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I t  is well-known that  every metric space has a completion which is unique up 
to isometry. The proof of this theorem depends strongly on the completeness of 
the metric space of non-negative real numbers, the uniform continuity of the 
distance function, and the continuity of the binary operation, addition. In  the 
preceding paper B. Sc~w~IZ~R has sho~n~ that  under suitable conditions the 
distance function in a probabilistic metric space (S, ~ )  is a uniformly continuous 
function from S x S into A, the L6vy space of distribution functions. This latter 
space is a complete metric space. Thus it  is to be expected that  under hypotheses 
akin to those of the aforementioned continuity theorem, every PM space will 
have a completion which will again be unique up to isometry. The purpose of 
this paper is to show that  this is indeed the case. 

In  addition to the definitions, theorems and notations given in the preceding 
paper [2], the following will also be needed. 

Definition 1. Let  (S, ~ )  be a PM space. Then 

(a) A sequence of points {Pn} in S is a Cauchy sequence if Fv, w --~ H (point- 
wise) as n, m -+ ~ .  Here H is the distribution function defined by  

/ / (x)  = { 0, x < 0 ,  
1, x > 0 .  

(b) The space (S, ~ )  is complete if  every Cauchy sequence in S is convergent. 

(c) The PM spaces (S, ~ )  and (S', ~,~') are isometric if  there is a one-to-one 
mapping ~ of S onto S' such that  for any p, q E S, 

~ ( p , q )  = ~ ' ( ~ ( p ) ,  ~(q)).  

As usual the mapping ~v will be called an isometry. 
(d) A complete PM space (S*, ~ * )  is a completion of (S, ~ )  if (S, ~ )  is iso- 

metric to a dense subset of (S*, ~*) .  
Definition 2. Let  (S, ~ ' ,  T) be a Menger space. The Menger space (S*, ~'*, T*) 

is a completion of (S, ~ ,  T) ff (S*, ~-*) is a completion of (S, ~ )  and T = T*. 

Theorem. Every Menger space with a continuous t-norm has a completion which 
is unique up to isometry. 

Proo/. Let (S, ~ ,  T) be the space in question. The proof will be divided into 
the following steps: 

(i) Parti t ion the set of all Cauchy sequences in S into equivalence classes and 
define S* as the collection of these equivalence classes. 
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(ii) Define the probabilistic distance o~* on S*. 
(iii) Show that  (S*, ~ * ,  T) is a Menger space. 
(iv) Embed (S, o~) isometrically into (S*, ~-*). 
(v) Show that  the isometric image of (S, o ~ )  is dense in (S*, o~*). 

(vi) Show that  (S*, ~'*) is complete. 
(vii) Show that  any two completions of (S, ~ )  are isometric. 

The reader will note tha t  these steps arc precisely those used in the usual proof 
of the corresponding theorem for metric spaces (see, e.g., [1]). Moreover, the proofs 
of some of these steps amount to nothing more than a paraphrasing of the metric 
space proof. Whenever this is the case, details will be omitted. The proof here 
differs from the metric space proof primarily because addition is a group operation 
while t-norms are semigroup operations. 

(i) Two Cauchy sequences {Pn} and {qn} will be called equivalent 

({pn},.~{qn}) if  {Fwq~}-->H. 

This relation is clearly reflexive and symmetric. Next let {Pn}, {qn} and {rn} be 
Cauchy sequences in S such that  {Pn} N {qn} and {qn} ~ {rn}. Then for any 
x > O ,  

1 > hmFwr~(2x  ) > lim T ( F w ~ ( x  ), F~r , (x) )  = 1, 

from which the transitivity follows. Thus " ~ "  is an equivalence relation on S. 
Let  S* be the collection of equivalence classes determined by  this relation. 

(fi) Let  p*, q* e S*; let {Pn} z p* and {qn} ~ q*; and let e > 0 be given. 
Choose 4 so that  T ( a , b ) > a - - e / 2  whenever 0 < a - - < l  and 1 - - 4 < b < l .  
Since {pn} and {qn} arc Cauehy sequences there exist integers iV1 and N2 such 
that  

/ v  @/2) > 1 --  4, whenever m, n > N1, 
and 

14~q,,qm(e/2) > 1 --  4, whenever m, n > N2. 

