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Summary. Suppose X is a semimartingale on a differential manifold M with 
a linear connection F. The main purpose of this paper is to show that the 
,,Ito integral" (with respect to F) of a differential form along the path of X 
is the limit in probability of certain Riemann sums, constructed in a natural 
way using the exponential map in differential geometry. For  this, we study 
the deviation between the stochastic development of X in the tangent space 
at some point, and the image of X under the inverse of the exponential 
map at the point. 

Approximating Ito Integrals of Differential Forms: Motivation 

The stochastic integral of a continuous real-valued process K with respect to a 
continuous semimartingale X can be obtained as the limit in probability of 
Riemann sums of the form ~ K(tj)(X(t~+ 1)-X(tj)), as is well known. Suppose 

J 
now that X is a continuous semimartingale on a manifold M with a linear 
connection F, and t/ is a first-order differential form on M. A natural way to 
construct a stochastic integral of q along the path of X is as follows. Let v be a 
bounded stopping-time and (0 = v(0) < v(1) < . . .  < v(q) = v) a partition of the in- 
terval [0, v] by increasing stopping-times, chosen according to certain technical 
criteria. Write Xj instead of X(v(j)). Let 7j be the geodesic on M (assumed 
unique) with 7~(0)=Xj, 7 j (1)=Xj+I .  The derivative of 7~ at zero is an element 
of the tangent space at X j, and is usually denoted 

expxj 1 (X j+ 1). 

We approximate the Ito integral of t/ along X from 0 to v, with respect to 
the connection F, by the Riemann sum 

t/(Xj) (exPx, 1 (X j+ 1)). 
J 
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Our purpose is to prove that as the mesh of the partition tends to zero, such 
Riemann sums converge in probability to the Ito integral previously defined by 
Bismut [1] and Meyer [-9], p. 59. 

w 1. Basic Stochastic Notations 

Let us fix a complete right-continuous probabilized stochastic basis 
((2, (Jr)t>= o, P). We follow the notation and terminology of Metivier and Pel- 
laumail [8] for stochastic integration theory, except that 

t 

r odZs 
0 

will denote a Stratonovich integral. We would also like to mention: 

1. The tensor quadratic variation of a Hilbert-valued semimartingale is de- 
fined in [8, w 3.6]. For  a continuous E- valued semimartingale X (here E=R" )  
the tensor quadratic variation process ~(dX| may be characterized as the 
(E|  process such that: if b and c are in E*, and b |  is their tensor 
product regarded as an element of (E| then 

i b | c (dX | dX)s = (b (X), c (X)) t 
0 

where the expression on the right is the angle-brackets process of the real- 
valued continuous semimartingales b(X) and c(X). When H is an (E|  
valued process, it is more convenient in some cases to write Hs(dXs, dXs) in- 
stead of Hs(dX| 

2. Suppose that M is a smooth manifold modelled on E. All processes on M 
will have continuous trajectories. A process X on M will be called a semimar- 
tingale if for all f in C2(M), the image process f o  X is a real-valued (con- 
tinuous) semimartingale. The definition is from L. Schwartz [103. 

3. Suppose X is a semimartingale on M, and let (W, ~o) be a chart for M. 
Suppose J and /-/ are locally bounded previsible processes taking values in 
L(E: G) and L(E, E; G) respectively, for some Euclidean space G, such that up 
to modification 

J=Jl(x~w}, H=Hl~x~w~ 

meaning that "It and H t are almost surely zero when X t is not in W. Then the 
stochastic integrals 

~ Jd((p X), ~ H(d(q) X)| X)) 

are well-defined. We shorten these expressions to 

~ J dX ~, ~ H(dX | ~~ 

If (X)=(X 1 . . . . .  X n) with respect to a basis for E, Meyer [9] would write: 

S Jj dX', d <xJ, xk). 
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w 2. Stochastic Integrals with Moving Frames 

A linear frame u at x in M means a linear isomorphism from E to T x M. We 
shall deal frequently in the sequel with processes U such that U t is a linear 
frame at X t for all t, where X is a semimartingale on M. We would like to 
explain the appropriate  notation in great detail so that probabilists will not be 
confused. 

