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1. I n t r o d u c t i o n  

Le t  X (t) = X (t, ~o), t e R = ( - -  r oo), be a real-valued continuous s ta t ionary  
process in the  wide sense satisfying 

(1.1) E X 2 (t) < ~ ,  

(1.2) E X ( t )  = O, 

(1.3) E X (s) X (t) = ~(s --  t) ,  

for t e R , 

for t e R ,  

for s, t e R ,  

where ~ (u) is a continuous even funct ion of a single var iable  u. 
a 

Suppose t h a t  X( t )  is separable and measurable  in R •  Then  ] X~(t) dt 
b 

exists, wi th  probabi l i ty  one, for every  real numbers  a, b. ~ (u) has the  form 
r  r  

(1.4) ~ (u) ----- ] d xu dF  (u) = 2 ] cos x u dE (u), 
- - r  0 

where F (u) is the  spectral  dis t r ibut ion funct ion of the process;  F (u) is a bounded 
non-decreasing funct ion with F(x)  -= 1 -- F ( - -  x q- 0), ~(0) ~- .F(q- c~) --  
_ _ F ( -  ~ )  = z x ~ ( t ) .  

We shall now consider the Fourier  series of  X(t)  over  (0, T), where T is a 
a rb i t r a ry  posit ive number .  The restr ict ion of X (t) to (0, T) is called a sample of  
the process X (t). Then  

c o  

"~ n 1 T /~in s i n  ~ - - ) ,  (1.5) 

where 

(1.6) 

(1.7) 

An  = ~ - . f X ( t )  cos dr, n = O ,  1,2 
o 

2 T 
Bn ~ - S X ( t )  s i n - - 2 T t d t ,  n = l , 2 , . . .  

0 

I t  is known t h a t  as T increases indefinitely, the  covarianee of two Fourier  
coefficients with different ampl i tudes  approaches  zero. Bu t  in the  engineering 
l i terature it  is cus tomary  to assume t h a t  

(1.8) E A m A n = E B m B n = O ,  for n . m ,  
E A m B n  = 0,  for all re, n ,  

* This work was supported by NSF Grant GP-1577 and NSF GP-3725. The results in this 
paper were announced in [7]. 
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R. C. DAVIS [2] has shown tha t  if (1.8) holds for one pair of integers n, m (n 4: m) 
and for all T > 0, then the stat ionary process reduces to the trivial process in 
which ~ (u) --~ 1 for every u. 

In  connection with this statement,  it is of interest to obtain the more precise 
information concerning the order of the Fourier coefficients as they approach zero. 
In  fact, W. L. R o o t  and T. S. PITCI~Wl~ [10] proved tha t  if ~ (u) e L1 (--  co, co) 

c o  

and f ~ ( u ) g u * 0 ,  then E[Cn[ 2 = O(T-1), 2Cn = An -- iBn and Rnm 

-=ECnCm/(E[Cn[ 2 E[Cm]2)~-->O. They also discussed the order of Rnm 
when T--> oo. The author [6] has shown tha t  if uo(u) e L l ( - - c o ,  co), then 
EAmAn ~ O(T-2), EBmBn  ~ O(T -~) for m4:n, EAmBn -= O(T-2) for all 
m, n and 

2 co 2 
EArn ,,, ~ f~ (u )du ,  EB~ ,,~ ~- fQ(u)du.  

- - r  - - r  

c o  

He has also shown tha t  under the additional condition ] ~ (u) du 4: O, the correlation 
- - o o  

coefficients between Am and An, Bm and Bn (m 4: n) and between Am and Bn are 
of O(T  -1) as T--> oo. In  2 and 3, we shall give more precise estimations of the 
covariances under some conditions on the spectral distribution function or the 
spectral density function. 

