Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1984

Approximating Ito Integrals of Differential Forms and Geodesic Deviation

R.W.R. Darling

Mathematics Department, University of Southern California, Los Angeles 90089, USA

Summary. Suppose X is a semimartingale on a differential manifold M with a linear connection Γ . The main purpose of this paper is to show that the "Ito integral" (with respect to Γ) of a differential form along the path of X is the limit in probability of certain Riemann sums, constructed in a natural way using the exponential map in differential geometry. For this, we study the deviation between the stochastic development of X in the tangent space at some point, and the image of X under the inverse of the exponential map at the point.

Approximating Ito Integrals of Differential Forms: Motivation

The stochastic integral of a continuous real-valued process K with respect to a continuous semimartingale X can be obtained as the limit in probability of Riemann sums of the form $\sum_{j} K(t_j)(X(t_{j+1}) - X(t_j))$, as is well known. Suppose now that X is a continuous semimartingale on a manifold M with a linear connection Γ , and η is a first-order differential form on M. A natural way to construct a stochastic integral of η along the path of X is as follows. Let v be a bounded stopping-time and (0=v(0) < v(1) < ... < v(q)=v) a partition of the interval [0, v] by increasing stopping-times, chosen according to certain technical criteria. Write X_j instead of X(v(j)). Let γ_j be the geodesic on M (assumed unique) with $\gamma_j(0) = X_j$, $\gamma_j(1) = X_{j+1}$. The derivative of γ_j at zero is an element of the tangent space at X_j , and is usually denoted

$$\exp_{X_j}^{-1}(X_{j+1}).$$

We approximate the Ito integral of η along X from 0 to v, with respect to the connection Γ , by the Riemann sum

$$\sum_{j} \eta(X_{j}) (\exp_{X_{j}}^{-1}(X_{j+1})).$$

Our purpose is to prove that as the mesh of the partition tends to zero, such Riemann sums converge in probability to the Ito integral previously defined by Bismut [1] and Meyer [9], p. 59.

§1. Basic Stochastic Notations

Let us fix a complete right-continuous probabilized stochastic basis $(\Omega, (\mathcal{J}_t)_{t \ge 0}, P)$. We follow the notation and terminology of Metivier and Pellaumail [8] for stochastic integration theory, except that

$$\int_{0}^{t} Y_{s} \circ dZ_{s}$$

will denote a Stratonovich integral. We would also like to mention:

1. The tensor quadratic variation of a Hilbert-valued semimartingale is defined in [8, §3.6]. For a continuous E- valued semimartingale X (here $\mathbf{E} = \mathbf{R}^n$) the tensor quadratic variation process $\int (dX \otimes dX)$ may be characterized as the $(\mathbf{E} \otimes \mathbf{E})$ -valued process such that: if b and c are in \mathbf{E}^* , and $b \otimes c$ is their tensor product regarded as an element of $(\mathbf{E} \otimes \mathbf{E})^*$, then

$$\int_{0}^{t} b \otimes c(dX \otimes dX)_{s} = \langle b(X), c(X) \rangle_{t}$$

where the expression on the right is the angle-brackets process of the real-valued continuous semimartingales b(X) and c(X). When H is an $(\mathbf{E} \otimes \mathbf{E})^*$ -valued process, it is more convenient in some cases to write $H_s(dX_s, dX_s)$ instead of $H_s(dX \otimes dX)_s$.

2. Suppose that M is a smooth manifold modelled on E. All processes on M will have continuous trajectories. A process X on M will be called a semimartingale if for all f in $C^2(M)$, the image process $f \circ X$ is a real-valued (continuous) semimartingale. The definition is from L. Schwartz [10].

