On Invariant Measures for Operators

David W. Dean and Louts Sucheston*

Received September 26, 1965

1. Introduction

Let (X, \mathscr{A}, p) be a measure space with $p(X)=1$. All sets introduced are assumed in \mathscr{A}, all functions measurable with respect to \mathscr{A}. Many relations hold only modulo sets of p-measure zero; the words "almost everywhere" are omitted. No distinction is made between equivalence classes of functions and their representatives.

If T is a positive linear operator on $L_{1}=L_{1}(X, \mathscr{A}, p)$ and $\|T\| \leqq 1$, then the problem of existence of positive fixed-points in L_{1} is of interest, in particular in connection with the individual ergodic theorem. It has indeed been proved implicitly by Hopf that if there exists a positive fixed-point, i.e., a function $f_{0} \in L_{1}$ with $0<f_{0}=T f_{0}$, then for each $f \in L_{1}, T^{n} f$ converges Cesàro to a finite limit (this also follows from the Chacon-Ornstein ergodic theorem), and for each $g \in L_{\infty}=L_{\infty}(X, \mathscr{A}, p), T^{* n} g$ converges Cesàro to a finite limit, where T^{*} is the adjoint of the operator T (cf. Neveu [16], p. 190). Conversely, if $T^{* n} \mathbf{1}_{A}$ converges Cesàro for each set A (1_{A} is the characteristic function of A), and a mild assumption, explained below - if the operator T is conservative, then there exists a positive fixed-point under T (Theorem 4 below). The principal results of the paper are given in terms of measures π_{n} defined by

$$
\begin{equation*}
\pi_{n}(A)=\int_{A} T^{n} 1 d p=\int_{X} T^{* n} 1_{A} d p \quad A \in \mathscr{A} \tag{1}
\end{equation*}
$$

Theorem 1 asserts that there are positive fixed-points if and only if $p(A)>0$ implies $F\left[\pi_{n}(A)\right]>0$, where F is a functional defined on bounded sequences of real numbers $\left(x_{n}\right)$; the smallest F we obtain is $\inf x_{n}$; the largest is $M\left(x_{n}\right)$, the maximal value of Banach limits on the sequence $\left(x_{n}\right)$, given by

$$
\begin{equation*}
M\left(x_{n}\right)=\lim _{n}\left(\sup _{j} n^{-1} \sum_{i=0}^{n-1} x_{i+j}\right) . \tag{2}
\end{equation*}
$$

If there are no positive fixed-points and the operator T is conservative and ergodic, then there are large "bad" sets: there exists for each $\varepsilon>0$ a set B with $p(B)>1-\varepsilon$ and $M\left[\pi_{n}(B)\right]=0$ (Theorem 2). Further (Theorem 3), if T is conservative, then there exists a positive fixed-point if and only if for each set A, all Banach limits on the sequence $\pi_{n}(A)$ coincide; their common value is a finite measure equivalent to p and invariant under the operator Λ which we will now define.

[^0]By the Radon-Nikodym theorem the Banach space L_{1} is isomorphic to the space Φ of finite, p-continuous, signed measures. Under this isomorphism there is, corresponding to the operator T, an operator Λ on Φ, which ascribes to a signed measure $\varphi \in \Phi$ a signed measure $\Lambda \varphi \in \Phi$, defined by

$$
\begin{equation*}
\Lambda \varphi(A)=\int_{\boldsymbol{A}} T \frac{d \varphi}{d p} d p \quad A \in \mathscr{A} \tag{3}
\end{equation*}
$$

where $d \varphi / d p$ is the Radon-Nikodym derivative of φ with respect to p. In terms of operator Λ the measures π_{n} given by (1) are simply images of p under Λ^{n}, $\pi_{n}=\Lambda^{n} p$, and our problem is that of finding a measure φ_{0} equivalent with p, and invariant under $\Lambda ; \varphi_{0}$ is such a measure if and only if $d \varphi_{0} / d p$ is a positive fixed-point under T.

The operator Λ may be generated by a measurable point-transformation τ mapping X to X, by the relation

$$
\Lambda \varphi(A)=\varphi\left(\tau^{-1} A\right) \quad \varphi \in \Phi, \quad A \in \mathscr{A}
$$

provided that $p\left(\tau^{-1} A\right)=0$ if $p(A)=0$, which ensures that Λp is p-continuous, and thus our problem may be seen to include the classical problem of existence of finite equivalent measures invariant under a point-transformation, first studied by Hopf in 1932 [12]. Or Λ may be induced by a Markov process $P(x, A)^{1}$ by the relation

$$
\Lambda \varphi(A)=\int_{X} P(x, A) d \varphi \quad \varphi \in \Phi, \quad A \in \mathscr{A}
$$

provided that $p(A)=0$ implies $P(x, A)=0$, which again ensures that $\Lambda \varphi$ is p-continuous; thus our problem includes the problem of existence of finite equivalent measures invariant under a Markov process.

