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Summary. We give a simpler proof  of the probability invariance principle 
for triangular arrays of independent identically distributed random vari- 
ables with values in a separable Banach space, recently proved by 
de Acosta [17, and improve this result to an almost sure invariance prin- 
ciple. 

1. Introduction 

The behavior of triangular arrays of row-wise independent identically distribut- 
ed random variables differs markedly from that of sequences of independent 
identically distributed random variables. The following theorem shows that 
triangular arrays can be approximated with probability 1, a property not 
shared by sequences of random variables. (See Remark  5 below.) 

Let B be a separable Banach space and let r be the class of all 
probabili ty measures on B. We denote the n-th convolution power of # e ~ ( B )  
by #n and the p-th root of an infinitely divisible measure #e~@(B) by #lip. The 
purpose of this note is to give a much simpler proof  of the following improve- 
ment of a recent theorem of de Acosta [1] who proved the same result but 
with almost sure convergence replaced by convergence in probability. 

Theorem. Let # n ~ ( B )  be such that #k~ converges weakly to #. Here kn is a 
sequence of integers tending to infinity. As is well-known # is an infinitely 
divisible law. Then there exists a probability space and two row-wise independent 
triangular arrays of B-valued random variables {x~j, l<=j<=k,~} and {ynj, 
1 <j <__ k,} with partial sums Snk = ~ xnj and T,k = ~ Ynj such that 

j<=k j<=k 

~(x . j )  = #., ~(ynj) = #~/k., (1 < j  < kn) (1) 
and 

max IIS,k--T,k][~O a.s. (2) 
k <~kn 
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2. Some Lemmas 

Let DB[0, 1] be the set of mappings f :  [0, 1]--.B which are right-continuous 
and have left limits. Let ~EDB[0, 1] with probability 1 be a process with 
independent increments and let 

AP(c, 8)=sup min(P{l l~( t ) -~( t l ) l l  >8};  P{ll~(t2)-~(t) l l  >8}) 

A(c)=sup min(ll~(t)-  ~(tl)[I; [l~(tN)-~(t)]]) 

the suprema being extended over all (t, t~, t2) with 0_< t_< 1 and 

t - - c<=t l<t<t2<=t+c .  

Lemma 1 (Skorohod [12]). Let 0<c__<1 be such that AP(c, 8/20)<�88 Then for 
any positive integer l> 3/c 

P {A (a/I) > 8} <= 103 A P (3/I, 8/12)/c. 

Lemma 2. Let p denote the Prohorov distance and 8 o the point mass at O. Then 

lim lim sup sup p(#k, 80 ) =0.  
c ~ O  n ~ z ~  k<=ckn 

Proof  If the lemma were not true we could find a sequence {Jn, n_>_l} of 
integers such that jn/k,-~O, but #~"+-~8 o. Let ~ , - -# ,  J" and fi __#k,-jn. Then 
%*fl,,-~# and hence by Theorem 2.2 of Parthasarathy [7] {~,} is shift-com- 
pact. For  f e B *  define c p n ( f ) = # , ( f ) =  S exp(ix) #no f - l (dx ) .  These are charac- 
teristic functions of real-valued random variables and thus by standard argu- 
ments there exists a neighborhood of the zero functional on which (q~,(f))J"-~l 
uniformly. From this and the shift-compactness of {~,} we conclude arguing as 
in the proof of Theorem 4.5 of Parthasarathy [7] that % ~ 8 o ,  a contradiction. 

Let {x~j, l < j < k , }  be a row-wise independent triangular array satisfying 
(1). Set ~( t )=~,( t )=  ~ xnl and let AP(c, 8)=Ae(c,  5, n) and A(c)=A(c ,n)  be 
defined as above. ~k~ 

Corollary 1. Let  ~ > O. Then 

lim lim sup AP(c, e, n)=0.  
C ~ 0  n~OO 

Lemma 3. Let S, S 1, S 2 . . . .  be a sequence of  Polish spaces and let H~ be distri- 
butions on S x S~, n = 1, 2 , . . .  such that the first  marginals of  H~ are all the same. 
Then there exists a sequence of  random variables X , X ~ , X 2 ,  ... such that 

((X, X,))  = Ho, n = 1, 2 , . . . .  