3. Suppose X is a semimartingale on M, and let (W, φ) be a chart for M. Suppose J and H are locally bounded previsible processes taking values in $L(\mathbf{E}; \mathbf{G})$ and $L(\mathbf{E}, \mathbf{E}; \mathbf{G})$ respectively, for some Euclidean space G, such that up to modification

$$J = J \mathbf{1}_{\{X \in W\}}, \quad H = H \mathbf{1}_{\{X \in W\}}$$

meaning that J_t and H_t are almost surely zero when X_t is not in W. Then the stochastic integrals

 $\int Jd(\varphi X), \quad \int H(d(\varphi X) \otimes d(\varphi X))$

are well-defined. We shorten these expressions to

 $\int J dX^{\varphi}, \quad \int H(dX \otimes dX)^{\varphi}.$

If $(X) = (X^1, ..., X^n)$ with respect to a basis for E, Meyer [9] would write:

 $\int J_i^i dX^i, \quad \int H_{ik}^i d\langle X^j, X^k \rangle.$

§2. Stochastic Integrals with Moving Frames

A linear frame u at x in M means a linear isomorphism from \mathbf{E} to $T_x M$. We shall deal frequently in the sequel with processes U such that U_t is a linear frame at X_t for all t, where X is a semimartingale on M. We would like to explain the appropriate notation in great detail so that probabilists will not be confused.

Let **G** be a Euclidean space and let η be a **G**-valued 1-form on *M*. Then for all t,

$$\eta(X_t) \circ U_t$$
 ('°' denotes composition)

is an $L(\mathbf{E}; \mathbf{G})$ -valued random variable, since U_t maps linearly from \mathbf{E} to $T_{X_t}M$ and $\eta(X_t)$ maps linearly from $T_{X_t}M$ to \mathbf{G} . Hence it makes sense to say that

$$\eta(X) \circ U$$
 is an $L(\mathbf{E}; \mathbf{G})$ -valued process.

Consequently if Z is an E-valued process, one can speak of the G-valued process

$$L = \int (\eta(X) \circ U) \, dZ. \tag{1}$$

If $(e_1, ..., e_n)$ is a basis for E, and $Z = (Z^1, ..., Z^n)$ with respect to this basis, we could write out (1) in full as

$$L_t = \int_0^1 (\eta(X_s) \circ U_s(e_i)) dZ_s^i.$$
^(1')

Suppose now that M has a connection Γ , yielding a covariant derivative V; thus $V\eta(x) \in L(T_x M, T_x M; \mathbf{G})$. Consequently for all x in M and all linear frames u at x, we have a bilinear map

 $\nabla \eta(x)(u(.), u(.)) \in L(\mathbf{E}, \mathbf{E}; \mathbf{G})$

therefore we can speak of the stochastic integral

$$J = \int \nabla \eta(X) (U(.), U(.)) (dZ \otimes dZ)$$

which is commonly abbreviated to

$$J = \int V\eta(X) (U dZ \otimes U dZ).$$
⁽²⁾

Corresponding to (1') we have

$$J_t = \int_0^t \nabla \eta(X_s) \left(U_s(e_i), U_s(e_j) \right) d \langle Z^i, Z^j \rangle_s.$$
^(2')

§3. Constructions and Formulae from Stochastic Differential Geometry

A good reference for this section is Meyer [9], but the notation is more in the spirit of Darling [2].

1. Let M be a smooth n-dimensional manifold; for brevity, we shall often denote the model space by E instead of \mathbb{R}^n . Let η be a first-order differential

form ('1-form') on M. If (W, φ) is a chart for M, then η has the local representation $(\varphi(x), a(x)) \in \mathbf{E} \times \mathbf{E}^*$ at each x in W, where $\eta = \varphi^* a$ on W (meaning that $\eta(x)(v) = a(X)(T_x \varphi(v))$ for v in $T_x M$). On the random set $\{X \in W\}$, the following differential makes sense and is intrinsic (for the notation, see § 1):

$$a(X_t) dX_t + \frac{1}{2} Da(X_t) (dX \otimes dX)_t$$

Consequently there is a unique real-valued semimartingale Y with $Y_0 = 0$ such that dY_t equals the last expression on $\{X \in W\}$, for each chart (W, φ) . The process Y is called the *Stratonovitch integral* of the 1-form η along the semimartingale X, and we usually write

$$Y = (S) \int_{X} \eta, Y_t = (S) \int_{X_0} \eta \quad \text{(Meyer would omit the symbol (S).)}$$