The present paper extends to abstract operators results already known for point-transformations and, in part, for Markov processes. Theorem I was obtained for point-transformations by Mrs. Dowker [5] and Calderón [1] with $F=\lim$ inf; also by Calderón [1] with $F=\lim \inf$ of Cesàro averages, and again by Mrs. Dowker [6] with $F=\lim$ sup of Cesàro averages (see also Hajian and Kakutani [10]). $F=M$ and Theorem 2 were given by Sucheston [19]. Theorem 3 was proved for point-transformations by Sucheston [18] and Theorem 4 by Mrs. Dowker ([4], p. 607). The results of Mrs. Dowker [6] were extended to Markov processes by Iто [14]; most arguments of Ito carry over to abstract operators. Feldman [8] studied the problem of existence of σ-finite invariant measures for operators essentially of the type considered in this paper. (The conditions which he imposes on his L_{∞} operators are satisfied if and only if they are adjoints of positive linear contractions in L_{1}.) Our Theorem 4 is contained in Feldman's Theorem 7.1 ([8], p. 89).

Theorem 1 has also been proved by Neveu [17], whose note was not available to us at the writing of this paper. Nevev's proof, introducing "weakly wandering" functions, has considerable independent interest. It seems to us that our argument,

[^1]based on a rather general "maximal ergodic lemma" (Proposition 1), also has some independent interest. The proof of Proposition 1 imitates the elegant proof by Garsia of Hopf's maximal ergodic theorem [9]. The idea of applying a maximal ergodic theorem in this context is due to Mrs. Dowker [6].

2. The Main Theorem

X is an abstract set, \mathscr{A} a σ-field of subsets of X, p a measure on \mathscr{A}, i.e. a non-negative, countably additive set-function, and $p(X)=1 . L_{1}$ is the space of integrable functions with norm

$$
\|f\|=\int_{X}|f| d p \quad f \in L_{1}
$$

Theorem 1. Let T be a positive linear operator on L_{1} with $\|T\| \leqq 1$ and for each positive integer n let

$$
\pi_{n}(A)=\int_{A} T^{n} 1 d p \quad A \in \mathscr{A}
$$

The following conditions are equivalent.
(0) There exists a function $f_{0} \in L_{1}$ with $f_{0}>0$ and $T f_{0}=f_{0}$.
(i) $p(A)>0$ implies $\inf \pi_{n}(A)>0, A \in \mathscr{A}$.
(ii) $p(A)>0$ implies $M\left[\pi_{n}(A)\right]=\lim _{n}\left[\sup _{j} n^{-1} \sum_{i=0}^{n-1} \pi_{i+j}(A)\right]>0, A \in \mathscr{A}$.

Proof. For the purpose of proof we introduce a third condition:
(iii) $p(A)>0$ implies $\lim \inf n^{-1} \sum_{i=0}^{n-1} \pi_{i}(A)>0, A \in \mathscr{A}$.

The proof follows the scheme $(0) \Rightarrow$ (i) \Rightarrow (ii) \Rightarrow (iii) $\Rightarrow(0)$. The implication (i) \Rightarrow (ii) is obvious since $\inf _{n} \pi_{n}(A) \leqq M\left[\pi_{n}(A)\right]$.

Part $I:(0) \Rightarrow(\mathrm{i}) . T^{*}$, the adjoint of T, is defined by

$$
\int_{X} T f \cdot g d p=\int_{X} f \cdot T^{*} g d p \quad f \in L_{1}, \quad g \in L_{\infty} ;
$$

T^{*} is a positive linear operator on L_{∞} and $\left\|T^{*}\right\|=\|T\| \leqq 1$. Assume there is an $f_{0} \in L_{1}$ with $0<f_{0}=T f_{0}$ and let F_{N} be the set of all $x \in X$ such that $f_{0}(x)>N$, in symbols $F_{N}=\left\{f_{0}>N\right\}$. Let $A \in \mathscr{A}, p(A)>0$. Then

$$
\begin{aligned}
0 & <\delta \stackrel{\text { def }}{=} \int_{A} f_{0} d p=\int_{X} T^{n} f_{0} \cdot 1_{A} d p=\int_{X} f_{0} \cdot T^{* n} \mathbf{1}_{A} d p \\
& \leqq N \int_{X} T^{* n} \mathbf{1}_{A} d p+\int_{F_{N}} f_{0} \cdot T^{* n} 1_{A} d p
\end{aligned}
$$

Since $T^{* n} 1_{A} \leq 1$, we may choose a fixed N so large that the last integral is less than $\frac{1}{2} \delta$. Then for each $n, \pi_{n}(A) \geqq \delta / 2 N$ which proves (i).

