TA4. The function
f=14— 14 is an eigenfunction with eigenvalue —1 and must belong to €,
because of the orthogonality of eigenfunctions and because —1 ¢ % (all n; are
odd).

Our next task is to determine a necessary and sufficient condition for the
strict ergodicity of @, under the transformation 7'2, all (bf) being odd. The
method used is analogous to the one for determining the strict ergodicity of €
under 7', and we content ourselves to give a sketeh of the proof of the following
theorem, referring the reader to Lemmas 2.3 and Theorem 3.

Denote now for a block b = (bg, b1, ..., by-—1) € B the relative frequencies of
even zeroes and ones, odd zeroes and ones, by

1 1 n—1
Sl b e1(b):=— b
Py Z ks 1 n kgo k>
keven keven
—1
1 1"
= __ b )=~ b
Py Z k> 1 Py kgo k>
kodd kodd

and set
w(b) : = min {eg (b) + 01(b), e1(b) + 00(B)} .

Theorem 8. Let x = b0 x b1 X b2 X -+ be a Morse sequence, n (b?) being odd for
all i e N. Then Oy 1s stricily ergodic under T2 if and only if

> w(b)
1=0
diverges.

Sketch of proof. Corresponding to the function sy defined in § 2 to measure the
balance of zeroes and ones in blocks, we define here

so(B):=]1 —2w(®)| .
Then it is also easy to show that
s0(b X 6) = 59(b) s5(¢) -

Now suppose that Zw(bt) diverges. Then according to the product convergence
criterion,

s (B0 X +++ X bY) ﬂso(bf )—0,

j=0 f—oco

which implies that
. . 1
lim [eq (¢t) + 01 (ct)] = lim [eg (¢t) 4+ Op (c?)] = 5 -
t ¢

Putting this together with the known convergence of
1
eo(c!) + Oo(c) =ro(c?), Oo(c?) + Ou(ch) = 5 — 5, ete.,

one obtains easily the convergence of each of ep(c?), e1(ct), Og(ct), 01(cf) to 1. By
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an approximation argument similar to the one used in Lemma 3, it is easy to

see that the relative frequencies of odd and even occurrences of any fixed block

in z exist uniformly and are equal to half of the mz-measure of the corresponding

cylinder. In this manner the set ¢; can be shown to be strictly ergodic under the

transformation 72 (actually only the ergodicity is necessary because of Theorem 7).
Conversely, if > w (bf) converges, then

!
) im] Js(67) >0,
t §=0

since each sq(b%) > 0 (none of the w(b) are equal to § because the n(b¢) are all
odd). However, if 0, were strictly ergodic under 72, then eg(c?), e1 (), Op(ct), 01 {ct)
would all have to converge to 1, and this contradicts (4). B

We collect the results of this paragraph in the following theorem; note that
Theorem 7 is needed to put Lemma 9 and Theorem 8 together. Also, according
to the remarks after Lemma 8, the condition in Theorem 8 for 7' to have continuous
spectrum on € is correct if finitely many # (b?) are even.

Theorem 9. Let x = b0 X b1 X b2 X ++- be o Morse sequence and set )y = n(bt)
(t € N). T possesses continuous spectrum on €4 if and only if either

1) there exist infinitely many even Ay, or
2) > w(bt) diverges.
=3
A Morse sequence for which one of these conditions is satisfied is called continuous.

§ 6. Entropy
In this paragraph we prove that if « is a Morse sequence, then the entropy

of T on the strictly ergodic set 0 is zero. Let x be a Morse sequence and denote
by B} the set of all blocks of length # which oceur in z.

Lemma 10. For each t, the number of blocks in Bl is less than 4n;.
Proof. Since x is an infinite sum of the blocks ¢! and p (of length #;), any block
of length n; occurring in x must occur in one of the four blocks ¢t 4 ¢, ¢t + Z‘,

& + ¢, ¢t + ¢*; the maximal number of blocks of length #; in these four blocks
is less than 4n;.

Theorem 10. If = is a Morse sequence, then T has entropy zero on the strictly
ergodic set 0.