2. Continue the notations of the previous paragraph, and let Γ be a smooth linear connection for M. Γ is specified in the chart (W, φ) by the local connector $\Gamma(\cdot): W \to L(\mathbf{E}, \mathbf{E}; \mathbf{E})$ defined as follows: if vector fields Y and Z have local representations $(\varphi(x), y(x)) = T_x \varphi(Y(x))$ and $(\varphi(x), z(x))$ respectively at x in W, then the covariant derivative of η is given by $\nabla \eta(x)(Y,Z) = Da(x)(y(x), z(x))$. (In relation to the Christoffel symbols and a basis e_1, \ldots, e_n for \mathbf{E} , the k^{th} component of $\Gamma(x)(e_i, e_j)$ is $\Gamma_{ij}^k(x)$.)

On the random set $\{X \in W\}$, the following differential makes sense and is intrinsic (for the notation, see § 1)

$$a(X_t)(dX_t + \frac{1}{2}\Gamma(X_t)(dX \otimes dX)_t).$$

Consequently there is a unique real-valued semimartingale N with $N_0 = 0$ such that dN_t equals the last expression on $\{X \in W\}$, for each chart (W, φ) . The process N is called the *Ito integral* of the 1-form η along the semimartingale X, with respect to the connection Γ , and we usually write

$$N = (\Gamma) \int_{X} \eta, \qquad N_t = (\Gamma) \int_{X_0^t} \eta. \tag{1}$$

3. Let $p: L(M) \rightarrow M$ denote the linear frame bundle of M. Hence for each x in M and each u in $p^{-1}(x)$, u is a linear isomorphism from \mathbf{E} into $T_x M$. Let ω be a connection 1-form on L(M). Various authors have shown (Meyer [9, p. 80], Darling [2, pp. 30-34], Shigekawa [11]) that given a semimartingale on M and an initial frame U_0 in $p^{-1}(X_0)$, there is a unique semimartingale U on L(M), called the *horizontal lift of* X to L(M) through ω , satisfying the equations:

$$(S) \int_{U} \omega = 0, \quad p(U_t) = X_t.$$
(2)

For a given connection 1-form ω and a given initial frame U_0 , the stochastic development of X into E is the E-valued semimartingale Z defined by:

$$Z = (S) \int_{U} \theta \tag{3}$$

where θ is the canonical 1-form on L(M), namely the E-valued 1-form defined by:

$$\theta(u)(\xi) = u^{-1}(T_u p(\xi)), \quad u \in P, \ \xi \in T_u P.$$
(4)

The usefulness of the horizontal lift and the stochastic development is that they allow formulas related to the process X on M to be written down in 'absolute' terms, without reference to any system of co-ordinates on M. For example, let $f: M \to \mathbf{R}$ be a smooth function. Then $df(X_s) \in T_{X_s}^* M$. Let (e_1, \ldots, e_n) be an orthonormal basis for \mathbf{E} , and write $Z_t = (Z_t^1, \ldots, Z_t^n)$ with respect to this basis. Then $U_s(e_i)$ is a tangent vector at X_s for each *i*, and so $df(X_s)(U_s(e_i))$ is real-valued. Likewise $Vdf(X_s)(U_s(e_j), U_s(e_j))$ is real-valued, where V is the covariant derivative induced by ω . Versions of the following 'Ito formula' have been given by many authors (e.g., Meyer [9], Bismut [1]) but we give the version appearing in Darling [2, p. 24];

$$f(X_{t}) - f(X_{0}) = \int_{0}^{t} (df(X_{s}) \circ U_{s}(e_{i})) dZ_{s}^{i} + \frac{1}{2} \int_{0}^{t} \nabla df(X_{s}) (U_{s}(e_{i}), U_{s}(e_{j})) d\langle Z^{i}, Z^{j} \rangle_{s}.$$
 (5)

In fact the use of a basis for E is not necessary, and we may abbreviate to:

$$f(X_t) - f(X_0) = \int_0^t (df(X_s) \circ U_s) dZ_s + \frac{1}{2} \int_0^t V df(X_s) (U dZ \otimes U dZ)_s.$$
(6)

A still more general formula is needed:

Lemma 1. (An extended Ito formula.) Suppose G is a Euclidean space, and u and v are bounded stopping-times such that $u \leq v$. Let $F: \Omega \times M \rightarrow G$ be a map such that:

(a) for all x in $M, F(\cdot, x)$ is an \mathcal{J}_u -measurable random variable with values in **G**.