Let G be a Euclidean space and let t /be  a G-valued 1-form on M. Then for 
all t, 

rl(Xt)o U t ('o' denotes composition) 

is an L(E; G)-valued random variable, since U t maps linearly from E to Tx~ M 
and t/(Xt) maps linearly from TxtM to G. Hence it makes sense to say that 

t/(X)o U is an L(E; G)-valued process. 

Consequently if Z is an E-valued process, one can speak of the G-valued pro- 
cess 

L: S (.(X)~ u) dZ. (1) 

If (e 1 . . . .  ,e,) is a basis for E, and Z = ( Z  1, ...,Z") with respect to this basis, we 
could write out (1) in full as 

t 

Lt = ~ (t/(Xs) o Us(ei))dZi~. (1') 
0 

Suppose now that M has a connection F, yielding a covariant derivative V; 
thus VrI(x)sL(T:,M, TxM: G). Consequently for all x in M and all linear frames 
u at x, we have a bilinear map 

V~ (x) (u (.), u (.)) ~ L(E, E; G) 

therefore we can speak of the stochastic integral 

J :  ~ V~ (X) (U(.), U(. )) (dZ | dZ) 

which is commonly abbreviated to 

J :  ~ V~ (X) (UdZ | UdZ). (2) 

Corresponding to (1') we have 

-i Jt - Vr/(X~) (U~(ei) , U~(ej)) d <Z i, ZJ>s. (2') 
0 

w 3. Constructions and Formulae from Stochastic Differential Geometry 

A good reference for this section is Meyer [9], but the notation is more in the 
spirit of Darling [2]. 

1. Let M be a smooth n-dimensional manifold; for brevity, we shall often 
denote the model space by E instead of R". Let r/ be a first-order differential 
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form ('l-form') on M. If (W, ~o) is a chart for M, then t/ has the local repre- 
sentation (~o(x),a(x))eExE* at each x in W, where ~=(p*a on W (meaning 
that tl(x)(v)=a(X)(T~cp(v)) for v in T~M). On the random set {XeW},  the fol- 
lowing differential makes sense and is intrinsic (for the notation, see w 1): 

a (Xt) dX t + �89 D a (Xt) (dX | dX),. 

Consequently there is a unique real-valued semimartingale Y with Yo--0 such 
that dYt equals the last expression on {XeW},  for each chart (W,,q~). The pro- 
cess Y is called the Stratonovitch integral of the 1-form r/ along the semimar- 
tingale X, and we usually write 

Y= (S)~ t/, Yt =(S) ~ t/ (Meyer would omit the symbol (S).) 
x x8 

2. Continue the notations of the previous paragraph, and let F be a smooth 
linear connection for M. F is specified in the chart (W,,~o) by the local con- 
nector F( ' ) :  W ~ L ( E , E ; E )  defined as follows: if vector fields Y and Z have 
local representations (~0(x), y(x))= T~ ~o(Y(x)) and (~0(x), z(x)) respectively at x in 
W,, then the covariant derivative of ~/ is given by V~(x)(Y,Z)=Da(x)(y(x),z(x)) 
-a(x)(r(x)(y(x),z(x))). (In relation to the Christoffel symbols and a basis 
el, ... , e, for E, the k th component of F(x) (% e) is Fi~(x). ) 

On the random set {X~W}, the following differential makes sense and is 
intrinsic (for the notation, see w 1) 

a (X~) (dX t + �89 F(Xt) (dX | dX)t ). 