The convergence problems of the Fourier series of X (t) are discussed in 5 and 6. 
H. B. MANN [8] gave a sufficient condition tha t  a stochastic process (not neces- 
sarily stationary) with continuous covariance function r(s, t) should have the 
Fourier series which converges in L2-mean (regarding/2) to the given process in 
(0, T). The author [5] has shown tha t  the Fourier series (1.5) of a continuous 
stat ionary process X (t) is always convergent in L2-mean (in Q) to X (t) for every 
0 < t < T. A brief proof of this s tatement  is given in 5. 

I t  is quite natural  to ask under what  conditions the Fourier series converges 
to X (t) almost everywhere or absolutely in (0, T) with probabil i ty one. The 
analogues of the following well known theorems concerning ordinary Fourier 
series produce some answers to these problems. 

Theorem A (KoLMoGoRov-SELI'VEt~STOV). I[ 

(1.9) �89 + ~ (ancosnx ~- bnsinnx) 

is the Fourier series o/a/unct ion/(x)  o/L2 (0, 2z)  and 

(a~ -~ bn ~) log n < co, 
n = l  

then (1.9) converges almost everywhere to/(x) in (0, 2~) (see [12] p. 252). 

Theorem B (S. BV.RNSTEII~). I / /  (X) ~ Lip c~, with ~ > �89 then the Fourier series 
o/ /(x)  converges absolutely (see [12] p. 135). 

This is a basic theorem on the absolute convergence of a Fourier series. Generali- 
zations are known (see [12]) but  their stochastic analoguet are not considered 
in this paper. 
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The absolute convergence of a Fourier series implies its uniform convergence. 
Hence the conditions for absolute convergence with probabili ty one of the Fourier 
series of a stochastic process implies the continuity of the process with probability 
one (sample continuity). This, incidentally, is a generalization of known results on 
sample continuity. 

In  the theory of random noise (see for ex. [9]) it is usually assumed tha t  the 
process is a Gaussian process, so tha t  the joint distribution of Fourier coefficients 
in (0, T), T being fixed, is also Gaussian. But  the random noise process formulated 
as ([4] p. 433--434) 

oo 

(1.10) X (t) = ~ q (t - -  s) d Y~ (s) 

is not a Gaussian process, where ~v (u) is a bounded continuous function of L2 (0, c~) 
and Y~ (s) is another stochastic process whose sample function is constant between 
events which occur in accordance with a Poisson process with parameter  :r and 
increases at the ]-th event by  the amount  UI, where { Uj} is a sequence of non- 
negative independent identically distributed random variables with finite variance. 

However it is known tha t  with suitable normalization, the joint distribution of 
X (t) at  any finite number of points t converges to the Gaussian distribution as 
~ - +  c~. 

We shall consider the more general linear process 
r 

(1.11) X( t )  = Scf(t --  8 ) d Y ( s ) ,  
- - o o  

where Y (8) is any stochastic process having independent increments with 

(1.12) E [ d Y ( s ) ]  2 = d 8 .  E I d Y  ( s ) [a=  O(ds).  

(1.12) is satisfied by the random noise process when the right hand side is replaced 
by  a constant multiple of dr. 

We shall show in 7 tha t  the joint distribution of Fourier coefficients (1.6) and 
(1.7) with normalizing factor T 1/2 converges to the joint distribution of independent 
normal variables as T --> ~ .  Hence when T is large enough the Fourier coefficients 
behave as independent and normally distributed random variables. 

2. Covariances of Fourier Coefficients I 

Let X( t )  be the real valued continuous stationary process considered in 1. 
We are going to discuss the asymptotic  behavior of the covariances E A m A n ,  
E B m B n  and E A m B n  of Fourier coefficients (1.6) and (1.7) of X( t )  in (0, T) as 
T --> co. m and n are fixed. 

Let  F (~) be the spectral distribution function of X (t). We see tha t  
4 T 2 m ~ u  ~ T 

E A m A n  E ~ f f  ~ / ( u )  cos ~ a u  [ X ( v )  2n~v  - COS ~ 6~V 

0 0 

T T 
4 S d v [ d  ~ (~ . 2 ~ n ~  2 ~ v  --  T2 @ -- V) cos ~ cos ~ - .  