Proof  By [3], Lemma A1, p. 53 there exists a law q~2 defined on S x S 1 x S 2 
with (two-dimensional) marginals H i on S x Sj, j = 1, 2. Suppose that we already 
have constructed a consistent family of laws q)k, 2<k<_m defined on S xS~ 
x ... x S k with the property that the marginals of ~b k on S x Sj are Hi, 1 <j<<_k. 
Applying [3], Lemma A1 to ~m and I-Ira+ 1 we obtain a law ~ + 1  whose 
marginals on S x Sj are Hi, 1 <j__<m+ 1. We thus have constructed inductively 
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a consistent system {~b,, n>  1} of laws (b, on S x S t x ... x S, with the property 
that the marginals of (b, on S x Sj are Hi, 1 <__j<=n. We apply Kolmogorov's 
theorem and obtain the result. 

L e m m a  4. For each ~ > 0 

d(e)=supk,  l~,(x: [Ixll >~)<  ~ .  
n > l  

This lemma is well-known. It follows for instance from the necessary 
conditions for the central limit theorem in Banach space. (See Theorem 5.9 on 
p. 129 of [2]: We thank A. de Acosta for this remark.) 

LemmaS.  Let {zj, l < j < n }  be a finite sequence of independent identically 
distributed random variables with sum S= ~ zj. Assume that the distribution 

j < n  

function of ][Zl[ I is continuous. Then L, defined by [[ZL]]= max I]zjl[, is with 
l < = j < n  

probability one, a well-defined random variable that is independent of S and has 
uniform distribution on { 1, 2, ..., n}. 

Proof. Let A be a Borel set. Then for each 1 < m < n 

P(S~A)= ~ P(S~A, L = j ) = n P ( S 6 A ,  L = m )  
j<=n 

= P(S~A, L = m)/P(L = m). 

3. P r o o f  o f  T h e o r e m  

For the proof of the theorem it is enough to show the ostensibly weaker 
statement: Given e > 0  there exist two triangular arrays of row-wise inde- 
pendent random variables Gj  and y,j satisfying (1) such that 

lim sup P{max Ils.~- r.kll >~} <~. (3) 
n~cyo k<=kn 

Indeed, for each m>  1 we then can find two triangular arrays (x(~.) j < k . }  and - -  t tlj  

{v(m ) i < k~} such that ~ n j  ~ d ~  

P{max ~(-0_ Tk~,,)l] > 1/m} < 1/m ~ k n  
k <=kn 

for all n_> n,,. We assume that for different m's the triangular arrays ~(~.(m)  y(j)), 
1 =<j =< k~} are independent. Then the arrays {x,j, j__< k,} and {Ynj, J <= k~} defined 
by 

- (") v(m ) if  n~ < n < n, .+ X n j  - -  X n j  " Y n j  ~ ~nd 

obviously satisfy (1) and 

max IIS.k- ZnkH--,0 in probability, (4) 
k<=kn 

the result proved by de Acosta [1]. 
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We now deduce (2) from (4) using a well-known theorem of Skorohod [-11]. 
(See also Dudley [4], Theorem 19.1 for a more recent presentation.) We define 
two sequences {X., n >  1} and {Y., n >  1} of stochastic processes with values in 
C B [0, 1] by setting 

X~(t)=S,k , Y,(t)=r,k if t=k/k~, O<_k<_k. 

=linear  in between. (5) 
Put 

By (5) Z.ECB[O, 1] and 

Z,=X,-Yn,  n>l. 

Z . ~ 0  in distribution. 

Z',--*O a.s. and ~(Z')=5~(Z,), n>l. (6) 

We apply [3], Lemma  A1 to F=F.=~((X.,Y.),Z.) and G=Gn=~(Z'.,Z'). 
3 e e  

Then F is defined on ){ C~[0, 1] and G on CB[0, 1] X ){ C~[0, 1]. For  each 
i = 1  i = 1  

n >  1 we obtain a probabili ty space and random variables (X*, l~.*), Z*, Z* 
such that 5~(X*, Y., Z .  ) - F. and ~ ( Z * ,  Z*) = G., n >_ 1. Consequently 

Z , , - X . - Y *  and Z*-{Z.,n>_l} a.s. (7) 

We need to have these random variables defined on the same probability soace 
without changing their joint law. This is achieved by an application of Lemma 3 

with S =  CB[0, 1], the range space of Z*, S,,= )~ CB[0, 1], the range space of 
i = 1  i = 1  

X �9 ~ (X*, Y*, Z*) and H .  = 5~ *, ( ,,, Ys , Z.)), n > 1. We then obtain random vari- 
ables Z**, ** ** ** cPtZ** iX** Y** ** - (X,, , 17. , Z .  ) such that _ ,  . . . . . . .  Z .  ) ) -H, , ,  n > l .  Thus 
by (7) 

Z * * -  * *  ' - x .  - Y*~, 2z(x*.*)= s  2z(y2* )= 2z~Y.), n >_ 1 

and by (6) 
Z n ~ 0  a.s. 

