Z. Wahrscheinlichkeitstheorie verw. Geb. 6, 1-9 (1966)

On Invariant Measures for Operators

DAVID W. DEAN and LOUIS SUCHESTON*

Received September 26, 1965

1. Introduction

Let (X, \mathcal{A}, p) be a measure space with p(X) = 1. All sets introduced are assumed in \mathcal{A} , all functions measurable with respect to \mathcal{A} . Many relations hold only modulo sets of *p*-measure zero; the words "almost everywhere" are omitted. No distinction is made between equivalence classes of functions and their representatives.

If T is a positive linear operator on $L_1 = L_1(X, \mathscr{A}, p)$ and $||T|| \leq 1$, then the problem of existence of positive fixed-points in L_1 is of interest, in particular in connection with the individual ergodic theorem. It has indeed been proved implicitly by HOPF that if there exists a positive fixed-point, i.e., a function $f_0 \in L_1$ with $0 < f_0 = Tf_0$, then for each $f \in L_1$, $T^n f$ converges Cesàro to a finite limit (this also follows from the CHACON-ORNSTEIN ergodic theorem), and for each $g \in L_{\infty} = L_{\infty}(X, \mathscr{A}, p)$, $T^{*n}g$ converges Cesàro to a finite limit, where T^* is the adjoint of the operator T (cf. NEVEU [16], p. 190). Conversely, if $T^{*n} \mathbf{1}_A$ converges Cesàro for each set A ($\mathbf{1}_A$ is the characteristic function of A), and a mild assumption, explained below — if the operator T is conservative, then there exists a positive fixed-point under T (Theorem 4 below). The principal results of the paper are given in terms of measures π_n defined by

(1)
$$\pi_n(A) = \int_A T^n \, \mathrm{l} \, dp = \int_X T^{*n} \, \mathrm{l}_A \, dp \quad A \in \mathscr{A} \, .$$

Theorem 1 asserts that there are positive fixed-points if and only if p(A) > 0implies $F[\pi_n(A)] > 0$, where F is a functional defined on bounded sequences of real numbers (x_n) ; the smallest F we obtain is $\inf x_n$; the largest is $M(x_n)$, the maximal value of Banach limits on the sequence (x_n) , given by

(2)
$$M(x_n) = \lim_{n} \left(\sup_{j} n^{-1} \sum_{i=0}^{n-1} x_{i+j} \right).$$

If there are no positive fixed-points and the operator T is conservative and ergodic, then there are large "bad" sets: there exists for each $\varepsilon > 0$ a set B with $p(B) > 1 - \varepsilon$ and $M[\pi_n(B)] = 0$ (Theorem 2). Further (Theorem 3), if T is conservative, then there exists a positive fixed-point if and only if for each set A, all Banach limits on the sequence $\pi_n(A)$ coincide; their common value is a finite measure equivalent to p and invariant under the operator Λ which we will now define.

^{*} The research of this author was supported by the National Science Foundation, Grant NSF-GP1458. Both authors wish to acknowledge helpful information they obtained from Professors B. BAJSANSKI, R. CHACON and U. KRENGEL.

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 6

By the Radon-Nikodým theorem the Banach space L_1 is isomorphic to the space Φ of finite, *p*-continuous, signed measures. Under this isomorphism there is, corresponding to the operator T, an operator Λ on Φ , which ascribes to a signed measure $\varphi \in \Phi$ a signed measure $\Lambda \varphi \in \Phi$, defined by

(3)
$$\Lambda \varphi(A) = \int_{A} T \frac{d\varphi}{dp} dp \qquad A \in \mathscr{A}$$

where $d\varphi/dp$ is the Radon-Nikodým derivative of φ with respect to p. In terms of operator Λ the measures π_n given by (1) are simply images of p under Λ^n , $\pi_n = \Lambda^n p$, and our problem is that of finding a measure φ_0 equivalent with p, and invariant under Λ ; φ_0 is such a measure if and only if $d\varphi_0/dp$ is a positive fixed-point under T.

