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1. Introduction 

Let (X, d ,  p) be a measure space with p(X) ~ 1. All sets introduced are 
assumed in d ,  all functions measurable with respect to d .  Many relations hold 
only modulo sets of p-measure zero ; the words "almost everywhere" are omitted. 
No distinction is made between equivalence classes of functions and their repre- 
sentatives. 

I f  T is a positive linear operator on L1 = L1 (X, d ,  p) and IIT I[ ~ 1, then the 
problem of existence of positive fixed-points in L1 is of interest, in particular in 
connection with the individual ergodie theorem. I t  has indeed been proved 
implicitly by HOPF that  ff there exists a positive fixed-point, i.e., a function 
/0 e L1 with 0 ~ / o  -~ T/o, then for each / e L1, T n] converges Ceshro to a finite 
limit (this also follows from the C~ACo~-OgNsT~IN ergodie theorem), and for 
each ff e Leo ~-Loo(X, ~', p), T*ng converges Ces~ro to a finite limit, where T* 
is the adjoint of the operator T (el. l ~ v ~  [16], p. 190). Conversely, if T*~IA 
converges Ces~ro for each set A (IA iS the characteristic function of A), and --  
a mild assumption, explained below -- if the operator T is conservative, then 
there exists a positive fixed-point under T (Theorem 4 below). The principal 
results of the paper arc given in terms of measures 7~ defined by 

(1) g n ( A ) ~ - ] T n l d p = ~ T * n l A d p  A e d .  
A X 

Theorem 1 asserts that  there are positive fixed-points if and only ff p(A) ~ 0 
implies F[xcn(A)] ~ O, where F is a functional defined on bounded sequences of 
real numbers (xn); the smallest F we obtain is infxn; the largest is M(xn), the 
maximal value of Banach limits on the sequence (Xn), given by 

( (2) M (x~) = lira sup n-1 ~ x~+j . 
n \ i i=0 / 

I f  there are no positive fixed-points and the operator T is conservative and 
ergodic, then there arc large "bad" sets: there exists for each e ~ 0 a set B with 
p(B) > 1 --  e and MIen(B)]  : 0 (Theorem 2). Further (Theorem 3), if T is 
conservative, then there exists a positive fixed-point if and only if for each set A, 
all Banach limits on the sequence ~n (A) coincide; their common value is a finite 
measure equivalent to p and invariant under the operator A which we will 
now define. 

* The research of this author was supported by the National Science Foundation, Grant 
NSF-GP1458. Both authors wish to acknowledge helpful information they obtained from 
Professors B. BAJSAlVSKI, 1:~. 0HACOI~ and U. KRENGEL. 
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2 D.W. DEAN and L. SUCaESTON: 

By the Radon-Iqikod3~m theorem the Banach space L1 is isomorphic to the 
space ~b of finite, p-continuous, signed measures. Under this isomorphism there 
is, corresponding to the operator T, an operator A on ~b, which ascribes to a 
signed measure ~ E ~b a signed measure A ~0 e ~ ,  defined by  

(3) Av(A)= f T dp 
A 

where dg/dp is the Radon-~qikod#m derivative of 9 with respect to p. In  terms 
of operator A the measures ~n given by  (1) are simply images of p under A n, 
~n = Anp, and our problem is tha t  of finding a measure ~0 equivalent with p, 
and invariant  under A; ~00 is such a measure ff and only ff dq)o/dp is a positive 
fixed-point under T. 

The operator A may  be generated by  a measurable point-transformation 
mapping X to X, by  the relation 

A g ( A ) : ~ ( ' c - I A )  cfe~), A e ~ /  

provided tha t  p (7 -1 A) = 0 if p (A) ~ 0, which ensures tha t  A 9 is p-continuous, 
and thus our problem may  be seen to include the classical problem of existence 
of finite equivalent measures invariant  under a point-transformation, first studied 
by  HOrF in 1932 [12]. Or A may  be induced by  a Markov process P (x, A) 1 by  the 
relation 

A ~ ( A ) = ] P ( x , A ) d q ~  9eq~, A e ~ /  
x 

provided tha t  p(A) = 0 implies P(x,  A) = 0, which again ensures tha t  A 9  is 
p-continuous; thus our problem includes the problem of existence of finite eqni- 
valent  measures invariant  under a Markov process. 