Part II: (ii) \Rightarrow (iii). The following result is stated with more generality than needed for applications in this paper. In particular, it contains Hopf's maximal ergodic lemma.

Proposition 1. Let K be a set of real-valued functions on X and assume that K is a linear space and a lattice under pointwise operations. Let V be a positive linear
operator on K, N a positive integer and set for an $f \in K$

$$
g_{N}=\max _{1 \leqq n \leqq N} \sum_{0}^{n-1} V^{i} f, \quad A_{N}=\left\{g_{N}>0\right\}
$$

Then there is a non-negative function $h_{N} \in K$, such that

$$
\begin{equation*}
f \cdot \mathbf{1}_{A_{N}} \geqq h_{N}-V h_{N} \tag{4}
\end{equation*}
$$

Proof. Set $h_{N}=\max \left(0, g_{N}\right)$, then
$V h_{N} \geqq \max \left(V 0=0, V g_{N}\right) \geqq \max \left(0, V f, V f+V^{2} f, \ldots, V f+\cdots+V^{N} f\right)=$ $=g_{N+1}-f \geqq g_{N}-f$.
On $A_{N}, g_{N}(x)=h_{N}(x)$ while on $A_{N}^{e}, h_{N}(x)=0$ and $V h_{N}(x) \geqq 0$ (since $V h_{N}(x) \geqq 0$ everywhere). Hence (4) holds for each $x \in X$.

We now define a functional m on bounded sequences of real numbers $\left(x_{n}\right)$ by

$$
\begin{equation*}
m\left(x_{n}\right)=\lim _{n}\left(\inf _{j} n^{-1} \sum_{i=0}^{n-1} x_{i+j}\right) \tag{5}
\end{equation*}
$$

The following simple property of m, and of M defined by (2), will be referred to as "telescoping":

$$
\begin{gathered}
\left|m\left(x_{n}-x_{n+1}\right)\right|=\left|-M\left(x_{n+1}-x_{n}\right)\right|=\left|\lim _{n}\left[\inf _{j} n^{-1}\left(x_{j}-x_{j+n}\right)\right]\right| \leqq \\
\leqq \lim _{n} 2 n^{-1} \sup _{k}\left|x_{k}\right|=0 .
\end{gathered}
$$

Proposition 2. Let U be a positive linear operator in L_{∞} with $\|U\| \leqq 1$. Let

Then

$$
f \in L_{\infty}, g_{N}=\max _{1 \leq n \leq N} \sum_{0}^{n-1} U^{i} f, A_{N}=\left\{g_{N}>0\right\}
$$

,

$$
m\left[U^{n}\left(f \cdot 1_{A_{N}}\right)(x)\right] \geqq 0 \quad x \in X
$$

This proposition generalizes a result of Iто ([14], p. 168).
Proof. Assume $K=L_{\infty}$, set $V=U$ in (4) and apply U^{n} to both sides:

$$
U^{n}\left(f \cdot 1_{A_{N}}\right)(x) \geqq U^{n} h_{N}(x)-U^{n+1} h_{N}(x), \quad x \in X
$$

Now apply m and note telescoping to the right.
Lemma 1. Let U be a positive linear operator on L_{∞} such that $\|U\| \leqq 1$ and $U 1=1$. Set $\pi_{n}(A)=\int_{X} U^{n} 1_{A} d p$. Let A be a set with $p(A)>0$ and

$$
\lim \inf n^{-1} \sum_{0}^{n-1} \pi_{i}(A)=0
$$

then for each $\varepsilon>0$ there is a set $B \subset A$ with $p(B)>p(A)-\varepsilon$ and $M\left[\pi_{n}(B)\right]=0$.
Proof. We introduce the following notation
$U_{m}(f)(x)=m\left[U^{n} f(x)\right], U_{M} f(x)=M\left[U^{n} f(x)\right], U_{*} f(x)=\lim \inf n^{-1} \sum_{0}^{n-1} U^{i} f(x)$.
By Fatou's lemma

$$
\int_{X} U_{*} 1_{A} d p \leqq \lim \inf n^{-1} \sum_{0}^{n-1} \pi_{i}(A)
$$

hence $U_{*} 1_{A}=0$. For a fixed $k>0$ let

$$
A_{N}=\left\{\max _{1 \leqq n \leqq N} n^{-1} \sum_{i=0}^{n-1} U^{i}\left(k^{-1}-1_{A}\right)>0\right\}=\left\{\min _{1 \leqq n \leqq N} n^{-1} \sum_{i=0}^{n-1} U^{i} 1_{A}<k^{-1}\right\} .
$$