0 0 

Inserting (1.4) in here, we have, after some simple manipulations, 

(2.1) E A m A n  = J1 ~ J2 ,  
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where  

(2.2) 

(2.3) 

with 

(2.4) 

Also, we have 

(2.5) 

where  

(2.6) 

(2.7) 

with 

(2.8) 

J1 =- ~ 9 ('~ T ; m ,  n) s in  2 ~ T d F  (~),  

r  

J2 = S q~(*t T ; m ,  n)(1 - cos ~T)2dF(~)  

4 u 2 

q~ (u ; m, n) ~- [u s _ (2m~)2] [up _ (2n~)2 ] . 

E Bm Bn = K1 -~ t(2 , 

r  

K1 ---= ] y0 (~ T ;  m, n) s in  2 ~ T d F  (~),  

o o  

K2 = f y~(~ T ; m ,  n) (1 - -  cos ~ T)2dF(~)  

4m:~ . 4nz~ 
~ ( u ; m ,  n) = [u 2 _ (2m~)2] [u2 _ (2nz)2 ] . 

F u r t h e r m o r e ,  we h a v e  

(2.9) 

Noting that 

(2.10) 

we obtain 

(2.11) 

S imi la r ly  we h a v e  

(2.12) 

E A m B n  ~-- O, for every  pa i r  (m, n) . 

l ira ~ (). T ;  m, n) sin 2 2 T = 0 ,  
T - - +  c o  

m 2 -~ n 2 # 0 ,  

E A m A n - - > O ,  as T - > c ~ ,  i f  m 2 q - n  2 # 0 .  

E Bm Bn --> O , as T --> oo , m , n = l , 2  . . . . .  

s ince we m a y  ver i fy  t h a t  

l i m y ) ( ~ T ; m , n ) s i n 2 ~ f  = O ,  - - c ~ < ~ < c ~  
T---> c o  

for eve ry  pa i r  (m, n) of  pos i t ive  in tegers .  
I f m  ---- n = 0, t h e n  ~ ( ~ T ; 0 ,  0) = 4 / ( ~ T )  2 a n d  hence  

f s i n 2 2 T  f s in4(~T/2 )  Jz  = 4 ~ g ~ - d F ( ~ ) , J 2  = 4 )7v~-27 ~ dF(~) . 
- - c o  - - o o  

The  ke rne l  s in  2 ~ T~ (,~ T) 2 converges  to  zero as T ->  c~ ff ~ g= 0, a n d  equMs 1 i f  
: O. H e n c e  J1  converges  to  4 [ F ( 0 q - )  - -  F ( 0 - - ) ] .  On  the  e the r  h a n d  J2 con-  

verges  to  zero for e v e ry  ~. W e  therefore  ge t  

(2.13) E A ~ - - > 4 [ F ( O - k ) - -  F(O--)]  as T - - > ~ .  



228 T. KiwITi: 

(2.14) 

(2.15) 

(2.16) 

and 

(2.17) 

(2.18) 

Under the above assumption, the behavior described in (2.9), (2.11), (2.12) and 
(2.13) is all that  can be claimed; however, ff the process has a spectral density, we 
can say more. 

Theorem 1. Suppose that a continuous stationary process X (t) has the spectral 
density ] (,~) which is continuous at ,~ -= O. Then we have 

l i m T . E A ~ = 4 ~ / ( O ) ,  m---- l ,2  . . . .  , 
T - - >  c~  

lim T .  E A ~  : 8 ~ / (0), 
T - - ~  o o  

l i m T . E B ~ : 4 z / ( 0 ) ,  r e : l , 2 ,  
T---> ~ 

l im T .  E A m A n  ~ O , m @ n , 
T - - >  o o  

l im T " E Bm Bn ~ O , m :~ n . 
T - - >  c o  

Thisis known [6], [10] under the condition that  ~ (u) e LI ( - - ~ ,  or which implies 
the existence of the continuous spectral density. 

In order to show this theorem, we sh~ll use the following standard summability 
theorem (See [1] and [11] p. 28). 