The present paper  extends to abstract  operators results already known for 
point-transformations and, in part ,  for Markov processes. Theorem I was obtained 
for point-transformations by  Mrs. DowKva~ [5] and CALDEI~6X [1] with/~ ~ lira inf; 
also by  CALDm~dN [1] with E = lira inf of Ces~ro averages, and again by  Mrs. 
DOWKER [6] with F ~ lim sup of Cess averages (see also IIAJIAN and KAKVTAXI 
[10]). F ---- M and Theorem 2 were given by  SUCI~ESTOI~ [19]. Theorem 3 was 
proved for point-transformations by  SUCHWSTOI~ [18] and Theorem 4 by  Mrs. 
DOWKEX ([4], p. 607). The results of Mrs. DOWKEI~ [6] were extended to Markov 
processes by  ITo [14]; most arguments of I to  carry over to abstract  operators. 
FELI)MA~I [8] studied the problem of existence of a-finite invariant  measures for 
operators essentially of the type considered in this paper. (The conditions which 
he imposes on his Loo operators are satisfied ff and only if they are adjoints of 
positive linear contractions ill L1.) Our Theorem 4 is contained in FELD~AN'S 
Theorem 7.1 ([8], p. 89). 

Theorem 1 has also been proved by  ~TEVEU [17], whose note was not available 
to us at  the writing of this paper. NEVEV'S proof, introducing "weakly wandering" 
functions, has considerable independent interest. I t  seems to us tha t  our argument,  

1 A Marl~ov process P(x, A) is a function of two variables which for each fixed x e X 
is a probability measure in A; for each fixed A e d ,  a measurable function in x. 
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based on a ra ther  general " m a x i m a l  ergodic l e m m a "  (Proposit ion 1), also has some 
independent  interest .  The  proof  of  Proposi t ion 1 imi ta tes  the  elegant  proof  b y  
GA~sIA of tIo]~F's max ima l  ergodie theorem [9]. The idea of apply ing  a max ima l  
ergodic theorem in this context  is due to Mrs. DowKE~ [6]. 

2. The Main Theorem 

X is an abs t rac t  set, d a a-field of  subsets of  X,  p a measure  on ~/ ,  i.e. a 
non-negat ive,  countab ly  addit ive set-function,  and  p (X)  = 1. L1 is the  space of 
integrable funct ions wi th  norm 

IJlll= f111 @ lsL1. 
X 

Theorem 1. Let T be a positive linear operator on L I  with ]J T rJ =< 1 and for 
each positive integer n let 

~ n ( A ) = f T n l d p  A e d .  
A 

The following conditions are equivalent. 

(0) There exists a function ]o ~ L1 with /o > 0 and T/o = / o .  

(i) p(A) > 0 implies inf  zn (A)  > O, A e d .  
n 

n - - 1  

(ii) p (A) > 0 implies M [~n (A)] ~- l im [sup n -1 ~ x~+j (A)] > 0, A ~ d .  
n ] i = 0  

Proof. For  the  purpose of p roof  we introduce a th i rd  condit ion:  
n - - 1  

(iii) p (A)  > 0 implies l i m i n f n - l ~ / ( A )  > 0, A e d .  
i = 0  

The proof  follows the  scheme (0) ~ (i) ~ (ii) ~ (iii) ~ (0). The implicat ion 
(i) ~ (ii) is obvious since i n f~n (A)  ~ M[Ttn(A)]. 

n 

Part I: (0) ~ (i). T*,  the adjoint  of T, is defined b y  

f T t . g d p = f f . T * g d p  / c i l ,  g e l s ;  
X X 

T* is a posit ive linear opera tor  on Leo and  I]T*H = ]IT]] < 1. Assume there is 
an /0  e L1 with 0 < / 0  = T[o and let Fzr be the set  of  all x e X such tha t /o (x)  > N, 
in symbols  F x  = {/o > N}. Le t  A ezr  p(A)  > 0. Then 

0 < (~def~/odp = f T n / o  �9 ]Adp = f /0"  T a n / A @  
A X X 

<= N f l dp + fie" T* l dp. 
X F N  

Since T*~ZlA ~ 1, we m a y  choose a fixed N so large t h a t  the  last  integral  is less 
t han  �89 ~. Then  for each n, zn (A)  ~ ~ /2N which proves  (i). 