Let $f_{N}^{k}=1_{A} \cdot 1_{A_{N}}+k^{-1} 1_{A_{N}}^{\sigma}$. Since on $A_{N}^{c}, 1_{A}(x) \geqq k^{-1}$, one has $0 \leqq f_{N}^{k} \leqq 1_{A}$ and $k^{-1}-f_{N}^{k}=\left(k^{-1}-1_{A}\right) \mathbf{1}_{A_{N}}$. Therefore by Proposition 2, $U_{m}\left(k^{-1}-f_{N}^{k}\right) \geqq \mathbf{0}$ hence $U_{M}\left(f_{N}^{k}\right)=-U_{m}\left(-f_{N}^{k}\right) \leqq k^{-1}$. Moreover, $A_{N} \rightarrow X$ and $\dot{f}_{N}^{k} \xrightarrow{N} 1_{A}$; therefore by Egorov's theorem there is for each positive integer k an integer N_{k} and a set $B_{k} \subset A$ such that $p\left(B_{k}\right)>p(A)-2^{-k} \varepsilon$ and $f_{N_{k}} \geqq \frac{1}{2} 1_{B_{k}}$, hence

$$
U_{M}\left(1_{B_{k}}\right) \leqq 2 U_{M}\left(f_{N_{k}}^{k}\right) \leqq 2 k^{-1}
$$

Let $B=\cap B_{k}$, then $p(B)>p(A)-\varepsilon$ and $U_{M}\left(1_{B}\right)=0$.
That $M\left[\pi_{n}(B)\right]=0$ now follows from the relation

$$
\int_{X}\left(\sup _{j} n^{-1} \sum_{i=0}^{n-1} U^{i+j} 1_{B}\right) d p \geqq \sup _{j} \int_{X} n^{-1} \sum_{i=0}^{n-1} U^{i+j} 1_{B} d p=\sup _{j} n^{-1} \sum_{i=0}^{n-1} \pi_{i+j}(B)
$$

on letting n go to infinity and applying the bounded convergence theorem.
The implication (ii) \Rightarrow (iii) will follow from Lemma 1 if we show that under the assumption (ii), $T^{*} 1=1$. Since $\left\|T^{*}\right\| \leqq 1, T^{*} 1 \leqq 1$. Assume that $1-T^{*} 1$ $=g \neq 0$. Then there is a set E with $p(E)>0$ and a positive constant c such that $g(x)>1 / c$ on E, hence $c g \geqq \mathbf{1}_{E}$. Because of the telescoping property of M

$$
M\left(\int_{X} c T^{* n} g d p\right)=0
$$

hence $M\left[\pi^{n}(E)\right]=0$ which contradicts (ii).
Part III: (iii) $\Rightarrow(0)$. The dual space of $L_{1}=L_{1}(X, \mathscr{A}, p)$ is the space $L_{\infty}=L_{\infty}(X, \mathscr{A}, p)$ of essentially bounded functions with essential supremum norm, and in turn the dual of L_{∞} is the space $\Psi(=b a(X, \mathscr{A}, p)$, cf. [7$]$, p. 296) of signed finite finitely additive measures (signed charges), vanishing on p-null sets, with norm $\|\psi\|=$ total variation of $\psi, \psi \in \Psi$. If T is a positive linear operator on L_{1}, then T^{*}, the adjoint of T, is a positive linear operator on L_{∞} and $\left\|T^{*}\right\|=\|T\|$. In turn T^{*} admits an adjoint $\left(T^{*}\right)^{*}=T^{* *}$ mapping Ψ to Ψ and $T^{* *}$ is a positive linear operator with $\left\|T^{* *}\right\|=\left\|T^{*}\right\|$. Under the natural embedding of the Banach space L_{1} in its second conjugate Ψ, L_{1} is mapped on Φ, the space of finite signed p-continuous measures, already mentioned in the Introduction, and $T^{* *}$ coincides on Φ with Λ defined by (3). Now let L be a Banach limit and set

$$
\begin{equation*}
v(A)=L\left[n^{-1} \sum_{0}^{n-1} \pi_{i}(A)\right] \quad A \in \mathscr{A} . \tag{6}
\end{equation*}
$$