In view of (5) this proves (2). 
We now finish the proof  of the theorem by establishing (3). First we 

observe that we can assume without loss of generality that both #.(x: Ilxll < 0  
and #(x: ]lxH<t) are continuous functions in t. To see this we consider the 
separable Banach space B x IR with norm I/'ll + I'1 where (I(, I']) denotes the 
real line. On this space we define laws Q, ,=#.  x ~t/k,, and Q = #  x ~b where r is 
the standard normal  law. Now both functions 

Q.{(u,v)~BxlR: IluH+lvi<=t} and Q{(u,v)~B• ]bull+]vl<=t} 

are continuous in t. Thus if we can prove (3) under this extra continuity 

Hence by Skorohod's  theorem there exists a sequence Z'={Z'n, n > l }  of 
random variables with values in C~ [0, 1] such that 
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assumption we obtain two row-wise independent triangular arrays 

{(xni, s,,i), l <i<=kn} and {(yni, tni), l <i<=k,,} 

with common laws Q. and Q respectively and satisfying the properly modified 
relation (3). We drop the real components and obtain (3) in the desired form. 

By Lemmasl ,  4 and Corollaryl  there exists r = r ( e ) > l  such that 
(d(e)) 2 2 r+l <~; and 

P{A(2 -~, n)>e} <e,  n>=no(e ). (8) 

We now define blocks H.j in the following way 

H.j={i: j2-~<i/k.<=(j+l)2-~}, 0=<j<2 r (9) 
and 

t,,j = min H.j, p.j = card H.j = t.j+ 1 - -  t n j  ~ 2 - r  k n "  (10) 

Then arguing as in the proof of Lemma 1 of Kuelbs [6] we conclude that 
#p.j_._,#z-r for all 0 < j < U .  Hence there exists n 1 such that for all n>n 1 

p(pp%g2 , )<e2- r -1 ,  0 < j < U .  (11) 

By (9) and (10) [p.j-k. 2-~[ =< 1 and hence by Lemma 2 there exists n 2 such that 
for all n > n 2 

p(pP"j/k",#2-r)<e2-r-1, 0=<j<2 r. (12) 

Relations (11) and (12) imply that for all n__>max(nl, n2) 

p(p~"J, pp"/k")<~2-~, 0=<j<2 ~. (13) 

Applying Theorem 3 of [8] for each n > 1 we obtain two finite sequences {X,,j, 
0 < j < 2  r} and {Y.j, 0 < j < 2  r} with the following properties: Both {X.i , 
0 < j < 2  ~} and {Y.~, 0 < j < U }  are sequences of independent random variables 

- -  Pnj with ~ ( X . j ) - # .  and y(y.j)=pp.j/k., and if n>max(nl ,  n2) 

P{IIX.j-Y.~[I>e2-~}<e2 -~, 0 < j < 2  ~. (14) 

After possibly enlarging the probability space again, we can define a sequence 
of independent random variables {L.i, 0 < j < 2  ~} having the following ad- 
ditional properties: 

i) {Lnj , 0 < j < U }  is independent of { X n j  , 0 < j < U }  and {Ynj, 0 < j < U }  

ii) L.j is uniformly distributed over H.~, 0__<j < U. 

Now for each n>  1 let {x.~, 1 <i<k.} be a sequence of independent random 
variables satisfying (1). Put X . j -  ~ x.~ and let /A*j be the location of the 

iEH~j 

largest [Ix~ll, i~H~j. It follows easily from Lemma5 and independence that 
({Xn*j, 0 ~ j < U } ,  {/Yj, 0 ~ j < U } )  has the same joint distribution as ({X~j, 
0 ~ j < U } ,  {L~j, 0~ j<U}) .  We apply Lemma A1 in [3, p. 53] to the joint law F 

* < j < 2  ~} joint law G of of the sequences {x.i, i<k.} and {(X.*,/2.j), 0 and the 
the sequences {(X.j, L.j). 0 < j < U }  and {(Y.j, L.j), 0 < j < U }  and the spaces S 1 



488 A. Dabrowski et al. 

=B k" and S 2 = S 3 - = ( B •  2r. We then obtain a law Q on S l x S z x S  3 with 
marginals F on S 1 x S a and G on S a x S 3 respectively. We realize Q on some 
probability space Qn. Hence keeping the same notation we can set Xnj--Xnj 
and L*S = L.j. 