Part I I :  (ii) ~ (iii). The  following result  is s ta ted  with more  general i ty  t han  
needed for appl icat ions in this paper .  I n  part icular ,  it contains I-Io~F's max ima l  
ergodic lemma.  

Proposition 1. Let K be a set o/real-valued/unctions on X and assume that K 
is a linear space and a lattice under pointwise operations. Let V be a positive linear 

1" 
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operator on K,  N a positive integer and set for an ] e K 

n - - 1  

g~ = max  ~ W f ,  ~ = {g~ > 0}. 
l _ n _ ~ N  0 

Then there is a non-negative function h~v e K,  such that 

(4:) f .  1 ~  >= h~ - -  V hN. 

Proof. Set hlv ~ max  (0, g~v), then 
VhN >= max(VO ---- O, VgN) ~ max(O, Vf ,  V / +  V 2 / , . . . ,  V / +  ""  -+= v-V/) = 

= g~v+l  - / > gzr - f . 

On AN,  g2v (x) = h~ (x) while on A~v, hu (x) = 0 and VhN (x) >= 0 (since Vh~(x)  >--_ 0 
everywhere). Hence (4) holds for each x e X. 

We now define a functional m on bounded sequences of real numbers (Xn) by 
n - - 1  

(5) m (Xn) = lim (infn -1 ~ x~+j). 
n 3" i = 0  

The following simple proper ty  of m, and of M defined by  (2), will be referred to 
as "telescoping" : 

[ m (x .  - x .+ l )  l = I - M (x.+~ --  x . )  l = ] l i m  [inf n-~ (xj - -  xj+.)]  I _--< 
n i 

lira 2 n -1 sup [ x~ I = 0. 
n k 

Proposition 2. Let U be a positive linear operator in Loo with [l U ]I ~ 1. Let 

•--1 

f e L o o ,  g u = m a x  7 V i f ,  A ~ - - - - { g u > 0 } .  
l_~n___hr 0 

Then 
m [ U  n ( / .  1A~ ) (x)] ~ 0 x e X .  

This proposition generalizes a result of ITO ([14], p. 168). 

Proof. Assume K = Loo, set V = U in (4) and apply U n to both sides: 

U n ( / � 9  1A~ ) (x) ~ Unh~(x)  - -  Un+lhlv(x),  x e X .  

Now apply m and note telescoping to the right. 

Lemma 1. Let U be a positive linear operator on Loo such that 11U [t ~-- 1 and 
U1 ~ 1. Set Zcn(A) -~ ~ UnlAdp.  Let A be a set with T (A)  > 0 and 

X 
~ - 1  

l im in f  n -1 ~ z~ (A) : O, 
0 

then for each e > 0 there is a set B c A with p ( B )  > p ( A )  - -  e and M[7~n(B)] -~ O. 

Proof. We introduce the following notation 

Um (/) (x) -~ m [ U n / (x)], UM f (x) : M [ U n f (x)], U .  / (x) = lim inf n -1 ~ U i f (x) .  
o 

By Fatou 's  lemma 
n- -1  

U .  1Adp ~ l iminfn -1  ~ ~ ( A )  
X 0 
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hence U,  1A ~ O. For a fixed k ~ 0 let 
n--1 n--1 

A N  = { m a x  Tt -1 ~ V l(]~-1 _ IA ) > 0} = { m i n  n -1 ~ U i 1A < I t - i } .  
l ' <n~N i=0 l_~n ~:~7 i~0  