The operator Λ may be generated by a measurable point-transformation τ mapping X to X, by the relation

$$\Lambda \varphi(A) = \varphi(\tau^{-1}A) \qquad \varphi \in \Phi, \quad A \in \mathscr{A}$$

provided that $p(\tau^{-1}A) = 0$ if p(A) = 0, which ensures that $\Lambda \varphi$ is *p*-continuous, and thus our problem may be seen to include the classical problem of existence of finite equivalent measures invariant under a point-transformation, first studied by HOFF in 1932 [12]. Or Λ may be induced by a Markov process $P(x, \Lambda)^1$ by the relation

$$\Lambda \varphi(A) = \int_X P(x, A) \, d\varphi \quad \varphi \in \Phi \,, \quad A \in \mathscr{A}$$

provided that p(A) = 0 implies P(x, A) = 0, which again ensures that $A\varphi$ is *p*-continuous; thus our problem includes the problem of existence of finite equivalent measures invariant under a Markov process.

The present paper extends to abstract operators results already known for point-transformations and, in part, for Markov processes. Theorem 1 was obtained for point-transformations by Mrs. DOWKER [5] and CALDERÓN [1] with $F = \lim \inf$; also by CALDERÓN [1] with $F = \lim \inf$ of Cesàro averages, and again by Mrs. DOWKER [6] with $F = \lim \sup$ of Cesàro averages (see also HAJIAN and KAKUTANI [10]). F = M and Theorem 2 were given by SUCHESTON [19]. Theorem 3 was proved for point-transformations by SUCHESTON [18] and Theorem 4 by Mrs. DOWKER ([4], p. 607). The results of Mrs. DOWKER [6] were extended to Markov processes by ITO [14]; most arguments of Ito carry over to abstract operators. FELDMAN [8] studied the problem of existence of σ -finite invariant measures for operators essentially of the type considered in this paper. (The conditions which he imposes on his L_{∞} operators are satisfied if and only if they are adjoints of positive linear contractions in L_1 .) Our Theorem 4 is contained in FELDMAN's Theorem 7.1 ([8], p. 89).

Theorem 1 has also been proved by NEVEU [17], whose note was not available to us at the writing of this paper. NEVEU's proof, introducing "weakly wandering" functions, has considerable independent interest. It seems to us that our argument,

¹ A Markov process P(x, A) is a function of two variables which for each fixed $x \in X$ is a probability measure in A; for each fixed $A \in \mathcal{A}$, a measurable function in x.

based on a rather general "maximal ergodic lemma" (Proposition 1), also has some independent interest. The proof of Proposition 1 imitates the elegant proof by GARSIA of HOPF's maximal ergodic theorem [9]. The idea of applying a maximal ergodic theorem in this context is due to Mrs. DOWKER [6].

2. The Main Theorem

X is an abstract set, \mathscr{A} a σ -field of subsets of X, p a measure on \mathscr{A} , i.e. a non-negative, countably additive set-function, and p(X) = 1. L_1 is the space of integrable functions with norm

$$||f|| = \int_X |f| \, dp \qquad f \in L_1.$$

Theorem 1. Let T be a positive linear operator on L_1 with $||T|| \leq 1$ and for each positive integer n let

$$\pi_n(A) = \int_A T^n \, 1 \, dp \qquad A \in \mathscr{A} \, .$$

The following conditions are equivalent.

- (0) There exists a function $f_0 \in L_1$ with $f_0 > 0$ and $T f_0 = f_0$.
- (i) p(A) > 0 implies $\inf_{n} \pi_n(A) > 0$, $A \in \mathscr{A}$.

(ii)
$$p(A) > 0$$
 implies $M[\pi_n(A)] = \lim_{n \to j} [\sup_{i=0} n^{-1} \sum_{i=0}^{n-1} \pi_{i+i}(A)] > 0, A \in \mathcal{A}$.

Proof. For the purpose of proof we introduce a third condition:

(iii)
$$p(A) > 0$$
 implies $\liminf n^{-1} \sum_{i=0}^{n-1} \pi_i(A) > 0, A \in \mathscr{A}$.

The proof follows the scheme $(0) \Rightarrow (i) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (0)$. The implication $(i) \Rightarrow (ii)$ is obvious since $\inf \pi_n(A) \leq M[\pi_n(A)]$.