(b) for all ω in Ω , $F(\omega, \cdot)$ is a C^2 map from M to **G**. Then

$$F(X_v) - F(X_u) = \int_{u}^{v} \{ (dF(X) \circ U) \, dZ + \frac{1}{2} \nabla dF(X) \, (U \, dZ \otimes U \, dZ) \}.$$

Proof. When $M = \mathbf{E}$, the assertion is a special case of a theorem of Kunita [6, p. 119]. The geometric constructions which are used to prove formula (6) apply equally to the case where the deterministic function f is replaced by the random function F, so the result follows. \Box

4. Another useful application of the ideas mentioned above is to give a coordinate-free expression for the Ito integral defined in paragraph 2 above. Continuing the previous notations, it is not difficult to prove from formula (5) that

$$(\Gamma) \int_{X_0^t} \eta = \int_0^t (\eta(X_s) \circ U_s) dZ_s.$$
⁽⁷⁾

A detailed derivation is found in Darling [2, p. 21].

§4. The Exponential Map in Differential Geometry

Let *M* be a smooth manifold, modelled on **E**, and denote its tangent bundle by $\tau: TM \to M$. Let Γ be a smooth connection for *M*, and let \exp_x denote the resulting exponential map at $x \in M$. Let Λ denote the diagonal $\{(x, x): x \in M\}$, a closed submanifold of $M \times M$. Define $\zeta: \Lambda \to TM$ by $\zeta(x, x) = 0_x$, the zero vector in $T_x M$. From the tubular neighbourhood theorem (see Lang [7, IV §5]) it follows that there exists an open neighbourhood Q of $\zeta(\Lambda)$ in TM, and an open neighbourhood V_0 of Λ in $M \times M$, such that the map $f: Q \to V_0$ given by $v \to (\tau(v), \exp_{\tau(v)}(v))$ is a diffeomorphism. When (x, x') belongs to $V_0, f^{-1}(x, x')$ will be written as $\exp_x^{-1}(x')$, which is a tangent vector at x. Finally take V to be an open neighbourhood of Λ in $M \times M$ such that $\overline{V} \subset V_0$.

Let (W, φ) be a chart at some x in M. Let W' be the set of x' in W such that (x, x') belongs to the set V defined above. Let u be a linear frame at x, that is, a linear isomorphism from E to $T_x M$. Define a map $\psi: \varphi(W') \to E$ by

$$\psi = (\varphi \circ \exp_x \circ u)^{-1}.$$

Since the connection Γ is smooth, ψ is a smooth map and $D\psi$ and $D^2\psi$ are well-defined on the open set $\varphi(W')$. The following elementary results will be needed later:

Lemma 2. (Derivatives of the exponential map.)

(i) $D\psi^{-1}(0) = T_x \varphi \circ u$ or in intrinsic notation, $d(u^{-1} \circ \exp_x^{-1})(u(e)) = e, e \in \mathbf{E}$.

(ii) $D^2 \psi(\varphi x)(e, e') - D\psi(\varphi x)(\Gamma(x)(e, e')) = 0, e, e' \in \mathbf{E}$ or in intrinsic notation, $\nabla d(u^{-1} \circ \exp_x^{-1})(x) = 0.$

Proof. Equation (i) is Corollary 3.1 in Eliasson [3, p. 180]. As for (ii), let $\Gamma(\cdot)$ denote the local connector associated with the chart (W', θ) at x, where θ is the map $(\exp_x \circ u)^{-1}$. The usual transformation formula for local connectors (see for example Eliasson [3, p. 172]) reads

$$D\psi(\varphi x')(\Gamma(x')(e,e')) = D^2 \psi(\varphi x')(e,e') + \Gamma(x')(D\psi(\varphi x')(e), D\psi(\varphi x')(e'))$$

for all x' in W'. Put x' = x. By the well-known property of normal co-ordinates, $\Gamma(x)=0$. Equation (ii) follows. \Box

§5. Geodesic Deviation

Let M and Γ and V be as in §4, and let X be a semimartingale on M. Let U be a horizontal lift of X to L(M) through Γ , and let Z be the corresponding stochastic development of X into E, as in §3.