(For the reader unfamiliar with this kind of argument we shall explain the 
last step in some detail. Let Z: f2~--+SI x S a x S 3 = B k " x ( B x l R ) a ~ x ( B x l R )  ar be 
a random variable with law Q. Denote the one dimensional projections of Z 
onto B and IR by x'.i (1 =<i<k= .,'l', (X'nj ' L'nj), (0<j<2r) ;  (ys ( 0 < j < U )  in the 
obvious order. Since the projection of Z onto B k" x (B x ]R) 2r has distribution F 
we know that X'.j= ~ x'.i with probability 1 and that E.j is the location of 

i~Hnj 
max IIx'.i[I in H.j with probability 1. Since the projection of Z onto (B x IR) 2r 
x(BxlR)  2" has distribution G we conclude that E.j=E' j  and that 
{(X'.j,E.j, Y'j), 0 < j < 2  r} has the same (joint) law as {(X.j ,L.j ,  Y.j), 0 < j < 2 ' } .  
We are only interested in the properties of the joint distribution. So we may 
replace {(X.j ,L.j ,  Y.j), 0 < j < 2  r} by {(X'.j,E.j, Y2j), 0<j<2r} .  For notational 
convenience we drop the primes' and obtain random variables x.i, X.j ,  L.j, Y.j 
satisfying (14), (i), (ii) and X . j =  ~ x.i and L.~=location of max IIx.d I in H.j 
with probability 1.) ~H.j 

Likewise we obtain a sequence {Y.i, l<=i<=k.} of independent random 
variables with analogous properties. 

(Again we shall explain this in more detail: Let {y.i, i_<k.} be a sequence 
of independent identically distributed random variables satisfying (1). Put Y* 
= ~ Y.i and let /2** be the location of the largest IlY.ill, i~H.j. By Lemma 5 

i~Hnj 
and independence ({Y*, 0<j<2~},  {/2**, 0 < j < 2 ' } )  has the same joint distribu- 
tion as ({Y.j, 0<j<2~},  {L.j, 0< j<U}) .  We apply LemmaA1 in [-3, p. 53] 
again but this time to the joint law F' of the sequences {x.~, i<k.},  {(X.~, L.j), 
0<j<2r} ,  {(Y.j, L.j), 0 < j < 2  r} and the joint law G' of the sequences {(Y*, L**~ -- .J /' 
0 < j < 2 ~ } ,  {Ynl, i<k.}  and the spaces S~ =B k" x (B x JR) 2r, S 2 =(B x JR.) 2r and S 3 
=B k". We obtain a joint law Q' with marginals F' and G'. Again we realize Q' 
on some probability space t2'.. Hence keeping the same notation we can set Ys 
= Y.j and/2. j  - L . j .  This shows in particular that the locations of the maxima 
of Ilxnil[ , i~H.d and of IlY.ill, iEg. j  are the same.) To have all random variables 
defined on the same probability space we redefine the sequences {x.~, i<k.}  

and {y.~, i<__k.} on X f2. without changing their joint law 5r ink .} ,  {y.~, 
i<k.}) on t?.. .=1 

In summary, we have constructed two triangular arrays 

{x.~, l__<i<k., n_>_l} and {y.i, l < i < k . ,  n > l }  

of row-wise independent identically distributed random variables and a tri- 
angular array {L.j, 0 < j < 2  ~, n > 1} with the following properties: 

~ ( X n i )  = Un, ~,~l~(Ynl ) = ~l /k .  

X n j =  2 Xni' )my = Z Y.i, 0 ~ J  <2~ (15) 
ieHnj i~Hnj 
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and (14) holds for all n>max(n~,  n2). Moreover, L.j is with probabili ty one the 
location of maxllx.il[ and maxlly.ill. Alternative proofs can be based on Lemma 

i~Hnj i~Hnj 

2.11 of Dudley and Philipp [5] which shows that we can keep all along the 
random variables we started with or on a generalized Vorobev theorem (R. 
Shortt [10, Theorem 2.6]) amounting to a two fold application of [3, 
Lemma  A1] or a combination of these three. 

Write 

S(m) = Z x.i, T(m) = Z Y.i. 
i<m i<m 

From (8), (10) and (14) we conclude that for n>max(no ,  nl, n2) 

and 

max min(llS(m)-S(t,j)[[, IlS(m)-S(t,,j+l)[I)<e (16) 
j< 2r, tnj~Zm<=tn,j+l 

max min(l[T(m)-r(t,j)[[, IlZ(m)-Z(t,,j+Oll)<~ (17) 
j< 2r, tnj<m<=tn, j+l 

IIX.k-- Y.t[[ <e,  0 < j < U  (18) 
k < 2  r 

except on a set E of probabili ty < 3e. 
Now by Lemma 4 and (8) 

~ P(min(llx.il], IIX.kll)>2~)~(d(e))z'2"'(p.j/k.)2~(d(8))22-r+l<e. 
O__<j=<2 r i, keHnj, i t-k 

Thus, we can discard the set F(x) on which, for some j, at least two of Ilx, ill 
within the same block H,~ exceed 2e. Likewise we can discard F(y) defined 
similarly and thus we can discard the set F = F(x)u F(y). 