Part I: (0) \Rightarrow (i). T*, the adjoint of T, is defined by

$$\int\limits_X Tf \cdot g \, dp = \int\limits_X f \cdot T^*g \, dp \qquad f \in L_1, \quad g \in L_\infty;$$

 T^* is a positive linear operator on L_{∞} and $||T^*|| = ||T|| \leq 1$. Assume there is an $f_0 \in L_1$ with $0 < f_0 = Tf_0$ and let F_N be the set of all $x \in X$ such that $f_0(x) > N$, in symbols $F_N = \{f_0 > N\}$. Let $A \in \mathcal{A}$, p(A) > 0. Then

$$0 < \delta \stackrel{\text{def}}{=} \int_{A} f_0 dp = \int_{X} T^n f_0 \cdot \mathbf{1}_A dp = \int_{X} f_0 \cdot T^{*n} \mathbf{1}_A dp$$
$$\leq N \int_{X} T^{*n} \mathbf{1}_A dp + \int_{F_N} f_0 \cdot T^{*n} \mathbf{1}_A dp.$$

Since $T^{*n} \mathbf{1}_A \leq \mathbf{1}$, we may choose a fixed N so large that the last integral is less than $\frac{1}{2} \delta$. Then for each $n, \pi_n(A) \geq \delta/2N$ which proves (i).

Part II: (ii) \Rightarrow (iii). The following result is stated with more generality than needed for applications in this paper. In particular, it contains Hopr's maximal ergodic lemma.

Proposition 1. Let K be a set of real-valued functions on X and assume that K is a linear space and a lattice under pointwise operations. Let V be a positive linear

operator on K, N a positive integer and set for an $f \in K$

$$g_N = \max_{1 \le n \le N} \sum_{0}^{n-1} V^i f, \quad A_N = \{g_N > 0\}.$$

Then there is a non-negative function $h_N \in K$, such that

$$(4) f \cdot 1_{A_N} \ge h_N - V h_N.$$

Proof. Set $h_N = \max(0, g_N)$, then

 $Vh_N \ge \max(V0 = 0, Vg_N) \ge \max(0, Vf, Vf + V^2f, ..., Vf + ... + V^Nf) =$ = $g_{N+1} - f \ge g_N - f$.

On A_N , $g_N(x) = h_N(x)$ while on A_N^c , $h_N(x) = 0$ and $Vh_N(x) \ge 0$ (since $Vh_N(x) \ge 0$ everywhere). Hence (4) holds for each $x \in X$.

We now define a functional m on bounded sequences of real numbers (x_n) by

(5)
$$m(x_n) = \lim_{n} (\inf_{j} n^{-1} \sum_{i=0}^{n-1} x_{i+j}).$$

The following simple property of m, and of M defined by (2), will be referred to as "telescoping":

$$|m(x_n - x_{n+1})| = |-M(x_{n+1} - x_n)| = |\lim_{i} [\inf_{j} n^{-1}(x_j - x_{j+n})]| \le \le \lim_{n} 2n^{-1} \sup_{k} |x_k| = 0.$$

Proposition 2. Let U be a positive linear operator in L_{∞} with $||U|| \leq 1$. Let

$$f \in L_{\infty}, \ g_N = \max_{1 \le n \le N} \sum_{0}^{n-1} U^i f, \ A_N = \{g_N > 0\}.$$

Then

$$m[U^n(f\cdot 1_{A_N})(x)] \ge 0 \qquad x \in X.$$

This proposition generalizes a result of ITO ([14], p. 168).

Proof. Assume $K = L_{\infty}$, set V = U in (4) and apply U^n to both sides:

$$U^{n}(f \cdot 1_{A_{N}})(x) \ge U^{n}h_{N}(x) - U^{n+1}h_{N}(x), \qquad x \in X.$$

Now apply m and note telescoping to the right.