Consequently there is a unique real-valued semimartingale N with N 0--0 such 
that dNt equals the last expression on {X~W}, for each chart (W,, (p). The pro- 
cess N is called the Ito integral of the 1-form q along the semimartingale X, 
with respect to the connection F, and we usually write 

N=(F)  .[ q, N~=(/') j" ~. (1) 
x x~ 

3. Let p: L(M)~M denote the linear frame bundle of M. Hence for each x 
in M and each u in p-l(x),  u is a linear isomorphism from E into T~ M. Let co 
be a connection 1-form on L(M). Various authors have shown (Meyer [-9, 
p. 80], Darling [-2, pp. 30-34], Shigekawa [11]) thatgiven a semimartingale on 
M and an initial frame U o in p-l(Xo), there is a unique semimartingale U on 
L(M), called the horizontal lift of X to L(M) through co, satisfying the equa- 
tions: 

(S ) Io=O,  p(U,)=X,. (2) 
u 

For a given connection 1-form co and a given initial frame U0, the stochastic 
development of X into E is the E-valued semimartingale Z defined by: 

Z = (S) f 0 (3) 
u 
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where 0 is the canonical 1-form on L(M), namely the E-valued 1-form defined 
by: 

O(u)(~)=u-l(T,p(~)), u6P, ~eT.P. (4) 

The usefulness of the horizontal lift and the stochastic development is that they 
allow formulas related to the process X on M to be written down in 'absolute '  
terms, without reference to any system of co-ordinates on M. For  example, let 
f:  M ~ R  be a smooth function. Then df(X~)~T~M. Let (e 1 . . . .  ,e,) be an or- 

Z 1 thonormal basis for E, and write Z t =  ( r  with respect to this basis. 
Then U~(ei) is a tangent vector at X~ for each i, and so df(X~)(Us(ei) ) is real- 
valued. Likewise Vdf(X~)(U~(ei), U~(e~)) is real-valued, where V is the covariant 
derivative induced by co. Versions of the following ' I to  formula '  have been 
given by many authors (e.g., Meyer [9], Bismut 1-1]) but we give the version 
appearing in Darling [2, p. 24]; 

t t 

f (X,) - f (Xo) = ~ (df (X,) o U,(e,)) dZr + �89 ~ Vdf (X,) (U~(e~), U~(e~)) d < Z ~, ZJ}s. 
0 0 

(5) 

In fact the use of a basis for E is not necessary, and we may abbreviate to: 

t t 

f ( X t ) - f ( X o ) =  ~ (df(X~)o U~)dZ~+�89 Vdf(X~)(UdZ| UdZ)s. (6) 
0 0 

A still more general formula is needed: 

Lemma 1. (An extended Ito formula.) Suppose G is a Euclidean space, and u 
and v are bounded stopping-times such that u<-_v. Let F : ~ ? x M - - * G  be a map 
such that." 

(a) for all x in M, F( ' ,  x) is an J,-measurable random variable with values in 
G. 

(b) for all co in f2, F(co,. ) is a C 2 map from M to G. Then 

F ( x  ~) - F(X.) = i {(dr(X) o U) dZ + �89 VdF(X) (U dZ | U dZ)}. 
u 

Proof. When M = E, the assertion is a special case of a theorem of Kunita  [6, 
p. 119]. The geometric constructions which are used to prove formula (6) apply 
equally to the case where the deterministic function f is replaced by the ran- 
dom function F, so the result follows. [] 

4. Another useful application of the ideas mentioned above is to give a co- 
ordinate-free expression for the Ito integral defined in paragraph 2 above. Con- 
tinuing the previous notations, it is not difficult to prove from formula (5) that 

t 

(r) S n = ~ (n(x3~ G) dG. (7) 
x~ 0 

A detailed derivation is found in Darling [2, p. 21]. 
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w 4. The Exponential Map in Differential Geometry 