Define a map $H: \Omega \times R^+ \to R^+$, depending on Γ and X, as follows:

$$H(\cdot, s) = \sup\{t \ge s; (X_s, X_u) \in V \text{ for all } s \le u \le t\}.$$
(1)

If u and u' are finite-valued stopping-times such that $u \leq u'$, we shall say that u and u' satisfy the exponential map condition for X if

$$u(\omega) \leq u'(\omega) \leq H(\omega, u(\omega))$$
 a.s.

This means that

 $\exp_{X_{u}}^{-1}(X_{t})$ is well-defined, $u \leq t \leq u'$.

For the remainder of this section, u and u' are assumed to satisfy this condition.

Definition. The geodesic deviation of X from time u to time u', using the horizontal lift U, is the E-valued random variable

$$G(u, u') = Z_{u'} - Z_u - (U_u^{-1} \circ \exp_{X_u}^{-1})(X_{u'}).$$

The main aim of this section is to express G(u, u') as a stochastic integral with respect to Z and the tensor quadratic variation of Z.

Lemma 3. (Geodesic deviation formula)

$$G(u,u') = \int_{u}^{u'} \left\{ \left[I - d\theta_u(X_t) \circ U_t \right] dZ_t - \frac{1}{2} \nabla d\theta_u(X_t) (U dZ \otimes U dZ)_t \right\}$$
(2)

where $\theta_u = (U_u^{-1} \circ \exp_{X_u}^{-1})$. If (e_1, \dots, e_n) is a basis for **E**, and $Z_t = (Z_t^1, \dots, Z_t^n)$ with respect to this basis, we could also write

$$G(u, u') = \int_{u}^{u'} \{ dZ_t - d\theta_u(X_t) (U_t(e_p)) dZ_t^p \\ -\frac{1}{2} V d\theta_u(X_t) (U_t(e_p), U_t(e_q)) d\langle Z^p, Z^q \rangle_t \}$$
(2')

If we abbreviate (2) to

$$G(u, u') = \int_{u}^{u'} \{R(u, t) \, dZ_t + Q(u, t) \, (dZ \otimes dZ)_t\}$$
(3)

then R(u,t) and Q(u,t) are continuous in t on the stochastic interval [u,u'], and

$$R(u, u) = 0, \quad Q(u, u) = 0.$$
 (4)

Proof. Regard the stopping-time u as fixed. There exists a map $F: \Omega \times M \to \mathbf{E}$, satisfying the conditions of Lemma 1, such that for each $\omega, F(\omega, x) = \theta_{u(\omega)}(\omega, x)$ for all x in a suitable neighbourhood $W(\omega)$ of $X_{u(\omega)}(\omega)$. The fact that $F(\omega, \cdot)$ is C^2 follows from the fact that the map $(x, x') \to \exp_x^{-1}(x')$ is C^2 on the domain V. Formula (2) is now immediate from the definition (1), and Lemma 1.

The continuity in t of R(u, t) and Q(u, t) follows from the continuity (for each ω) of $d\theta_u$ and $\nabla d\theta_u$, and the fact that X is a continuous process. Assertion (4) follows from Lemma 2. \Box

§6. Approximation Theorem for Ito Integrals of 1-Forms

The data consists of a semimartingale X on M and a smooth linear connection Γ for M, with covariant derivative ∇ and exponential map 'exp'.