Lemma 1. Let U be a positive linear operator on L_{∞} such that $||U|| \leq 1$ and U1 = 1. Set $\pi_n(A) = \int_X U^n \mathbf{1}_A dp$. Let A be a set with p(A) > 0 and

$$\liminf n^{-1} \sum_{0}^{n-1} \pi_i(A) = 0,$$

then for each $\varepsilon > 0$ there is a set $B \subset A$ with $p(B) > p(A) - \varepsilon$ and $M[\pi_n(B)] = 0$. Proof. We introduce the following notation

$$U_m(f)(x) = m[U^n f(x)], \ U_M f(x) = M[U^n f(x)], \ U_* f(x) = \liminf n^{-1} \sum_{0}^{n-1} U^i f(x).$$

By Fatou's lemma

$$\int_{X} U_* \mathbf{1}_A dp \leq \liminf n^{-1} \sum_{0}^{n-1} \pi_i(A)$$

hence $U_* 1_A = 0$. For a fixed k > 0 let

$$A_N = \{\max_{1 \le n \le N} n^{-1} \sum_{i=0}^{n-1} U^i (k^{-1} - 1_A) > 0\} = \{\min_{1 \le n \le N} n^{-1} \sum_{i=0}^{n-1} U^i 1_A < k^{-1}\}.$$

Let $f_N^k = \mathbf{1}_A \cdot \mathbf{1}_{A_N} + k^{-1} \mathbf{1}_{A_N^c}$. Since on A_N^c , $\mathbf{1}_A(x) \ge k^{-1}$, one has $0 \le f_N^k \le \mathbf{1}_A$ and $k^{-1} - f_N^k = (k^{-1} - \mathbf{1}_A) \mathbf{1}_{A_N}$. Therefore by Proposition 2, $U_m(k^{-1} - f_N^k) \ge 0$ hence $U_M(f_N^k) = -U_m(-f_N^k) \leq k^{-1}$. Moreover, $A_N \to X$ and $f_N^k \xrightarrow{N} 1_A$; therefore by Egorov's theorem there is for each positive integer k an integer N_k and a set $B_k \subset A$ such that $p(B_k) > p(A) - 2^{-k}\varepsilon$ and $f_{N_k} \ge \frac{1}{2} \mathbf{1}_{B_k}$, hence

$$U_M(1_{B_k}) \leq 2 U_M(f_{N_k}^k) \leq 2 k^{-1}.$$

Let $B = \bigcap_{k} B_{k}$, then $p(B) > p(A) - \varepsilon$ and $U_{M}(\mathbf{1}_{B}) = 0$. That $M[\pi_{n}(B)] = 0$ now follows from the relation

$$\int_{X} (\sup_{j} n^{-1} \sum_{i=0}^{n-1} U^{i+j} \mathbf{1}_{B}) \, dp \ge \sup_{j} \int_{X} n^{-1} \sum_{i=0}^{n-1} U^{i+j} \mathbf{1}_{B} \, dp = \sup_{j} n^{-1} \sum_{i=0}^{n-1} \pi_{i+j}(B)$$

on letting n go to infinity and applying the bounded convergence theorem.

The implication (ii) \Rightarrow (iii) will follow from Lemma 1 if we show that under the assumption (ii), $T^*1 = 1$. Since $||T^*|| \leq 1$, $T^*1 \leq 1$. Assume that $1 - T^*1$ $= g \neq 0$. Then there is a set E with p(E) > 0 and a positive constant c such that q(x) > 1/c on E, hence $cg \ge 1_E$. Because of the telescoping property of M

$$M\left(\int\limits_X c \, T^{*n} g \, dp\right) = 0$$

hence $M[\pi^n(E)] = 0$ which contradicts (ii).