Let ]~v = 1A" 1A~ q- /C-1 lag .  Since on A~v, 1A (X) ~ k -1, one has 0 ~ ]~ ~ 1A 
and/~-1 _ ]~ ___ (k-1 _ 1A) 1 ~ .  Therefore by Proposition 2, Um (k -1 -- ~ )  ~ 0 

hence UM(/~) ---- -- Urn(-- ]~) < k -1. Moreover, AN --> X and/iv --~ 1A; therefore 
by  Egorov's  theorem there is for each positive integer/c an integer IY~ and a set 
Bk c A  such tha t  p(Bk) > p(A)  -- 2-ks  and /~v~ ~ �89 1B~, hence 

uM(I~) <= 2 u~( /~)  <= 2~-1. 

Let  B ~ n B~, then T(B) ~ p(A)  -- s and UM(1B)  = O. 
k 

That  M[gn (B)] ~ 0 now follows from the relation 
n--1 n--1 n--1 

j" (sup n -1 ~ U ~+J 1B) dp >= sup j" n -1 ~ U~+J 1~ dp ~- sup n -1 ~ =~+f (B) 
X j i=O ] X i=O ] i=O 

on letting n go to infinity and applying the bounded convergence theorem. 
The implication (ii) ~ (iii) will follow from Lemma 1 ff we show tha t  under 

the assumption (ii), T* 1 = 1. Since I[ T* ][ g 1, T* 1 ~ 1. Assume tha t  1 - -  T* 1 
----g :~ 0. Then there is a set E with p ( E ) ~ O  and a positive constant c 
such tha t  g (x) ~ 1/c on E, hence cg ~ 1R. Because of the telescoping proper ty  
of M 

M (]c T*ngdp) = 0 
X 

hence M [~n (E)] ---- 0 which contradicts (ii). 
Part I I I :  ( i i i ) ~  (0). The dual space of L1 ~ LI (X ,  ~/, p) is the space 

L~o----Loo(X, 5], p) of essentially bounded functions with essential supremum 
norm, and in turn the dual of Loo is the space T ( - ~  ba(X,  d ,  p), cf. [7], p. 296) 
of signed finite finitely additive measures (signed charges), vanishing on p-null 
sets, with norm ]1 ~ l[ ---- total  variation of ~p, ~ e T.  I f  T is a positive linear operator 
on L1, then T*, the adjoint of T, is a positive linear operator on Loo and 11T*[] = II TII- 
In  turn T* admits an adjoint (T*)* = T** mapping ~ t o  kgand T** is a positive 
linear operator with l]T** II = II T* II" Under the natural  embedding of the Banach 
space Lz in its second conjugate ~ ,  Lz is mapped on ~b, the space of finite signed 
p-continuous measures, already mentioned in the Introduction, and T** coincides 
on ~b with A defined by (3). Now let L be a Banach limit and set 

] (6) v ( A ) = L  n -1 ~ ( A )  A ~ ' .  

I t  easily follows from properties of Banaeh limits tha t  ~ ~ ~r~ and ~ => 0 (see e.g. 
[7], p. 73 or LOR~Z~TZ [HI).  Therefore v defines a positive linear functional on 
Loo, and in fact this functional is simply given by  