Theorem @. L e t / ( x )  be a /unc t ion  on (--c~,  ~ ) ,  continuous at a point c and be 
such that / (x)/(1-~ ]xl)eLl(-Oo, r Let K ( x )  be a /unction o/ Li( - -c% o0) 
satis/ying 

(2.19) x K ( x )  = 0(1) ,  /orlarge I x l .  

Then we have 

(2.20) lim ~ j'/(c -~ u -~ ~ ) K ( , ~ u ) d u  ~- /(c) S K ( x ) d x ,  
~---> o o  - - c o  - - o o  

where ~ is a number independent o /u ,  converging to zero as ~ ~ ~ .  

The proo[ of Theorem 1 is a simple application of Theorem C. Setting m = n in 
(2.1), we have 

E A ~  = J1 ~- J 2 .  

Moreover 
r  

J l =  ~.T + 2m~ -t- ,~T 2 2 m ~  sm2 )'T/()')d'~" 
- - c o  

sin 2 ;t T _ s sin s )1. T 
(2.21) -- (XT+2m~)2 / ( ' ~ ' ) d ; ' + 2 J ( z T ) ~ - -  (2m,~)2/( ; t )d; t+ 

f sin s ~ T 
+ (~T)2--(2m=12 / (~)d~ 

- - c o  

----- Jii + Ji2 + Ji~, 
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say. Now 
oo 

f sin2#T . 2mz~ . 
= - a f t  

- t o  

which is no more than  the left hand  side of  (2.20) with the Fej6r kernel for K (x), 
2 m J t  

c = 0 and ~r = - -  - ~ .  Hence we have 

lim T J l l  = ze/(O) . 
T - + c o  

I n  the same way, we have 
lim TJla  = oz 1(0). 

T - + c o  

to 
- -  f s i n  2 2 T 

TJ12 = 2 T J-(;~T ~ -  (2m=)2 l(2)d~ 

is again in the form of  the left hand  side of  (2.20) with 

sin 2 x 
K(x)  - -  ,2 _ (2~=)~ 

which satisfies the conditions of  K (x) in Theorem C. We note t ha t  

f K ( x ) d x = O ,  for m = ~ 0 .  

Then Theorem C gives us t ha t  T J12 converges to zero. We have hence proved 
tha t  J1 converges to 2 ~/(0) .  

J2 is handled in the similar way. As in (2.21) J2 is wri t ten 

J2 = J2~ q- J2~ + J2a ,  (2.22) 
where 

and 

to co 

f ( 1 - - c o s 2 T ) 2  _ flsin 4/~T . (  2 m ~  _ 
J21 = j  ~ , ~ _ ~ m ~ ) 2 / ( 2 ) d 2  = 2 J ~ T ~ -  / 2 / x -  ~ - - } d ~ ,  

- ~  - o o  

f sin 4 (2 T/2) 
J22 = S (,~)~-~ (~m~)2 /(2)d~ 

- o o  

tx~ 

,~ f sin4#T ,{,, 2 m ~  . 
J~a = z j ~ l ~ z  /, + - -~-]c t# .  

- o o  

Again by  Theorem U, J21 and J2a each converge to Jr/(0) as T -+ c~. J22 converges 
to zero since 

sin4(2 T/2) 
( ) . T ) 2  __ ( 2 m ~ ) 2  d ~  ~--- 0 ,  for m ~: 0 .  

- o o  

Put t ing  the above results together  we have (2.14). 

16 Z. Wahrscheinl ichkei ts~heorie  verw.  Geb., Bd.  6 
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The same reasoning also leads to (2.16). 
The  proo/of (2.15) is contained in t h a t  of  (2.14), since, with m ---- O, J1 ~- 4 J n  

and J~ ---- 4J21. 
I n  order to show (2.17) and  (2.18), we m a y  proceed in the  same manner  and 

encounter  the integrals 

sin~ ~ T 
( A z h 2 m ~ ) ( ~ + 2 n ~ )  /(,~)dt, m 4: n,  

- - o o  

and 
o o  

f (1 -- cos AT) 2 
j - ( ~  ~ - 2 ~ ( ~ )  /(~)d~, ~ , n .  