Part III: (iii) \Rightarrow (0). The dual space of $L_1 = L_1(X, \mathcal{A}, p)$ is the space $L_{\infty} = L_{\infty}(X, \mathscr{A}, p)$ of essentially bounded functions with essential supremum norm, and in turn the dual of L_{∞} is the space $\Psi(=ba(X, \mathcal{A}, p), \text{ cf. [7]}, p. 296)$ of signed finite finitely additive measures (signed charges), vanishing on p-null sets, with norm $\|\psi\| = \text{total variation of } \psi, \psi \in \Psi$. If T is a positive linear operator on L_1 , then T^* , the adjoint of T, is a positive linear operator on L_{∞} and $||T^*|| = ||T||$. In turn T^* admits an adjoint $(T^*)^* = T^{**}$ mapping Ψ to Ψ and T^{**} is a positive linear operator with $||T^{**}|| = ||T^*||$. Under the natural embedding of the Banach space L_1 in its second conjugate Ψ , L_1 is mapped on Φ , the space of finite signed p-continuous measures, already mentioned in the Introduction, and T^{**} coincides on Φ with Λ defined by (3). Now let L be a Banach limit and set

(6)
$$\nu(A) = L\left[n^{-1}\sum_{0}^{n-1}\pi_{i}(A)\right] \qquad A \in \mathscr{A}.$$

It easily follows from properties of Banach limits that $v \in \Psi$ and $v \ge 0$ (see e.g. [7], p. 73 or LORENTZ [14]). Therefore ν defines a positive linear functional on L_{∞} , and in fact this functional is simply given by

$$\nu(g) = \int_X g \, d\nu = L\left(n^{-1} \sum_{0}^{n-1} \int_X T^{*i} g \, dp\right), \qquad g \in L_{\infty}.$$

Note that ν is invariant under T^{**} . Indeed, for each $g \in L_{\infty}$, $(T^{**}\nu)g = \nu(T^*g)$ $= \nu(q)$, the last equality holding, as can be shown by a simple computation, be-

cause of the invariance of Banach limits under shifts on sequences. We now recall that every charge may be uniquely decomposed into a measure and a pure charge: if $v \in \Psi$, $v \ge 0$, then $v = v_m + v_c$, where $v_m \ge 0$ is a measure and $v_c \ge 0$ is a pure charge; i.e., v_c does not dominate any non-trivial measure (YOSIDA and **HEWITT** [20], p. 52 or [7], p. 163). If $v = v_m + v_c$ is defined by (6), then $v \ge v_m$ implies $T^{**}v = v \ge T^{**}v_m$. Thus $T^{**}v_m - v_m \le v_c$, and $(T^{**}v_m - v_m)^+ \le v_c$. Because v_c is a pure charge, $T^{**}v_m \leq v_m$ and hence $T^{**}v_c \geq v_c$. If $T^{**}v_c \neq v_c$, then there exists a set A with $T^{**}v_c(A) > v_c(A)$, and since $T^{**}v_c(A^c) \ge v_c(A^c)$, it follows that $T^{**}\nu_c(X) > \nu_c(X)$ and $||T^{**}|| > 1$. Assume $||T|| \leq 1$, then $||T^{**}|| = ||T|| \leq 1$, hence $T^{**}v_c = v_c$ and $T^{**}v_m = \Lambda v_m = v_m$. Thus v_m is invariant under Λ and ν_m will be shown to be an equivalent invariant measure if we prove that $v_m(A) = 0$ implies p(A) = 0. Assume the contrary: there is a set E with $v_m(E) = 0$ and p(E) > 0. Restricted to the σ -field of subsets of E in $\mathcal{A}, v = v_c$ is a pure charge and p is a non-trivial measure. It has been proved by YOSIDA and HEWITT ([20], p. 50) that a pure charge is nearly orthogonal to every measure; as applied to v and p this means that for each ε with $0 < \varepsilon < p(E)$, there is a set $A \in E$ with $\nu(A) = 0$ and $p(A) > p(E) - \varepsilon > 0$ hence, assuming (iii), v(A) > 0 because $L(x_n) \ge \lim \inf x_n$ for every bounded sequence (x_n) . This is a contradiction.

Remark. The proof of Theorem 1 uses the analytical form of M and of m, but not their identification, obtained in [19] as, respectively, the maximal and the minimal value of Banach limits. A proof based on this identification was given by NEVEU [17].

3. Conservative Operators

We assume that T is a fixed positive linear operator on L_1 with $||T|| \leq 1$. First we state some known results, many of which appear in the fundamental work of HOPF [13]; see also NEVEU ([16], p. 178, ff.)².