We choose a bounded stopping-time v, and for each natural number n we

assume that we are given an increasing sequence of bounded stopping-times (v(n,m): m-0, 1, 2, ...) satisfying conditions (*1), (*2), (*3) for X, namely:

*1. The mesh tends to zero almost surely, i.e.,

$$\lim_{n\to\infty}\sup_{m}(v(n,m+1)-v(n,m))=0 \quad \text{a.s.}$$

*2. $\lim_{m \to \infty} P(v(n,m) < v) = 0$ for each n

*3. $(X_{n,n}^t, X_{n,m+1}^t) \in V$ for all n, m and all t, where V is the subset of $M \times M$ defined in § 4., and $X_{n,m}^t$ is short for $X(v(n,m) \wedge t)$. In other words, $\exp_{X_{n,m}^{t,1}}(X_{n,m+1}^t)$ is a well-defined random vector in the tangent space at $X_{n,m}^t$ for all n, m and t.

When these three conditions hold, we shall say that the stopping-times satisfy condition (*) for X.

Theorem A. (Approximation in probability.) Let M be a smooth manifold with a linear connection Γ . Let X be a semimartingale on M, and let v be a bounded stopping-time. Suppose that (v(n,m)) is a family of stopping-times satisfying condition (*) (above) for X. Then for all 1-forms η on M,

$$(\Gamma) \int_{X_{0}^{v}} \eta = \limsup_{n \to \infty} \sum_{m} \eta(X_{n,m}^{v}) (\exp_{X_{n,m}^{v}}^{-1}(X_{n,m+1}^{v}))$$
(1)

where $X_{n,m}^v = X(v(n,m) \wedge v)$.

Remarks. 1. By assumption *2. on the (v(n,m)), $P(\lim_{m \to \infty} v(n,m) < v) = 0$, for every n, so the sum on the right side of (1) has only finitely many terms almost surely.

2. For a Riemannian manifold (M, g), an L^2 convergence result similar to (1) can be proved when η has compact support. Since the assumptions on the semimartingale X are a little cumbersome, we omit the details.

§8. Proofs

Step 1. We introduce the following notations:

$$T_{n}(v) = (\Gamma) \int_{X_{0}^{v}} \eta - \sum_{m} \eta (X_{n,m}^{v}) (\exp_{X_{n,m}^{v}}^{-1} (X_{n,m+1}^{v}))$$

$$G_{n,m+1} = G(v(n,m) \wedge v, v(n,m+1) \wedge v)$$
(1)

where the last expression is the geodesic deviation with respect to a chosen horizontal lift U

$$F_{n,m} =]v(n,m) \wedge v, v(n,m+1) \wedge v]$$

$$a_t = \eta(X_t) \circ U_t, a_{n,m} = a_{v(n,m) \wedge v}.$$
(2)

Notice that the process (a_i) takes values in E*. Formula (7) of §3 says that

$$(\Gamma) \int_{X_0^v} \eta = \int_0^v a_t \, dZ_t.$$

The definition of geodesic deviation in $\S5$, (1) shows that

$$\eta(X_{n,m}^{v})(\exp_{X_{n,m}^{v}}^{-1}(X_{n,m+1}^{v})) = a_{n,m}(Z_{n,m+1} - Z_{n,m}) - a_{n,m}(G_{n,m+1})$$

where $Z_{n,m} = Z_{v(n,m) \wedge v}$. Consequently (1) gives

$$T_n(v) = \int_0^{\infty} J_n(t) \, dZ_t + \sum_m a_{n,m}(G_{n,m+1})$$

where

$$J_n(t) = \sum_m \mathbf{1}_{F_{n,m}}(t) \, (a_t - a_{n,m}).$$
(3)

The geodesic deviation formula, §5 (2), shows that

$$\sum_{m} a_{n,m}(G_{n,m+1}) = \int_{0}^{v} \{R_{n}(t) \, dZ_{t} - Q_{n}(t) \, (dZ \otimes dZ)_{t}\}$$

where

$$R_{n}(t) = \sum_{m} 1_{F_{n,m}}(t) a_{n,m}(I - d\theta_{n,m}(X_{t}) \circ U_{t})$$
(4)

$$Q_n(t) = \frac{1}{2} \sum_m \mathbf{1}_{F_{n,m}}(t) a_{n,m}(\nabla d\theta_{n,m}(X_t)(U_t(\cdot), U_t(\cdot))).$$

$$\theta_t = (U_t^{-1} \circ \exp_{X_t}^{-1}) \quad \text{and} \quad \theta_{n,m} = \theta_{v(n,m) \wedge v}.$$
(5)