It easily follows from properties of Banach limits that $v \in \Psi$ and $\nu \geqq 0$ (see e.g. [7], p. 73 or Lorentz [14]). Therefore v defines a positive linear functional on L_{∞}, and in fact this functional is simply given by

$$
\nu(g)=\int_{X} g d \nu=L\left(n^{-1} \sum_{0}^{n-1} \int_{X} T^{* i} g d p\right), \quad g \in L_{\infty} .
$$

Note that ν is invariant under $T^{* *}$. Indeed, for each $g \in L_{\infty},\left(T^{* *} \nu\right) g=\nu\left(T^{*} g\right)$ $=\nu(g)$, the last equality holding, as can be shown by a simple computation, be-
cause of the invariance of Banach limits under shifts on sequences. We now recall that every charge may be uniquely decomposed into a measure and a pure charge: if $v \in \Psi, \boldsymbol{v} \geqq 0$, then $\boldsymbol{v}=\nu_{m}+\nu_{c}$, where $\boldsymbol{\nu}_{m} \geqq 0$ is a measure and $\boldsymbol{\nu}_{c} \geqq 0$ is a pure charge; i.e., ν_{c} does not dominate any non-trivial measure (Yosida and Hewitt [20], p. 52 or [7], p. 163). If $v=\nu_{m}+\nu_{c}$ is defined by (6), then $v \geqq \nu_{m}$ implies $T^{* *} \boldsymbol{v}=\boldsymbol{v} \geqq T^{* *} \boldsymbol{v}_{m}$. Thus $T^{* *} \boldsymbol{\nu}_{m}-\boldsymbol{v}_{m} \leqq \nu_{c}$, and $\left(T^{* *} \boldsymbol{v}_{m}-\boldsymbol{v}_{m}\right)^{+} \leqq \nu_{c}$. Because ν_{c} is a pure charge, $T^{* *} v_{m} \leqq \nu_{m}$ and hence $T^{* *} \boldsymbol{v}_{c} \geqq \nu_{c}$. If $T^{* *} \nu_{c} \neq \boldsymbol{v}_{c}$, then there exists a set A with $T^{* *} \nu_{c}(A)>\nu_{c}(A)$, and since $T^{* *} \nu_{c}\left(A^{c}\right) \geqq v_{c}\left(A^{c}\right)$, it follows that $T^{* *} v_{c}(X)>v_{c}(X)$ and $\left\|T^{* *}\right\|>1$. Assume $\|T\| \leqq 1$, then $\left\|T^{* *}\right\|=\|T\| \leqq 1$, hence $T^{* *} v_{c}=\nu_{c}$ and $T^{* *} v_{m}=\Lambda v_{m}=v_{m}$. Thus v_{m} is invariant under Λ and ν_{m} will be shown to be an equivalent invariant measure if we prove that $\nu_{m}(A)=0$ implies $p(A)=0$. Assume the contrary: there is a set E with $v_{m}(E)=0$ and $p(E)>0$. Restricted to the σ-field of subsets of E in $\mathscr{A}, \boldsymbol{v}=\nu_{c}$ is a pure charge and p is a non-trivial measure. It has been proved by Yosida and Hewitt ([20], p. 50) that a pure charge is nearly orthogonal to every measure; as applied to ν and p this means that for each ε with $0<\varepsilon<p(E)$, there is a set $A \subset E$ with $\boldsymbol{v}(A)=0$ and $p(A)>p(E)-\varepsilon>0$ hence, assuming (iii), $v(A)>0$ because $L\left(x_{n}\right) \geqq \lim \inf x_{n}$ for every bounded sequence $\left(x_{n}\right)$. This is a contradiction.

Remark. The proof of Theorem 1 uses the analytical form of M and of m, but not their identification, obtained in [19] as, respectively, the maximal and the minimal value of Banach limits. A proof based on this identification was given by Neveu [17].

3. Conservative Operators

We assume that T is a fixed positive linear operator on L_{1} with $\|T\| \leqq 1$. First we state some known results, many of which appear in the fundamental work of Hopf [13]; see also Neveu ([16], p. 178, ff.) ${ }^{2}$.