The space X can be uniquely decomposed into two parts, X = C + D, where C is called the conservative part, D the dissipative part. We denote by $T_{\infty}f$ the sum $\sum_{0}^{\infty} T^n f$. For each non-negative function $f \in L_1$, $T_{\infty}f(x) = 0$ or $+\infty$ on C; $T_{\infty}f(x) < \infty$ on D. The notions of invariance and ergodicity can be defined only on C which in the words of HOPF "is the vital part as far as ergodic theory is concerned". A satisfactory separation of C and D is possible: if a function f vanishes on D, so does Tf; conversely, the influence of D on C is also negligible, even though only asymptotically (cf. HOPF [13], p. 44; CHACON [2]). Consequently, the assumption frequently made in this section that X = C, in words: T is conservative, is not a severe loss of generality. This assumption is satisfied if there is a positive fixed-point, but conversely the assumption X = Cis not sufficient for the existence of a positive fixed-point even in the particular case of a T induced by a point-transformation (cf. HALMOS [11], p. 85).

² Our Tf and T * g are in NEVEU's book, respectively fT and Tg. Neveu's notation would be confusing in the present paper, because if τ is a measurable and null-preserving, but not measure-preserving, point-transformation, then the operator ascribing to f the function $f\tau$ is not an L_1 contraction, but the adjoint of such a contraction.

In the following discussion of invariant sets we assume that X = C. The σ -field \mathscr{I} of invariant sets may be characterized by either of the two equivalent definitions:

a) $A \in \mathscr{I}$ if and only if $T^* \mathbf{1}_A = \mathbf{1}_A$.

b) $A \in \mathscr{I}$ if and only if there is a non-negative function $f \in L_1$, such that $A = \{T_{\infty} f = \infty\}$.

A function $g \in L_{\infty}$ is called invariant if $T^*g = g$. Invariant functions are exactly those measurable with respect to \mathscr{I} . If for a $g \in L_{\infty}$, $T^*g \leq g$, then g is invariant: hence in particular constants are invariant. T is called ergodic if $\mathscr{I} = \{0, X\}$.

The following theorem may be considered as a quantitative strengthening of Theorem 1.

Theorem 2. If the operator T is conservative and ergodic and there exists no positive fixed-point, then for each $\varepsilon > 0$ there is a set B with $p(B) > 1 - \varepsilon$ and

$$\lim_{n \to \infty} n^{-1} \sum_{i=0}^{n-1} \pi_{i+i}(B) = 0$$

uniformly in j.

Proof. We revert to Part III of the proof of Theorem 1. If no positive fixedpoint exists, then there is a set E with p(E) > 0 and $v_m(E) = 0$. Since v_m is invariant under A, $dv_m | dp = f_0$ is a fixed-point. Set $F = \{T_{\infty}f_0 = 0\}$, then $f_0(x) = 0$ on E implies $E \subset F$; therefore p(F) > 0. F is invariant since it is the complement of the set $\{T_{\infty}f_0 = \infty\}$, and because T is ergodic, F = X. Applying the argument from the end of Part III with X instead of E, we obtain that for each $\varepsilon > 0$, there is a set A with $p(A) > 1 - \varepsilon$ and $\liminf n^{-1} \sum_{0}^{n-1} \pi_i(A) = 0$. The proof is now completed by application of Lemma 1 with $U = T^*$.

The following Proposition is preparatory for Theorem 3.

Proposition 3. Let $0 \leq g \in L_1$ and set

(7)
$$\gamma_n(A) = \int_A T^n g \, dp \,, \quad A \in \mathscr{A} \,.$$

If there is a positive fixed-point, then the measures γ_n are uniformly p-continuous.