- - o o  

They  are handled just  as J12 or J22 and are seen to converge to zero even if they  
are mult ipl ied b y  T. This completes the proof  of  Theorem 1. 

3. Covarianees of Fourier Coefficients II 

I n  Theorem 1 we have  shown t h a t  (2.17) and (2.18) hold under  the  condit ion 
t h a t  the  spectral  densi ty  is continuous a t  x ---- 0. Now we are going to show t h a t  if  
we assume more  abou t  l(x), t hen  we m a y  find the l imit  of  T2EAmAn and 
T2EBmBn as T -+ oo. 

Theorem 2. I /  the spectral density/(x) ha8 a continuous/irst derivative in a 
neighborhood o/ the origin and 

(3.1) //(x) -- /(0) / / ( x ) - - / (O)  ~ dx = l im ~ dx 
~ - + 0 +  

exists, then 

(3.2) lira T2EAmAn 16 ~o//(2) 
/(0) 

= ~ d~, m r  
T-+oo O+ J 

(3.3) l im T2 E Bm Bn ---- O, m :# n . 
T - ~ o o  

Since we are assuming t h a t  X (t) is real-valued,  the  spectral  densi ty  /(x) is an 
even funct ion and hence / '  (x) in a neighborhood of the  origin is an odd function.  
Hence  

(3.4)  1' (o) = o .  

Proo I. F r o m  (2.].), E A m A n  = J1 + J2, where J1 and  J2 are given b y  (2.2) and 
(2.3) respectively.  The funct ion ~ (~ T;m, n) in (2.2) and (2.3) is wr i t ten  

(3.5) AT 2m~ -}- ~T--2mzt )  l T + 2 n ~  -~ ~ T - - 2 n ~  " 

I-Ience J1 is wr i t ten  as the  sum of four integrals  each of which involves one of  
t e rms  in the  expansion (3.5). Using the fact  t h a t  /(~) is an even funct ion we see 
t h a t  

J1 = 2 ($1 + 22),  



Fourier Series of a Stationary Stochastic Process 231 

where 

(3,6) 

(3.7) 

Since 

(3.8) 

we have 

(3.9) 

oo 

f_(  sin 2 i T 
S 1 =  ,%T + 2m~)(,%T + 2nz) /(~)dX, 

- o o  

co 

f sin 2 ~ T 
S2--= -(,%T + 2m~l(,%f -- 2n~) /(,~)d,~. 

- o o  

oo 

f sin 2 ,% T d A = 0 ,  m . n ,  

o o  

f sin 2 ,% T 
S i =  -(,%T + 2m=)(,%T + 2n=) [/(A)--/(0)IDA. 

- r  

Take A so large that  A > m, n and fix it. Choose $ so small and T so large 
that  6 > A / T  a n d / '  (x) exists and is bounded in [-- ~, (~]. We split S1 into three 
parts as follows: 

I~I<AIT ~>]'~I>AIT l~l>a 
= S I 1  -~- 3 1 2  -~- S I S  , 

say. Since the integrand of (3.8) is bounded by 1 and / '  (0) = 0, we see that  

I s l l l  -<- fit(A) - / (0 )1  = o(1) f = 

I~l<a/~" I~I<AIT 
, I ~ e n c e ~  

(3.10) lira T2Sn  = O. 
T---> co 

Next 

f sin 2 i T -- �89 
$12=  (,%T + 2m~l(,%T + 2nzl-[/(~)--/(O)]d2 + 

~>[~l _->A/T 
f /(,%) -- riO) (3.11) +�89 (,%T + 2mz)(,%T + 2ng) 

a>l.~i ~_AIT 
/ t  

say. S12 is easily seen to be equal to 

] [ 1(,%) - 1(0) 
2 ~ ' ~ J  ~ d~, 
a>l-q ~_A/T 

1 f 2,%(m+n)~/T+4mnxl2/T 
2T 2 ,%2(,% + 2mzc/T)(,% + 2n~/y) [](~,)--](O)]d~ 

- -  T 2 ,%2 d~ + ~ - T ~ .  O o(1)  
~ > I  ~_AIT  a>.~ ~_AIT  / (1) 1 1(1) -- 1(o) d2 + o 