~ ( g ) = [ g & , = L  n-~ T*~gdp , g ~ L ~ .  
x 

Note tha t  ~ is invariant  under T**. Indeed, for each g ~ Loo, (T**~)g = ~(T*g) 
= ~ (g), the last equality holding, as can be shown by a simple computation, be- 
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cause of  the  invar iance  of  Banach  l imi ts  under  shifts  on sequences.  W e  now recal l  
t h a t  eve ry  charge m a y  be un ique ly  decomposed  in to  a measure  and  a pure  charge:  
i f  v e ~ ,  v ~ 0, t hen  v ---- ~m -~ Vc, where Vm ~ 0 is a measure  and  vc ~ 0 is a 
pure  charge;  i .e. ,  Vc does no t  d o m i n a t e  a n y  non- t r iv ia l  measure  (YOSIDA and  
HEWITT [20], p. 52 or  [7], p. 163). I f  v = vm + Vc is def ined b y  (6), t hen  v ~ Vm 
impl ies  T * * v  = ~ ~ T**vm.  Thus  T * * v m  --  Vm ~ Vc, and  (T**vm -- urn) + ~ vc. 
Because  vc is a pure  charge,  T * * v m  ~ Vm and  hence T**vc  ~ vc. I f  T**vc  �9 re, 
t hen  there  exis ts  a set  A wi th  T * * v c ( A )  > vc(A), and  since T * * v c ( A  c) ~ vc(Ac), 
i t  follows t h a t  T * * v c ( X ) >  vc(X) and  ilT**ll > 1. Assume IITII ~ 1, t hen  
IiT**]i ~-- ]ITII ~ 1, hence T**vc  : re and  T * * v m  -~ Av~ = v~. Thus v~ is in- 
v a r i a n t  unde r  A a n d  Vm will  be shown to  be an  equ iva len t  i nva r i an t  measure  ff 
we prove  t h a t  urn(A) = 0 impl ies  p ( A )  ---- O. Assume the  c o n t r a r y :  there  is a set 
E wi th  Vm (E) ---- 0 and  p (E) > 0. R e s t r i c t e d  to  the  a-f ield of  subse ts  of  E in 
~r v ~- vc is a pure  charge  a n d  p is a non- t r iv ia l  measure .  I t  has  been  p roved  b y  
YOSIDA and  HEWITT ([20], p. 50) t h a t  a pure  charge is nea r ly  o r thogona l  to  
eve ry  measure ;  as app l i ed  to  v a n d  p th is  means  t h a t  for each s wi th  0 < s < p (E), 
there  is a se t  A c E  wi th  v(A) ---- 0 and  p ( A )  > p (E)  --  s > 0 hence, assuming  
(iii), v(A) > 0 because  L(xn)  ~ l im i n f x n  for eve ry  bounde d  sequence (xn). This  
is a cont rad ic t ion .  

R e m a r k .  The  p roo f  of  Theorem 1 uses t he  ana ly t i ca l  form of  M and  of  m, 
b u t  n o t  the i r  ident i f ica t ion,  ob ta ined  in [19] as, respect ive ly ,  the  m a x i m a l  and  
the  min ima l  va lue  of  B a n a c h  l imits .  A p roof  based  on this  ident i f ica t ion  was 
given b y  N ~ v ~ u  [17]. 

3. Conservative Operators  

W e  assume t h a t  T is a f ixed pos i t ive  l inear  ope ra to r  on L~ wi th  IIT 11 ~ 1. 
F i r s t  we s t a t e  some known  resul ts ,  m a n y  of  which  a p p e a r  in  the  f u n d a m e n t a l  
work  of  H o r F  [13]; see also N E v e r  ([16], p. 178, ft.)2. 

The  space X can be un ique ly  decomposed  in to  two  par ts ,  X = C ~ D, 
where  C is cal led the  conserva t ive  pa r t ,  D the  d iss ipa t ive  pa r t .  W e  denote  b y  

Too / the  sum ~ Tn/ .  F o r  each non-nega t ive  func t ion  ] e L1, Tool(x) ~- 0 or -]- oo 
0 

on C; Tool(x) < oo on D. The  not ions  of  invar iance  a n d  e rgodic i ty  can be de- 
f ined on ly  on C which in the  words  of  H o e F  "is the  v i t a l  p a r t  as far  as ergodic 
t h e o r y  is concerned" .  A sa t i s f ac to ry  sepa ra t ion  of  C and  D is poss ible :  i f  a func- 
t ion  / vanishes  on D, so does T / ;  conversely,  the  influence of  D on C is also 
negligible,  even t hough  on ly  a s y m p t o t i c a l l y  (cf. H o P r  [13], p. 44; CHACO~ [2]). 
Consequent ly ,  the  a s sumpt ion  f r equen t ly  m a d e  in  th is  sect ion t h a t  X ---- C, in 
words :  T is conservat ive ,  is no t  a severe loss of  genera l i ty .  This  a s sumpt ion  is 
sat isf ied i f  the re  is a pos i t ive  f ixed-point ,  b u t  converse ly  the  a s sumpt ion  X ~ C 
is no t  sufficient for  the  exis tence of  a pos i t ive  f ixed-poin t  even in the  pa r t i cu l a r  
case of  a T induced  b y  a p o i n t - t r a n s f o r m a t i o n  (cf. t t ~ M o s  [11], p. 85). 