Let M be a smooth manifold, modelled on E, and denote its tangent bundle by 
~: TM-+M. Let F be a smooth connection for M, and let expx denote the 
resulting exponential map at x e M .  Let A denote the diagonal {(x,x): xeM} ,  a 
closed submanifold of M x M. Define ~: A--+TM by ~(x,x)=0x, the zero vector 
in T~M. From the tubular neighbourhood theorem (see Lang [7, IV w it 
follows that there exists an open neighbourhood Q of ~(A) in TM, and an open 
neighbourhood V o of A in M x M ,  such that the map f : Q ~ V  o given by 
v~(z(v), exp~w)(v)) is a diffeomorphism. When (x,x') belongs to V o , f - l ( x , x  ') 
will be written as exp~-l(x'), which is a tangent vector at x. Finally take V to 
be an open neighbourhood of A in M x M such that g c V o. 

Let (W,~o) be a chart at some x in M. Let W' be the set of x' in W such 
that (x, x') belongs to the set V defined above. Let u be a linear frame at x, that 
is, a linear isomorphism from E to TxM. Define a m a p 0 :  qo(W')--+E by 

0 = (9 ~ expx ~ u)- 1. 

Since the connection F is smooth, 0 is a smooth map and D o and Dz0 are 
well-defined on the open set cp(W'). The following elementary results will be 
needed later: 

Lemma 2. (Derivatives of the exponential map.) 

(i) D O- 1(0) = T~ (p o u or in intrinsic notation, d(u- 1 o exp,- 1) (u(e)) = e, e~E. 
(ii) D2 O (~o x) (e, e') - D O (~o x) (F(x) (e, e')) = O, e, e'e E or in intrinsic notation, 

Vd(u-1 o exp2 1) (X) = 0 .  " 

Proof Equation (i) is Corollary 3.1 in Eliasson [3, p. 180]. As for (ii), let F(-)  
denote the local connector associated with the chart (W', 0) at x, where 0 is the 
map (expxoU) -1. The usual transformation formula for local connectors (see 
for example Eliasson [3, p. 172]) reads 

D O (cp x') (r(x') (e, e')) = D 2 O (cp x') (e, e') + V(x') (D O (cp x') (e), D O (cp x') (e')) 

for all x' in W'. Put x ' =  x. By the well-known property of normal co-ordinates, 
F(x)=0.  Equation (ii) follows. [] 

w 5. Geodesic Deviation 

Let M and F and V be as in w 4, and let X be a semimartingale on M. Let U 
be a horizontal lift of X to L(M) through F, and let Z be the corresponding 
stochastic development of X into E, as in w 3. 

Define a map H: f2 x R + ~ R  +, depending on F and X, as follows: 

H( ' , s )=sup{ t  >s; (Xs, Xu)~V for all s<_u<_t}. (1) 

If u and u' are finite-valued stopping-times such that u < u', we shall say that u 
and u' satisfy the exponential map condition for X if 

u (co) < u'(co) < H(co, u(co)) a.s. 
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This means  tha t  

exPx ~' (Xt) is well-defined, u < t _< u'. 

Fo r  the remainder  of this section, u and u' are assumed to satisfy this con- 
dition. 

Definition. The geodesic deviation of X f rom t ime u to t ime u', using the hori- 
zontal  lift U, is the E-valued r a n d o m  variable 

G ( u ,  u t )  = Z u, - Z u - (Uu - lo  expx~)(Xu,). 

The  ma in  a im of this section is to express G(u, u') as a stochastic integral with 
respect  to Z and the tensor  quadra t ic  variation, of  Z. 