The space X can be uniquely decomposed into two parts, $X=C+D$, where C is called the conservative part, D the dissipative part. We denote by $T_{\infty} f$ the sum $\sum_{0}^{\infty} T^{n} f$. For each non-negative function $f \in L_{1}, T_{\infty} f(x)=0$ or $+\infty$ on $C ; T_{\infty} f(x)<\infty$ on D. The notions of invariance and ergodicity can be defined only on C which in the words of Hope "is the vital part as far as ergodic theory is concerned". A satisfactory separation of C and D is possible: if a function f vanishes on D, so does $T f$; conversely, the influence of D on C is also negligible, even though only asymptotically (cf. Hopf [13], p. 44; Chacon [2]). Consequently, the assumption frequently made in this section that $X=C$, in words: T is conservative, is not a severe loss of generality. This assumption is satisfied if there is a positive fixed-point, but conversely the assumption $X=C$ is not sufficient for the existence of a positive fixed-point even in the particular case of a T induced by a point-transformation (cf. Halmos [11], p. 85).

[^2]In the following discussion of invariant sets we assume that $X=C$. The σ-field \mathscr{I} of invariant sets may be characterized by either of the two equivalent definitions:
a) $A \in \mathscr{I}$ if and only if $T^{*} \mathrm{I}_{A}=\mathrm{I}_{A}$.
b) $A \in \mathscr{I}$ if and only if there is a non-negative function $f \in L_{1}$, such that $A=\left\{T_{\infty} t=\infty\right\}$.

A function $g \in L_{\infty}$ is called invariant if $T^{*} g=g$. Invariant functions are exactly those measurable with respect to \mathscr{I}. If for a $g \in L_{\infty}, T * g \leqq g$, then g is invariant: hence in particular constants are invariant. T is called ergodic if $\mathscr{I}=\{0, X\}$.

The following theorem may be considered as a quantitative strengthening of Theorem 1.

Theorem 2. If the operator T is conservative and ergodic and there exists no positive fixed-point, then for each $\varepsilon>0$ there is a set B with $p(B)>1-\varepsilon$ and

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{i=0}^{n-1} \pi_{i+j}(B)=0
$$

uniformly in j.
Proof. We revert to Part III of the proof of Theorem 1. If no positive fixedpoint exists, then there is a set E with $p(E)>0$ and $\nu_{m}(E)=0$. Since ν_{m} is invariant under $\Lambda, d v_{m} \mid d p=f_{0}$ is a fixed-point. Set $F=\left\{T_{\infty} f_{0}=0\right\}$, then $f_{0}(x)=0$ on E implies $E \subset F$; therefore $p(F)>0 . F$ is invariant since it is the complement of the set $\left\{T_{\infty} f_{0}=\infty\right\}$, and because T is ergodic, $F=X$. Applying the argument from the end of Part III with X instead of E, we obtain that for each $\varepsilon>0$, there is a set A with $p(A)>1-\varepsilon$ and $\lim \inf n^{-1} \sum_{0}^{n-1} \pi_{i}(A)=0$. The proof is now completed by application of Lemma 1 with $U=T^{*}$.

The following Proposition is preparatory for Theorem 3.
Proposition 3. Let $0 \leqq g \in L_{1}$ and set

$$
\begin{equation*}
\gamma_{n}(A)=\int_{A} T^{n} g d p, \quad A \in \mathscr{A} \tag{7}
\end{equation*}
$$

If there is a positive fixed-point, then the measures γ_{n} are uniformly p-continuous.
Proof. Assume that there is a function $f_{0} \in L_{1}$ with $0<f_{0}=T f_{0}$. We are to show that given an $\varepsilon>0$, there is a $\delta>0$ such that $p(A)<\delta$ implies $\gamma_{n}(A)<\varepsilon$ for all n. First select a function $g^{\prime}, 0 \leqq g^{\prime} \in L_{\infty}$, such that $\left\|g-g^{\prime}\right\|_{L_{1}}<\varepsilon / 3$. Let $d=e s s \sup g^{\prime}, F_{\alpha}=\left\{f_{0}>\alpha\right\}$. Then for each $\alpha>0$

$$
\begin{equation*}
\int_{F_{\alpha}^{c}} g^{\prime} T^{* n} 1_{A} d p \leqq d \int_{F_{\alpha}^{c}} 1 d p=c p\left(F_{\alpha}^{c}\right) \tag{8}
\end{equation*}
$$