2 Our T /  and T *g are in I~EV]~V'S book, respectively / T  and Tg. Neveu's notation 
would be confusing in the present paper, because if ~ is a measurable and null-preserving, 
but not measure-preserving, point-transformation, then the operator ascribing to ] the func- 
tion /T is not an L1 contraction, but the adjoint of such a contraction. 
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I n  the following discussion of  invar iant  sets we assume tha t  X ---- C. The 
a-field J of  invar iant  sets m a y  be characterized by  either of  the two equivalent  
definitions: 

a) A e J ff and only if  T* 1A = 1A. 

b) A E J if and only if there is a non-negative funct ion / e  L1, such tha t  
A = { T ~ / =  c~}. 

A function g ~ L~  is called invar iant  if T*g-~ g. Inva r i an t  functions are 
exact ly  those measurable with respect to J .  I f  for a g ~ L~, T*g <~ if, then g is 
invar iant :  hence in part icular  constants  are invariant .  T is called ergodic ff  
J = {0, x ) .  

The following theorem m a y  he considered as a quant i ta t ive  strengthening of  
Theorem 1. 

Theorem 2. I] the operator T is conservative and ergodie and there exists no 
positive fixed-point, then for each e > 0 there is a set B with p(B) > 1 -- e and 

n - - 1  

lim n-1 ~ ~i+j(B) = 0 

uni/ormly in j. 

Pro@ W'e rever t  to  P a r t  I I I  of  the proof  of  Theorem 1. I f  no positive fixed- 
point  exists, then there is a set E with p (E) > 0 and Vm (E) =- 0. Since Vm is 
invar iant  under  A, dvm[dp = / 0  is a fixed-point. Set F = {To~[o = 0}, then 
[o(X) = 0 on E implies E c F ;  therefore p(F) > O. F is invar iant  since it  is the 
complement  of  the set {Too/o = r and because T is ergodic, F = X.  Applying 
the a rgument  f rom the end of  Pa r t  I I I  with X instead of  E, we obtain t h a t  for 

n - - 1  

each e > 0, there is a set A with p(A) > 1 - -  e and l i m i n f n - l ~ 7 ~ ( A )  = 0. 
0 

The proof  is now completed by  application of  L e m m a  1 with U ~ T*. 
The following Proposi t ion is p repara tory  for Theorem 3. 

Proposition 3. Let 0 <~ g ~ L1 and set 

(7) ~ n ( A ) = f y n g d p ,  A ~ ' .  
a 

I/  there is a positive fixed-point, then the measures ~n are uni/ormly p-continuous. 
Pro@ Assume t h a t  there is a funct ion [0 ~ L1 with 0 < / 0  = T[o. We are to 

show t h a t  given an e > 0, there is a d > 0 such tha t  p(A) < (3 implies )~n(A) < e 
for all n. First  select a funct ion g', 0 ~ g' ~ L~ ,  such tha t  1[ g - -  g'[]L~ < e/3. 
Le t  d = esssupg', F~ = {/0 > ~}. Then for each e > 0 

(8) ] g" T*n lA dp <= d ] l dp = cp (f~) .  

Choose an ~ fixed so small tha t  dp (F~) < e/3. Now let d be so small t ha t  if p (A) < d, 
then  

e d 
(9) x> flodp=ifT*'l 'lodp>=fg'T*n  dp 

A X Fo: 

(8) and (9) together  yield 
2 

f g 'T*n lAdp= f T n g ' d p < - ~ e ,  
X A 
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hence 
yn(A) ~ S Tng 'dp  ~- S ] T n ( g - - g ' ) l  dp < e. 