Proof. Assume that there is a function $f_0 \in L_1$ with $0 < f_0 = T f_0$. We are to show that given an $\varepsilon > 0$, there is a $\delta > 0$ such that $p(A) < \delta$ implies $\gamma_n(A) < \varepsilon$ for all *n*. First select a function $g', 0 \leq g' \in L_{\infty}$, such that $||g - g'||_{L_1} < \varepsilon/3$. Let $d = ess \sup g', F_{\alpha} = \{f_0 > \alpha\}$. Then for each $\alpha > 0$

(8)
$$\int_{F_{\alpha}^{c}} g' \, T^{*n} \, \mathbf{1}_{A} \, dp \leq d \int_{F_{\alpha}^{c}} \mathbf{1} \, dp = c \, p \, (F_{\alpha}^{c}) \, dp$$

Choose an α fixed so small that $dp(F_{\alpha}^{c}) < \varepsilon/3$. Now let δ be so small that if $p(A) < \delta$, then

(9)
$$\frac{\varepsilon}{3} > \frac{d}{\alpha} \int_{A} f_0 dp = \frac{d}{\alpha} \int_{X} T^{*n} \mathbf{1}_A \cdot f_0 dp \ge \int_{F_{\alpha}} g' T^{*n} \mathbf{1}_A dp.$$

(8) and (9) together yield

$$\int\limits_{\mathcal{X}} g' T^{st n} \operatorname{l}_{A} dp = \int\limits_{A} T^{n} g' dp < rac{2}{3} \varepsilon$$
 ,

hence

$$\gamma_n(A) \leq \int\limits_A T^n g' \, dp + \int\limits_X \left| T^n(g-g') \right| dp < \varepsilon.$$

Theorem 3. If there exists a positive fixed-point, then for each set A, all Banach limits on the sequence $\pi_n(A)$ coincide. If $\lambda(A)$ is their common value, then λ is a measure and

(10)
$$\lambda(A) = \lim_{n \to \infty} n^{-1} \sum_{i=0}^{n-1} \pi_{i+i}(A) \quad uniformly \ in \ j;$$

 λ coincides with p on invariant sets and $d\lambda/dp$ is a positive fixed-point. Conversely, if for each A all Banach limits on the sequence $\pi_n(A)$ coincide and if T is conservative, then there is a positive fixed-point.

Proof. Assume that there is a positive fixed-point f_0 ; then T is conservative since $\{T_{\infty}f_0 = \infty\} = X$. Let L be a Banach limit and set

(11)
$$\lambda(A) = L[\pi_n(A)], \quad A \in \mathscr{A}.$$

It is easy to see that λ is a charge and λ vanishes on *p*-null sets. From Proposition 3 applied with g = 1 it follows that given an $\varepsilon > 0$, there is a $\delta > 0$ such that if $p(A) < \delta$, then $\pi_n(A) < \varepsilon$ for all *n*, hence $\lambda(A) < \varepsilon$. Thus λ is *p*-continuous and given a sequence of sets A_n with $A_n \downarrow 0$, one has $p(A_n) \downarrow 0$ and therefore $\lambda(A_n) \downarrow 0$. This implies that λ is a measure and hence $T^{**}\lambda = A\lambda$. Since

$$T^{**}\lambda(\mathbf{1}_A) = \lambda(T^*\mathbf{1}_A) = \lambda(\mathbf{1}_A),$$

 λ is invariant under Λ and $d\lambda/dp$ is a positive fixed point (cf. the proof of invariance of ν under T^{**} in part III of the proof of Theorem 1). Let $F_1 = \{f_1 = 0\}$, then $F_1 = \{T_{\infty} f_1 = \infty\}^c$ is an invariant set and since p coincides with each π_n and hence with λ on invariant sets, $p(F_1) = \lambda(F_1) = 0$, i.e., $f_1 > 0$. Also, $E(f_1|\mathscr{I}) = 1$; if now f_2 is another fixed-point with $E(f_2|\mathscr{I}) = 1$, then from the ergodic theorem of HOPF ([16], p. 190) it follows that

$$f_2 = \lim n^{-1} \sum_{0}^{n-1} T^i f_2 = \frac{f_1}{E(f_1/\mathscr{I})} E(f_2/\mathscr{I}) = f_1.$$

Consequently λ defined by (11) does not depend upon the choice of the Banach limit L; i.e., for each A, all Banach limits on the sequence $\pi_n(A)$ coincide. Now $M[\pi_n(A)] = m[\pi_n(A)]$ proves (10) (see the remark following the proof of Theorem 1, and also LORENTZ [15]) and the first part of the theorem. To prove the second part, assume that T is conservative and that for each set A, all Banach limits on the sequence $\pi_n(A)$ agree. $M[\pi_n(A)] = m[\pi_n(A)]$ implies that $\pi_n(A)$ converges Cesàro, and by the Vitali-Hahn-Saks theorem (see [7] p. 160, Corollary 4, or [16] p. 111) the limit, say $\mu(A)$, is a measure. It is easy to see that μ is invariant under the operator A defined by (3) and μ agrees with p on invariant sets; proceeding as in the first part of the proof, one shows that $d\mu/dp$ is a positive fixedpoint. The same argument proves, after integration of (12), the following.