Choose an α fixed so small that $d p\left(F_{\alpha}^{c}\right)<\varepsilon / 3$. Now let δ be so small that if $p(A)<\delta$, then

$$
\begin{equation*}
\frac{\varepsilon}{3}>\frac{d}{\alpha} \int_{A} f_{0} d p=\frac{d}{\alpha} \int_{\bar{X}} T^{* n} 1_{A} \cdot f_{0} d p \geqq \int_{F_{\alpha}} g^{\prime} T^{* n} \mathbf{1}_{A} d p \tag{9}
\end{equation*}
$$

(8) and (9) together yield

$$
\int_{\bar{X}} g^{\prime} T^{* n} 1_{A} d p=\int_{A} T^{n} g^{\prime} d p<\frac{2}{3} \varepsilon
$$

hence

$$
\gamma_{n}(A) \leqq \int_{A} T^{n} g^{\prime} d p+\int_{X}\left|T^{n}\left(g-g^{\prime}\right)\right| d p<\varepsilon
$$

Theorem 3. If there exists a positive fixed-point, then for each set A, all Banach limits on the sequence $\pi_{n}(A)$ coincide. If $\lambda(A)$ is their common value, then λ is a measure and

$$
\begin{equation*}
\lambda(A)=\lim _{n \rightarrow \infty} n^{-1} \sum_{i=0}^{n-1} \pi_{i+j}(A) \quad \text { uniformly in } j ; \tag{10}
\end{equation*}
$$

λ coincides with p on invariant sets and $d \lambda / d p$ is a positive fixed-point. Conversely, if for each A all Banach limits on the sequence $\pi_{n}(A)$ coincide and if T is conservative, then there is a positive fixed-point.

Proof. Assume that there is a positive fixed-point f_{0}; then T is conservative since $\left\{T_{\infty} f_{0}=\infty\right\}=X$. Let L be a Banach limit and set

$$
\begin{equation*}
\lambda(A)=L\left[\pi_{n}(A)\right], \quad A \in \mathscr{A} . \tag{l1}
\end{equation*}
$$

It is easy to see that λ is a charge and λ vanishes on p-null sets. From Proposition 3 applied with $g=1$ it follows that given an $\varepsilon>0$, there is a $\delta>0$ such that if $p(A)<\delta$, then $\pi_{n}(A)<\varepsilon$ for all n, hence $\lambda(A)<\varepsilon$. Thus λ is p-continuous and given a sequence of sets A_{n} with $A_{n} \downarrow 0$, one has $p\left(A_{n}\right) \downarrow 0$ and therefore $\lambda\left(A_{n}\right) \downarrow 0$. This implies that λ is a measure and hence $T^{* *} \lambda=\Lambda \lambda$. Since

$$
T^{* *} \lambda\left(\mathbf{1}_{A}\right)=\lambda\left(T^{*} \mathbf{1}_{A}\right)=\lambda\left(\mathbf{1}_{A}\right)
$$

λ is invariant under Λ and $d \lambda / d p$ is a positive fixed point (cf. the proof of invariance of v under $T^{* *}$ in part III of the proof of Theorem 1). Let $F_{1}=\left\{f_{1}=0\right\}$, then $F_{1}=\left\{T_{\infty} f_{1}=\infty\right\}^{c}$ is an invariant set and since p coincides with each π_{n} and hence with λ on invariant sets, $p\left(F_{1}\right)=\lambda\left(F_{1}\right)=0$, i.e., $f_{1}>0$. Also, $E\left(f_{1} \mid \mathscr{I}\right)=1$; if now f_{2} is another fixed-point with $E\left(f_{2} / \mathscr{I}\right)=1$, then from the ergodic theorem of HOPF ([16], p. 190) it follows that

$$
f_{2}=\lim n^{-1} \sum_{0}^{n-1} T^{i} f_{2}=\frac{f_{1}}{E\left(f_{1} / \mathscr{I}\right)} E\left(f_{2} / \mathscr{F}\right)=f_{1} .
$$

Consequently λ defined by (11) does not depend upon the choice of the Banach limit L; i.e., for each A, all Banach limits on the sequence $\pi_{n}(A)$ coincide. Now $M\left[\pi_{n}(A)\right]=m\left[\pi_{n}(A)\right]$ proves (10) (see the remark following the proof of Theorem 1, and also Lorentz [15]) and the first part of the theorem. To prove the second part, assume that T is conservative and that for each set A, all Banach limits on the sequence $\pi_{n}(A)$ agree. $M\left[\pi_{n}(A)\right]=m\left[\pi_{n}(A)\right]$ implies that $\pi_{n}(A)$ converges Cesàro, and by the Vitali-Hahn-Saks theorem (see [7$]$ p. 160, Corollary 4, or [16] p. 111) the limit, say $\mu(A)$, is a measure. It is easy to see that μ is invariant under the operator A defined by (3) and μ agrees with p on invariant sets; proceeding as in the first part of the proof, one shows that $d \mu / d p$ is a positive fixedpoint. The same argument proves, after integration of (12), the following.