We arrive at the formula:

$$T_n(v) = \int_0^v \{ (J_n + R_n) \, dZ - Q_n(dZ \otimes dZ) \}.$$
(6)

Step 2. We need to construct four new sequences of stopping-times. First, let $(u_1(k), k=1, 2, ...)$ be a localizing sequence of stopping-times (see [8, §2.9]) for both the semimartingale Z (the stochastic development of X into E, explained in §3, (3)) and its tensor quadratic variation $\int dZ \otimes dZ$. Next, recall the definition of $H(\cdot, s)$ in §5, (1), and set

$$u_{2}(k) = \inf \{s: \|I - d\theta_{s}(X_{t}) \circ U_{t}\| > k$$

for some t in $[s, H(s, \cdot) \land (s+1)]\}$
$$u_{3}(k) = \inf \{s: \|V d\theta_{s}(X_{t})(U_{t}(\cdot), U_{t}(\cdot))\| > k$$

for some t in $[s, H(s, \cdot) \land (s+1)]\}.$

Finally, let

$$u_4(k) = \inf \{t : |a_t| > k\}.$$

Now let

 $u(k) = \min(u_1(k), u_2(k), u_3(k), u_4(k))$

which is also a localizing sequence for Z and its tensor quadratic variation process.

Observe that each of the sequences (J_n) , (R_n) and (Q_n) are uniformly bounded on each [0, u(k)]. The almost sure continuity of (a_t) ensures that $J_n(t)$ tends to zero almost surely for all t. Part (4) of Lemma 3 shows that $R_n(t)$ and $Q_n(t)$ tend to zero almost surely for all t. We now apply Metivier and Pellaumail's stochastic dominated convergence theorem $[8, \S 2.11]$ to the right side of (6) to deduce that $T_n(v)$ converges to zero in probability as n tends to infinity, as desired. \Box

Acknowledgements. The author thanks his Ph.D. supervisor K.D. Elworthy for pressing him to study this problem and for his careful reading of the typescript. This research was supported by a Research Studentship from the Science and Engineering Research Council of Great Britain, and by the F.S. Dynamische Systeme, Universitaét Bremen.

References

- Bismut, J.M.: Principes de Mécanique Aleatoire. Lecture Note Math. 866. Berlin-Heidelberg-New York: Springer 1981
- 2. Darling, R.W.R.: Martingales on manifolds and geometric Ito calculus. Ph.D. Thesis. University of Warwick, England, 1982
- 3. Eliasson, H.I.: Geometry of manifolds of maps. J. Differential Geometry I, 169-194 (1967)
- Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam: North Holland 1981
- 5. Kallianpur, G.: Stochastic filtering theory. Berlin-Heidelberg-New York: Springer 1980
- Kunita, H.: Some extensions of Ito's formula. Sem. Prob. XV. Lecture Notes Math. 850, pp. 118–141. Berlin-Heidelberg-New York: Springer 1981
- 7. Lang, S.: Differential manifolds. Reading, Mass: Addison-Wesley 1972
- 8. Metivier, M., Pellaumail, J.: Stochastic integration. New York: Academic Press 1980
- Meyer, P.A.: Géométric stochastique sans larmes, Sem. de Probabilités XV. Lecture Notes Math. 850, pp. 41-102. Berlin-Heidelberg-New York: Springer 1980
- Schwartz, L.: Semi-martingales sur des variétes, et martingales conformes sur des variétés analytiques complexes. Lecture Notes Math. 780. Berlin-Heidelberg-New York: Springer 1980
- Shigekawa, Ichiro: On stochastic horizontal lifts. Z. Wahrscheinlichkeitstheorie verw. Gebiete 59, 211-221 (1982)

Received December 1982; in revised form October 20, 1983