- -  T2 ~ 
B>A~_A/T 

t i p  

d2 = $12 + $12, 

16" 
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The last integral can be made less than ~/T 2, where e > 0 is arbitrary, by taking 
• > 0 sufficiently small. Hence, we have 

(3.13) lira T $12 0 
T - - ~  co  

Also writing S~  in the form 

f cos 2 Z T 
-- } (AT--F 2m~I(AT-~ 2n~) [ / (~ ) - / (0 ) ]d~  
a>l~l ~_AIT 

and using the same technique, we find that  

�9 lfcos2~,T ( 1 )  (3.14) $12 = - ~ z [/(~) - f (0)]d; t  + o N .  
,~>,I>~AIT 

Since [f(A) --/(0)]/A is differential in [A/T, (5], we see, using the second mean 
value theorem, that  for some ~e, A / T  < ~ < ~, 

[/(Z) - / ( 0 ) ] d Z  = ~ -  I - -  1(0) ;. 
AIT AIT 

+ ~  

AIT A 

is bounded for fixed A > 0 and the same is true for 

f cos2AT - ~ - - -  d L  

tIenee noting that  ]' (0) = 0, we may find d so small that  

l/fT e~ l i ra  sup  ; ~  [ l(~) - l ( 0 ) ] d ~  < e ,  
T~--> oo 

Then from (3.13} and (3.14), 

(3.15) lim T~$12 = 0.  
T---~ co 

Finally, we see, as in (3.11), (3.12) and (3.14) that  

1 f /(A) -- /(O) l fcos2~T (_~) S ~  = ~-~ ~2 d~ - -  ~ ~ [[ (4) - -  l (0)]d~ + o 

as T -~ c~. The second integral of the right hand side is o(1/T2) because of the 
l%iemann-Lcbesgue lemma. Hence, using (3.10) and (3.15) we obtain 

(3.16) lim T2S13 ~ f 1(2) -- 1(0) 
T - > c o  A>~ 
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Combining (3.10), (3.13), (3.15) and (3.16) we obtain 

lim sup T~S1 f T--,~ -- ~ d,% < U s ,  
Z > d  

C being a constant .  
Exac t ly  the same argument  yields 

lim T2S2 = ?/(Z) -/(0) d2 
T-+oo )~2 �9 

0+ 
Hence we have shown t h a t  

(3.17) T-+oo l i r a  = 1(0) 

0§ 

Now consider J2. Proceeding in the same way as with J l  we write 

J2 =" 2 ( U1 -1- U2), 
where 

oo  

f (1 - -  cos t T)~ 
(3.18) UI= -(AT + 2m~)(AT + 2n~z) [/(A)--/(O)]dl, 

- - o o  

oo  

f (1 -- cos ~ T) 2 
(3.19) U2 ---- i;t T + 2 ~ z ) ~ T  -- 2 n ~r) [/()') - -  / (0)] d,~. 

AgMn U1 is decomposed into three integrals 

I ; q < A I T  d>I.~I>AIT 1~.I > d  

We note that for a pair of distinct integers m and n 

oo 

[ (1 -- cosi  T)~ 
j ~(;.T + ~ ) ~ i  ~ 2 ~ )  d~ = 0. 

- - o o  

As in (3.10) 

(3.20) lim T 2 U n  = 0 .  
T - - + o o  

I f  we write (1 - -  cos ~ T) 2 = 1 - -  2 cos 2 T @ cos 2 ~ T and consider the correspon- 
ding three integrals f rom U~2, we m a y  verify as before tha t  

(3.21) lim T 2 U12 = 0 .  
T - - +  r  

U18 is 

f /(;4 -/(o) ( 1  - -  2 )~cos 1 T  -~- cos 2,~T) (4 T + 2m~) (4T + 2nz)  d t .  