Theorem 4. If the operator T is conservative and for each set A the limit

$$
\begin{equation*}
\lim n^{-1} \sum_{0}^{n-1} T^{* i} 1_{A}=f_{A} \tag{12}
\end{equation*}
$$

exists, then $\mu(A)=\int_{X} f_{A} d p$ is a measure agreeing with p on invariant sets and $d \mu / d p$ is a positive fixed-point (under T).

Finally, considering Banach limits on sequences of Cesàro averages of $\pi_{n}(A)$ and proceeding as in the first part of the proof of Theorem 3, one obtains the following partial converse of Proposition 3.

Proposition 4. If T is conservative and the measures $\mu_{n}=n^{-1} \sum_{0}^{n-1} \pi_{i}$ are uniformly p-continuous (hence a fortiori if the measures π_{n} are uniformly p-continuous), then there exists a positive fixed-point.

Bibliography

[1] Calderón, Alberto: Sur les mesures invariantes. C. r. Acad. Sci. Paris 240, 1960-1962 (1955).
[2] Chacon, R. V.: The influence of the dissipative part of a general Markov process. Proc. Amer. math. Soc. 11, 957-961 (1960).
[3] -, and D. S. Ornstein: A general ergodic theorem. Illinois J. Math. 4 153-160 (1960).
[4] Dowker, Y. N.: Finite and σ-finite measures. Ann. of Math., II. Ser. 54, 595-608 (1951).
[5] - On measurable transformations in finite measure spaces. Ann. of Math. 62, 504-516 (1955).
[6] - Sur les applications mesurables. C. r. Acad. Sci. Paris 242, 329-331 (1956).
[7] Dunford, Nelson, and Jacob T. Schwartz: Linear operators I. New York: 1958.
[8] Fibldman, J.: Subinvariant measures for Markoff operators. Duke math. J. 29, 71-98 (1962).
[9] Garsia, A.: A simple proof of E. Hopf's maximal ergodic theorem. J. Math. Mech. 14, 381-382 (1965).
[10] Hajtan, A., and S. Kaketani: Weakly wandering sets and invariant measures. Trans. Amer. math. Soc. 110, 136-151 (1964).
[11] Halmos, P. R.: Lectures on ergodic theory. Tokyo: The Mathematical Society of Japan 1956.
[12] Hopf, E.: Theory of measure and invariant integrals. Trans. Amer. math. Soc. 34, 373-393 (1932).
[13] - The general temporally discrete Markoff process. J. rat. Mech. Analysis 3, 13-45 (1954).
[14] Ito, Y.: Invariant measures for Markov processes. Trans. Amer. math. Soc. 110, 152 -184 (1964).
[15] Lorentz, G. G.: A contribution to the theory of divergent sequences. Acta math. 80, 167-190 (1948).
[16] Neved, J.: Bases mathématiques du calcul des probabilités. Paris: Masson 1964.
[17] - Sur l'existence de mesures invariantes en theorie ergodique. C. r. Acad. Sci. Paris 260, 393 - 396 (1965).
[18] Sucheston, L.: An ergodic application of almost convergent sequences. Duke math. J. 30, 417-422 (1963).
[19] - On existence of finite invariant measures. Math. Z. 86, 327-336 (1964).
[20] Yosida, K., and E. Hewitt: Finitely additive measures. Trans. Amer. math. Soc. 72, 46-66 (1952).

Department of Mathematics
The Ohio State University
Columbus, Ohio 43210, USA

[^0]: * The research of this author was supported by the National Science Foundation, Grant NSF-GP 1458. Both authors wish to acknowledge helpful information they obtained from Professors B. Baysanskt, R. Chacon and U. Krengel.

[^1]: 1 A Markov process $P(x, A)$ is a function of two variables which for each fixed $x \in X$ is a probability measure in A; for each fixed $A \in \mathscr{A}$, a measurable function in x.

[^2]: 2 Our $T f$ and $T * g$ are in Neveu's book, respectively $f T$ and. $T g$. Neveu's notation would be confusing in the present paper, because if τ is a measurable and null-preserving, but not measure-preserving, point-transformation, then the operator ascribing to f the function $f \tau$ is not an L_{1} contraction, but the adjoint of such a contraction.