Lemma 3. (Geodesic deviation formula) 
u' 

G(u, u ' ) =  5 {[ - I -dO,(Xt)  o Ut] d Z t -  �89 VdO,(Xt)(UdZ| UdZ),} (2) 
u 

where O, =(U. -1  o expx~). I f  (el, ..., e,) is a basis for E, and Z, = (Zr .... , Zt) with 
respect to this basis, we could also write 

u" 

G(u, u') = ~ {dZ, - dO,(X,) (Ut(ev)) dZPt 
,, (2') 

- �89  VdOu(X,) (U,(ev), U,(eq)) d ( ZV, Zq),} 

I f  we abbreviate (2) to 

u" 

G(u, u') = ~ {R(u, t) dZ t + Q(u, t) (dZ |  } (3) 
u 

then R(u, t) and Q(u, t) are continuous in t on the stochastic interval [u,u'], and 

R(u, u) = O, Q(u, u) = O. (4) 

Proof Regard  the s topping- t ime u as fixed. There  exists a m a p F :  O xM-- .E,  
satisfying the condit ions of L e m m a  1, such that  for each co, F(co, x ) =  0u(~)(co , x) 
for all x in a suitable ne ighbourhood  W(oo) of X,(~)(co). The  fact tha t  F(o), .) is 
C 2 follows f rom the fact that  the m a p  (x,x ')~exp21(x ') is C 2 on the domain  V. 
F o r m u l a  (2) is now immedia te  f rom the definition (1), and L e m m a  1. 

The  cont inui ty in t of  R(u, t) and Q(u, t) follows f rom the cont inui ty (for 
each co) of  dO, and VdO,, and the fact that  X is a cont inuous  process. Assert ion 
(4) follows f rom L e m m a  2. [ ]  

w 6. Approximation Theorem for Ito Integrals of 1-Forms 

The da ta  consists of a semimar t ingale  X on M and a smoo th  linear connect ion  
F for M, with covar iant  derivative V and exponent ia l  m a p  'exp ' .  

We choose a bounded  s topping- t ime v, and for each natura l  n u m b e r  n we 
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assume that  we are given an increasing sequence of bounded  s topping- t imes  
(v(n,m): m - O ,  1,2 . . . .  ) satisfying condit ions (*1), (*2), (*3) for X, namely:  

*1. The  mesh tends to zero a lmost  surely, i.e., 

l im sup (v (n ,m+ 1 ) - v ( n , m ) ) = O  a.s. 
n ~ o o  lit 

*2. lim P(v(n ,m)<v)=O for each n 
m + o o  

*3. X t t ( . . . .  X , ,m+I)EV for all n,m and all t, where V is the subset  of  M x M 
defined in w and Xtn,m is shor t  for X(v(n ,m)At ) .  In other  words, 
expx~,l,m(Xt,,~+ 1) is a well-defined r a n d o m  vector  in the tangent  space at  Xt,,m for 
all n, m and t. 

W h e n  these three condi t ions hold, we shall say that  the s topping- t imes  sat- 
isfy condi t ion (*) for X. 

Theorem A. (Approx ima t ion  in probabil i ty.)  Let M be a smooth manifold with a 
linear connection F. Let  X be a semimartingale on M, and let v be a bounded 
stopping-time. Suppose that (v(n,m)) is a family of  stopping-times satisfying con- 
dition (*) (above)for X .  Then for all 1-forms t 1 on M, 

(F) ~ q = l im p rob  t' - 1 rl(X,,m) (expx~ ,.,(X~, ~+ 1)) (1) 
X 8  n ~ o o  m 

where X~, m = X(v(n, m) A V). 

Remarks. 1. By as sumpt ion  *2. on the (v(n,m)), P ( l i m  v(n ,m)<v)=O,  for every 
m ~ o o  

n, so the sum on the right side of  (1) has only finitely m a n y  terms a lmost  
surely. 