The integral  which involves the 2~ cos AT term of the above integral  is o(1) 
because of  the l%iemann-Lebesgue lemma and the fact  t ha t  

f cos # ~-~ff  = o ( 1 ) .  
f~l>aT 
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The integrals from the first and the last terms in the first bracket in the above 
integral are, as before, 

T~ J 

and 

1 f / ( 4 ) -  1(o) (~_~) T~ ~ d~ + o 
x>~ 

respectively. Thus we have 
o o  

lira sup T~ U~s -- 3 [ /(~) --- I(0) d21 < Cs (3.22) 
T-+oo ] 22 I ' 

for some constant C. Also as in (3.13) and (3.15) 

(3.23) lira T 2 Ula = 0.  
T - - ~  c o  

]:[ence p u t t i n g  (3.20), (3.22) and  (3.23) together ,  we have  

(3.24) = 3 1  - 

/(0) 
d~. 

T-+oo O+ J 

Similarly we obtain 

(3.25) lira T 2 U~ = 
T - - ~ c o  

~ e n e e  

c~ 

o+ 

o o  

(3.26) lira z~J~ = 12 f / (~ )~ / (0 )  gz. 
T-+co 0+ 

(3.17) and (3.26) give us (3.2). 
I t  remains to show (3.3). The derivation of (3.3) is analogous to that  of (3.2). 

From (2.5) 
E Bm Bn -~ K1 ~ K2,  

where K1 and K2 are given by (2.6) and (2.7). Using the fact that  f(~) is an even 
function, K1 can be written in the form 

K l = 2 ( V 1 - -  V2), 
where 

o o  

V I =  ~(2T + 2m~)()LT-4- 2nu)  

r 

sin ~ ~ T t . . . . .  

Therefore  V1 and  Ve are  the  same as $1 and  $2 respect ive ly .  Hence  we have  

lira Te  K1  = O . 
T---~ eo 
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(4.1) 

We have 

Similarly, 
lim T 2K2 = 0 .  

T - - - >  ~ 

This concludes the proof  of  (3.3). 

4. The Behavior of Fourier Coefficients as n --~ c~ 

Let  X (t) be a s ta t ionary  process condit ioned as in 1, except  t h a t  here we allow 
X (t) to  be complex-valued. We consider the complex Fourier  coefficients of  X (t), 
O<t<T, 

T 

1 A ~fX(t)e-~"n'l~'dt. C n = y (  n--iBn)= 
o 

ECn = O. 

Now we consider the behavior  of  Cn when n -~ oo. Actual ly  we shall deal with 
the magni tude  of  ~ E [ Cn 12 �9 

1~l>2v 
I t  is easy to see t h a t  

(4.2) E I Cn 12 = f sin2 ()' T/2) 

where F (2) is the spectral distr ibution funct ion of  X (t). 
We shall begin with the following theorem. 

Theorem 3. We have 

(4.3) Z EI Cnl 2 = O(N- i )  ~- 0(/7(oo) - -  ~(7~VIT)) -~- O(F(--z~N/T)) , 
Inl>~v 

where 0 is independent o /N and T. 
Pro@ F r o m  (4.2), we have 

~ ~ sin~(AT/2) 

n = 2 g  n = h r  --r  

1 oo s i n  2 x / ~  1 

-- 4~2 n (n-#)~dE = ~-~2 4- = ~ (I1 + I2) ,  

say. We then see t h a t  
2r r 5r/2 

i 1/11 < 
n = ~  (n - ~V/2)2 m =  /2] ~ 

- - r  

< = Z ~ [E(oo)  - ~ ( - o o ) ]  = o . 
m = [NI2] 

As to 12, we have 
o o  

I h l - - <  f Z sin2"(n--/~) 

o o  

2V[2 
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- -N 

A similar situation holds for ~ .  This proves the theorem. 