Theorem 4. If the operator T is conservative and for each set A the limit

(12)
$$\lim n^{-1} \sum_{0}^{n-1} T^{*i} \mathbf{1}_{A} = f_{A}$$

exists, then $\mu(A) = \int_{X} f_A dp$ is a measure agreeing with p on invariant sets and $d\mu/dp$ is a positive fixed-point (under T).

Finally, considering Banach limits on sequences of Cesàro averages of $\pi_n(A)$ and proceeding as in the first part of the proof of Theorem 3, one obtains the following partial converse of Proposition 3.

Proposition 4. If T is conservative and the measures $\mu_n = n^{-1} \sum_{i=0}^{n-1} \pi_i$ are uni-

formly p-continuous (hence a fortiori if the measures π_n are uniformly p-continuous), then there exists a positive fixed-point.

Bibliography

- [1] CALDERÓN, ALBERTO: Sur les mesures invariantes. C. r. Acad. Sci. Paris 240, 1960-1962 (1955).
- [2] CHACON, R. V.: The influence of the dissipative part of a general Markov process. Proc. Amer. math. Soc. 11, 957-961 (1960).
- [3] -, and D. S. ORNSTEIN: A general ergodic theorem. Illinois J. Math. 4 153-160 (1960).
- [4] DOWKER, Y. N.: Finite and σ -finite measures. Ann. of Math., II. Ser. 54, 595-608 (1951).
- [5] On measurable transformations in finite measure spaces. Ann. of Math. 62, 504-516 (1955).
- [6] Sur les applications mesurables. C. r. Acad. Sci. Paris 242, 329-331 (1956).
- [7] DUNFORD, NELSON, and JACOB T. SCHWARTZ: Linear operators I. New York: 1958.
- [8] FELDMAN, J.: Subinvariant measures for Markoff operators. Duke math. J. 29, 71-98 (1962).
- [9] GARSIA, A.: A simple proof of E. Hopf's maximal ergodic theorem. J. Math. Mech. 14, 381-382 (1965).
- [10] HAJIAN, A., and S. KAKUTANI: Weakly wandering sets and invariant measures. Trans. Amer. math. Soc. 110, 136-151 (1964).
- [11] HALMOS, P. R.: Lectures on ergodic theory. Tokyo: The Mathematical Society of Japan 1956.
- [12] HOFF, E.: Theory of measure and invariant integrals. Trans. Amer. math. Soc. 34, 373-393 (1932).
- [13] The general temporally discrete Markoff process. J. rat. Mech. Analysis 3, 13-45 (1954).
- [14] Ito, Y.: Invariant measures for Markov processes. Trans. Amer. math. Soc. 110, 152 -184 (1964).
- [15] LORENTZ, G. G.: A contribution to the theory of divergent sequences. Acta math. 80, 167-190 (1948).
- [16] NEVEU, J.: Bases mathématiques du calcul des probabilités. Paris: Masson 1964.
- [17] Sur l'existence de mesures invariantes en theorie ergodique. C. r. Acad. Sci. Paris 260, 393 — 396 (1965).
- [18] SUCHESTON, L.: An ergodic application of almost convergent sequences. Duke math. J. 30, 417-422 (1963).
- [19] On existence of finite invariant measures. Math. Z. 86, 327-336 (1964).
- [20] YOSIDA, K., and E. HEWITT: Finitely additive measures. Trans. Amer. math. Soc. 72, 46-66 (1952).

Department of Mathematics The Ohio State University Columbus, Ohio 43210, USA