A X 

Theorem 3. I f  there exists a positive fixed-point, then for each set A,  all Banach 
limits on the sequence ~n(A) coincide. I f  ~(A) is their common value, then ,~ is a 
measure and 

n - - 1  

(10) i (A) -~ lira n -1 ~ ~+j (A) uniformly in ] ; 
n--> c o  i = 0 

1 coincides with p on invariant sets and d2/dp is a positive fixed-point. Conversely, 
i f / o r  each A all Banach limits on the sequence 7~n (A) coincide and i/ T is con- 
servative, then there is a positive fixed-point. 

Proof. Assume that  there is a positive fixed-point /o; then T is conservative 
since {Toofo -~ oo} -~ X .  Let L be a Banach limit and set 

(11) I (A)  = L [ ~ n ( A ) ] ,  A e d .  

I t  is easy to see that  1 is a charge and i vanishes on p-null sets. From Proposition 3 
applied with g ---- 1 it follows that  given an s > 0, there is a ~ > 0 such that  if 
p(A)  < ~, then 7~n(A) < s for all n, hence I(A) < ~. Thus i is p-continuous and 
given a sequence of sets A n with A n $ 0, one has p (A n) $ 0 and therefore t (A n) $ 0. 
This implies that  ~ is a measure and hence T**~ -~ A~. Since 

T** 2(1A) ---- t ( T *  1A) ---- I(1A), 

1 is invariant under A and dt/dp is a positive fixed point (cf. the proof of in- 
variance of v under T** in part  I I I  of the proof of Theorem 1). Let F1 ---- {/1 = 0}, 
then 171 = {Too I1 = oo}c is an invariant set and since p coincides with each ~n 
and hence with 2 on invariant sets, p ( F 1 ) ~  t ( F 1 ) ~  O, i.e., /1 > 0. Also, 
E( /1 / J )  = 1; if now/2  is another fixed-point with E ( / 2 / J )  ---- 1, then f romthe 
ergodic theorem of HOFF ([16], p. 190) it follows that  

n - - 1  

/2 ---- lim n -1 ~ Ti /2 --  /1 E (12/J) ---~/1. 
0 E (/x/J) 

Consequently 2 defined by (11) does not depend upon the choice of the Banach 
limit L;  i.e., for each A, all Banach limits on the sequence ~n (A) coincide. Now 
M[~n(A)] = m[x~n(A)] proves (10) (see the remark following the proof of 
Theorem 1, and also LORENTZ [15]) and the first part of the theorem. To prove 
the second part, assume that  T is conservative and that  for each set A, all Banach 
limits on the sequence ~n(A) agree. M[7~n(A)] -~ m[7~n (A)] implies that  z~n(A) 
converges Ccs~ro, and by the Vitali-Hahn-Saks theorem (see [7] p. 160, Corollary 4, 
or [16] p. 111) the limit, say #(A), is a measure. I t  is easy to see that  # is invariant 
under the operator A defined by (3) and/~ agrees with p on invariant sets; pro- 
ceeding as in the first part  of the proof, one shows that  d/.e/dp is a positive fixed- 
point. The same argument proves, after integration of (12), the following. 

Theorem 4. I f  the operator T is conservative and for each set A the limit 
~ - - 1  

(12) lim n -1 ~ T *i 1A -~/A 
0 
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exists ,  t h e n  tt (A) = ~/A clp is a meas u re  agree ing  w i th  p on  i n v a r i a n t  sets a n d  
X 

dit/d p is a pos i t ive  f ixed-po in t  (unde r  T).  
F i n a l l y ,  cons ider ing  B a n a c h  l imi t s  on  sequences  of Cess averages  of  7rn (A) 

a n d  proceed ing  as i n  t h e  first  p a r t  of  the  p roof  of  T h e o r e m  3, one  ob t a in s  the  
fol lowing p a r t i a l  converse  of  P r o p o s i t i o n  3. 

n--1 
Propos i t ion  4. I /  T is conservative and the measures ten-~ n -1 ~ ~ are uni- 

0 

]ormly T-continuous (hence a f o r t i o r i  if the measures ~n are uni/ormly T.continuous ), 
then there exists a positive fixed-point. 
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