Proof. The partition of £ into the cylinders [0] and ¢f1] generates the g-field
% of 2. Thus the entropy of 7' on 0, is given by the mean entropy of this partition.
But according to Lemma 10, the number of cylinders of length #; with positive
mg-measure is less than 4n;, since a cylinder must have mg-measure zero if its
corresponding block does not occur at all in z. We conclude that the mean entropy
of the said partition is less than

log 4 ne
Pt

for each f, and this expression converges to zero as ¢ goes to infinity. N

24 %
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§ 7. Examples and Problems

1. Our first example is the one which led us to consider more general sequences,
the original Morse sequence. Set 60 = 1 = -++ = (01); then ro (b?) = }, n(bf) = 2
(teN), and z = b0 X b1 X --- is in our terminology a continuous Morse sequence,
its eigenvalue group being the group of all 2%-th roots of unity. These results were
announced without proof by KARUTANT in [4]; it was also stated in [4] that the
spectrum of 7' on ¥, for this sequence is singular with respect to Lebesgue
spectrum, and other sequences were given for which these results are also true.
In our terminology, those sequences may be constructed by varying the blocks b,
setting them either equal to (00) or (01) according to another fixed sequence of
zeroes and ones, which could be given for instance by the binary representation
of a number from the unit interval.

2. Let & be an arbitrary infinite subgroup of the group of all {complex) roots
of unity. Then there exists a strictly ergodic subset of £ with partly continuous
spectrum whose eigenvalue group is exactly %. To see this, choose a sequence
2 < mp < my < mg < +++ of integers such that n; divides 741 (£ € N) and such
that & is generated by {exp(2mi[n;)|t € N} (note that % is countable). Then set

e
Ao =myg, }.tiz'ﬁt_—l(t>0):
and choose blocks b9, b1, ... with n (b%) = A, (t€N) and such that z = b0 x b1 x b2 X - --
is a continuous Morse sequence, For instance, it would suffice to set the first [1;/2]
components of bt equal to zero and the rest equal to one. Then Theorem 3 shows
that 0 is strictly ergodic, Theorem 9 says that 7 has continuous spectrum on €,
and Theorem 6 provides ¥, = 9.

3. Set b0 = b1 = -+ = (001); then ro(bt) = &, w(d*) = }, and thus the con-
ditions are fulfilled for z = 5% X b1 X -+- to be a continuous Morse sequence. The
eigenvalue group ¥, of z is the group of all 3%-th roots of unity.

4. Suppose now that 49, b1, ... are chosen such that

> min (rg (b%), r1(b¥)) < eo .
E=0
This is easily attained; for instance set n(b%) = 2%+1 and 5% = (00...001). The
above sum then reduces to

1
OF+1

=1.

k

ings

It follows that x == b0 x b1 X -+- is not a Morse sequence. Lemma 2 implies that
0 is a minimal set, but Theorem 3 shows that 0, is not strictly ergodie. In this
manner we can construct a multitude of minimal sets which are not strictly ergodic.
The first example of a minimal but not strictly ergodie set was given by A, MarRKOV
(see [9], [10]); it cannot be constructed in the above manner.

5. For some continuous Morse sequences x = b0 X b1 X -++ we have been able
to show the singularity of the spectrum of 7' on ¥, e.g. 1. and 3. above. The
proofs unfortunately make use of recursion formulas for relative frequencies
derivable because of b0 = bl = ---; the idea for this method was divulged to the
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author by Kakurant. It would be interesting to determine whether the spectrum
of T on ¥ is singular for every continuous Morse sequence.

6. The problem of isomorphy between strictly ergodic systems of the type
discussed here is connected with the problem in 5. as well as with the problem
of representation of a given (continuous) Morse sequence x = b0 X 61 X -+ as a
product of other blocks than the 6?. How can an isomorphy statement of the type
given in [4] be generalized and proved ?

7. Set 60 =bl = -+ = (010); then 2 =0b9Xxblx---=(0,1,0,1,...) is a
periodic sequence of period 2. This example induced us to prove Lemma 1, which
says roughly that this is the “only type” of periodicity which can occur if the b%
are not finally all zeroes. Looking at 2. above and trying to find a strictly ergodic
system with a finite eigenvalue group, we have only been able to produce examples
of a periodic nature. Ls it possible to construct a strictly ergodic system with a
finite eigenvalue group ? with continuous spectrum ? What is the eigenvalue group
of the strictly ergodic system given in [3]? Is there a connection between this
problem and entropy ?

8. One can consider other spaces than Q; the idea of considering a state space
of n elements (instead of 2) is inviting, and produces more assymmetry in that
there are more permutations of the state space than in the case of two elements,
where the only permutations are the identity and mirroring.

9. It is practically trivial that the strictly ergodic sets given here do not
exhaust the strictly ergodic subsets of {2 — it is only a beginning on the classifi-
cation of these subsets.
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