Let co~EC~F c and m<k. be given. Choose k such that t~k<m<t.,k+ 1. We 
have to show that 

/IS(m)- T(m)ll < 8e. (19) 

Suppose first that [jX,k(co)H <5e,  where X,k is defined in (15). Recall that 
both (16) and (17) hold on E c. Hence JIS(rn)--S(t,y<lrX,krl+~<gE. If 
liT(m)--r(t,k)ll < e  then by (18) 

I[S(m)- T(m)ll ~ ~ IrX,j- Y, jfl + [IS(m)-S(t,g)U + IlT(m)- T(t.k)ll <8~. 
j < k  

If HT(m)-T(t,,g+I)I ] < e  then (19) follows similarly. Hence it remains to prove 
(19) under the assumption 

II X.g I[ > 5 e. (20) 

Now in view of (20) and (16) within each block H,j  exactly one Ilxnil[ exceeds 
2e and this happens for i=L,,j; the same is true for IlYnill at i=L,j. Hence on 
E c n F c and for all 0 < j  < 2 r 

and 
II s ( t .~) -  S( t . j  + h)IP < e 

IIS(tn, j+ l ) - S ( t . j  + h)]l < ~ 

if l<h<L,,j  

if L.j < h < p.j. 
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Analogous inequalities hold for T(t,j+h). Consequently, and by (18) we have 
for each m with 1 -< m_< k n (and suitably chosen j) 

[] S (m) - T(m)]1 = I1S (t,j + h) - r( t , j  + h)II < 3 ~. 

We conclude with a few remarks. 

Remark I. If # is Gaussian the proof of the theorem can be simplified consider- 
ably because in essence the sample paths of Brownian motion are continuous. 
Since the standard maximal inequalities suffice there is no need to pair off the 
largest jumps of the x- and y-processes. 

Remark 2. The proof of Lemma 2 is adapted from Kuelbs [6]. It shows that his 
conditions (3.1) and (3.2) actually imply his condition (3.3), thus rendering it 
redundant. 

Remark3. Let {zj, j > l }  be a sequence of independent identically distributed 
random variables in the domain of partial attraction to an infinitely divisible 
law it. Then by definition there exist sequences k,--,o�9 and a(n) such that 

a(n) -1 ~ z ~ / ~  in distribution. 
jNkn 

Applying the theorem to the probability measures p~=~(a(n)-Xzj)  l~j~=k~, 
n ~ l  we obtain two row-wise independent triangular arrays (x~j, l ~ j ~ k n ,  
n ~ l }  and {y~j, l ~ j ~ k  n, n ~ l }  with ~(x~j)=p~, ~(ynj)--~t 1/k~, l ~ j ~ k n ,  n ~ l  
such that 

maxl[ ~ (xnj-y~j)l l~0 a.s. (21) 
k<-_k, j<=k 

Remark 4. On the other hand we were unable to construct two single sequences 
{xj, j >  1} and {yj, j >  1} of independent identically distributed random vari- 
ables such that their properly normalized partial sums would satisfy (21). This 
is perhaps not surprising since in Theorem 1 of [9] it is in general impossible 
to obtain almost sure convergence to zero. (See the discussion of relations (1.2) 
and (1.3) in [9], p. 69.) 

Remark 5. The theorem cannot be generalized to triangular arrays of inde- 
pendent but not necessarily identically distributed random variables: Let {us, 
j > l }  and {vi, j > l }  be two sequences of independent identically distributed 
random variables having N(0, 1) and Cauchy distribution respectively. Suppose 
that the two sequences are independent. We define a triangular array by setting 

x , j=n-~u j ,  l < j < n  

= n  - 1  vj_n,  n<j<=2n. 

Then ~ x~j converges in distribution to u~ + v~. But it is obviously impossible 
j< 2n 

to approximate the partial sum process ~ xn~ by the partial sum process of a 
j<k 

row-wise independent triangular array of independent identically distributed 
random variables. 



Almost Sure Invariance Principle for Banach Space Valued Random Variables 491 

Remark 6. In his paper [1], de Acosta acknowledges that the Proposition in the 
Addendum to his paper is due to us. Our proof of this fact which is identical 
with the proof given in the original preprint of our paper is very similar to 
de Acosta's proof. 

Acknowledgement. We are grateful to I. Berkes for a comment which simplified the presentation. 
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