Thus ff m, n > max (N1, N2) then for any x, 

_~p,q,(x @ e) >-- T(Fp,q,~(x -~- e/2), Fq~q,~(e/2) ) > --Fpnqm(X -~-- ~/2)  - -  8 /2  

T (~!Onpra (~/2), --~Pmqm (X)) - -  ~/2 > Fprnq m (X) - -  ~ ,  

and similarly, 
F ~ q =  (x) > F ~ . q .  (x - e) - e .  

Combining the above inequahties yields 

F~,q, (x -- e) -- e < Fv,~q,~ (x) < Fp~q, (x -t- e) -~ e, 

i.e., L(Fp,q., Fv~qm ) < e. I t  follows that  { J ( P n ,  qn)} is a Cauchy sequence in 
the complete metric space (A, L). Consequently lim o~(pn, qn) exists. An argu- 

ment similar to the one used above shows that  this limit is independent of the 
particular representatives chosen from p* and q*. Thus the probabilistie metric 
o~* can be defined via 

~-* (p*, q*) = lim (~ ' (pn ,  qn)), 

for any p*, q* ~ S*. 
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(iii) I t  is easy to show that  (S*, ~ * )  satisfies conditions (I), (II) and (III) 
of [2]. To show that  (S*, ~-*) is a Menger space under T, let p*, q* and r* be 
elements of S* and let {Pn} e p*, {qn} e q* and {rn} ~ r*. Then for any x, y > 0 
such that  x + y is a point of continuity of * 

F~**r, (x + y) : lim _Fp~r. (x + y) ~ lira T (Fp~q~ (x), Fq.r, (y)) 
n---> oo q~--->oo 

---- T (lim F ~  (x), lira F q ~  (y) ) ~ T (FSp,q, (x), Fq**r, (Y) ). 
~ r ~t---> r 

Suppose x -~ y is not a point of continuity of Fp**r,. Let  {yk} be an increasing 
sequence of real numbers with limit y such tha t  for every positive integer /c, 
x ~- y~ is a point of continuity of * F~.r.. Then 

F~**r, (x -~ y) ---- lim Fp**r. (x -~ y~) 
]g-->oo 

~_ lim T(Fp**q, (x), * - -  F q * r *  ( Y k ) )  
~-->oo 

: T (F~**q, (x), 2'*q,r, (y)). 

I t  should be noted that  the verification of the triangle inequality requires the 
continuity of the t-norm T. This is to be expected. For at  this stage of the cor- 
responding metric space proof, the continuity of addition is used. 

(iv) Let  each point p in S correspond to the equivalence class of Cauchy 
sequences determined by the constant sequence of value p. I t  follows from the 
continuity of ~ and the definition of ~ *  that  this correspondence, say to, is an 
isometric embedding of S into S*. 

(v) Let  p* e S *  and (Pn} ET*. Then the sequence {to(Pn)} is a Cauchy se- 
quence in S* which converges to p*. Therefore to(S) is dense in S*. 

(vi) Let  (p~} be a Cauchy sequence in S*. There exists a Cauchy sequence 
{Pn} in S such that  {to(Pn)} "~ {p~}. Also there is an element p* in S* such 
that  (Pn} ~ P*; and it is readily shown that  the sequence (p~} converges to p*. 
Thus (S*, ~ * )  is complete. 

(vii) Let  (S', J ' )  and (S", ~ " )  be completions of (S, ~ )  and let to and to" 
be the isometric embeddings of S into S' and S", respectively. Let  p'  be any 
point of S'. Since the image of S under to' is dense in S', there is a sequence (Pn} 
in S such that  {to'(Pn)} -~ P'. Since (Pn} and consequently (to"(Pn)} are Cauchy 
sequences, there is a point p " ~  S"  such that  (to" (Pn)} --> P". The function 
defined by cf(p') ~ p" is the desired isometry from S' onto S".  This completes 
the proof. 
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