2. F o r  a R i e m a n n i a n  manifo ld  (M, g), an L 2 convergence result similar to 
(1) can be p roved  when t/ has compac t  support .  Since the assumpt ions  on the 
semimar t inga le  X are a little cumbersome,  we omit  t h e  details. 

w 8. Proofs 

Step 1. We int roduce the following notat ions:  

r . (~)=(r )  S n - Z n ( x ; , ~ )  -1 o (expx< m (X,, ,, +1)) 
x8 m 

a,,m+ l = G ( v ( n , m  )/x v, v (n ,m+ l) /x v) 
(1) 

where the last expression is the geodesic deviat ion with respect  to a chosen 
hor izonta l  lift U 

F,,m= ]V(n, m ) A v, v(n, m + l ) A v] 
(2) 

a t = tl (Xt) o Ut, a,, ~ = av(,, m) A v "  
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Notice that the process (at) takes values in E*. Formula (7) of w 3 says that 

(F) ~ ~ = ~ a t d Z  t. 
xg  o 

The definition of geodesic deviation in w 5, (1) shows that 

v --1 v - -  Z n  r a ) - - a n  m ( G n  rn+l)  r/(X.,.) (expx~, m(X., m+ 1))-- a.,m(Z., m+ 1 -- , , , 

where Z.,, .  =Z~(.,,.)^ ~. Consequently (1) gives 

v 

T~(v) = I J.(t) dZ t+  Z a.,m(G.,m+ 1) 
0 ra 

where 

J.(t) = ~ lv. ' m(t)(at-  a.,m). 
m 

The geodesic deviation formula, w 5 (2), shows that 

(3) 

v 

a.,m(G.,rn+ 1) = ~ {R.(t) dZ t -  Q.(t)(dZ | dZ),} 
rn 0 

where 

R.(t) = ~ 1F. ' re(t) a., m(I -- dO., m(Xt) o Ut) 
m 

Q.(t) =�89 Z lv., m(t) a.,m(VdO.,m(Xt)(Ut(" ), Ut(" ))). 
m 

0t=(Ut - loexp~  1) and O.,m=Ov~.,m)^v. 

We arrive at the formula: 

(4) 

(5) 

T.(v) = ~ ((J. + R.) dZ  - Q.(dZ | dZ)}. (6) 
0 

Step 2. We need to construct four new sequences of stopping-times. First, let 
(ul(k), k=  1,2, ...) be a localizing sequence of stopping-times (see [8, w for 
both the semimartingale Z (the stochastic development of X into E, explained 
in w 3, (3)) and its tensor quadratic variation ~ dZ | dZ. Next, recall the defini- 
tion of H( . ,  s) in w 5, (1), and set 

u2(k)= inf {s: I[I-dO s(Xt)o Ut[I > k  

for some t in [s,H(s, ")/x (s+ 1)]} 

u3(k)=inf{s: II VdOs(Xt)(Ut('), Ut('))ll > k  

for some t in [s,H(s, .) /x (s+ 1)]}. 

Finally, let 

u 4 (k) = inf {t: latl > k}. 
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N o w  let 

u(k) = m i n  (u I (k), u2 (k), u3(k), u4(k)) 

wh ich  is also a loca l i z ing  s e q u e n c e  for Z a n d  its t enso r  q u a d r a t i c  v a r i a t i o n  
process .  

Obse rve  tha t  each of  the  sequences  (d,), (R,) a n d  (Q,) are  u n i f o r m l y  b o u n d -  
ed o n  each  [0, u(k)].  T h e  a l m o s t  sure  c o n t i n u i t y  of  (at) ensures  tha t  J,(t) t ends  
to zero  a l m o s t  sure ly  for all  t. P a r t  (4) of L e m m a  3 shows tha t  Rn(t ) a n d  Q,(t) 
t e n d  to  zero  a l m o s t  sure ly  for all  t. W e  n o w  app ly  Me t iv i e r  a n d  P e l l a u m a i l ' s  
s tochas t ic  d o m i n a t e d  c o n v e r g e n c e  t h e o r e m  [8, w 2.11] to the  r ight  side of  (6) to 
d e d u c e  t ha t  T,(v) converges  to  zero in  p r o b a b i l i t y  as n t ends  to inf ini ty ,  as 
desired.  [ ]  
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