Theorem 4. I] 

f l ~ l ~ d F ( . )  < ~ ,  0__<~<2, 
- - o 0  

(4.4) 

then 

(4.5) 
I<>iv 

as N -+ r T being fixed. I/(4.4) holds/or ~ ---- 2, then 

In[>~ 

Proo]. We have, for 0 g ~ g 2, 

(4.7) F(r -- F(gzN/T) = dF(•) <--_ 7 N  Z~dF(2)' 
~I~/T a~TIT 

--uNIT --~-~]T 
T 

- - o o  - - c ~  

Hence if 0 =< ~ < 1, then (4.5) is a consequence of (4.3). 
In order to obtain (4.5) for 1 _--< g < 2 and (4.6), it is sufficient to show that  11 

in the proof of Theorem 3 is o(1/N ~) for 1 < g < 2, and 0(1/2V2) for ~ ----- 2. 
Actually we will show that  

~/2  
sin 2 g/z 

- - C o  

- -N 

The corresponding fact for the series ~ E ] On [2 is obtained in a similar way. 
g* ~ - - 0 0  

We write (4.0) in the following way. 

(0; 0= I1 = + _ ~  ]n~= ~ (~_  ~)~ dR = I n  + I12 , 

say. Integration by parts shows that  
c o  " 2 

I l l  = - [ f (oo)  - U W - / j n ~  (77~-~V I.=0 

§ 2f [F(~)- F (~7)] ~ sin2(r~-- /~)~= 2r (-n ~ ~)g {- sinU(n- # ) a Z ( n  -- #)a dp~. 

o 

(Termwise differentiation is permitted.) Then 
iV/2 

(4,0) ~ ~,1 t = o (F(=)- ~ (%~)). o (-~) + f [~(~ , -  ~ ( ~ ) ] . o  (~ )  ~ ,  
0 
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since 

n=x  (n--~)~ ~ ,  for e v e r y f f < N / 2 .  

The first term of the right hand side of (4.10) is, using (4.7), 

o ( l h W )  �9 o ( l / N )  - -  o ( 1 / N 2 ) ,  (1 < ~ < 2 ) .  

Now 

o o 

Hence the second integral of the right hand side of (4.10) is 0 (1/N2). 
In the similar manner 

0 

I 1 2 = F ( ~  ~-) ~ . 2  , ,~  (~-=_~ ~=_~ x 

[ ~ s in2(n- f f )z  sin~(n-/~)zJd ff 
X (n -- if)2 -~- (n -- #)a " 

n = N  

Hence the integrated term vanishes and the last integral is 0 (1/N~). This proves 
(4.9). 

5. The Mean Convergence and the Absolute Convergence of the Fourier Series 

Let X ( t )  be a complex-vahied stationary process as in 4. Let Sn (t) be the 
partial sum of the Fourier series of  X (t), 0 < t < T .  T is fixed. The fol lo~ng 
theorem is known [5]. 

Theorem 5. For  every t, 0 < t ~ T ,  

(5.1) E I Sn  (t) - -  X (t) 12 ~ 0 

a 8  n - - - ~  o o .  

For completeness, we shall give a simple proof of (5.1). We note that  
T 

(5.2) & (t) - x (t) = ~ / I X  (u) - x (t)] D n  (~ - -  t) &,  
o 

where 

(5.3) D n  (u) = sin (n ~- �89 2 sin ~ - .  

We have 

(5.4) 
T T  

o o 

• D ~ ( u  - -  t ) D n ( v  - -  t )duclv  
oo I '  

= f f 
- - o o  0 



238 T. KAWATA: 

Since it is known tha t  the inner Dirichlet integral is bounded for all t and ~ and 
converges to zero as n goes to infinity, the desired result follows. 

Next  we shall prove a theorem on the absolute convergence of the Fourier 
series of X (t) in 0 < t < T tha t  is the analogue of Bernstein's theorem B in I .  
Actually by  means of a familiar technique (see [12] p. 135--136) Theorem 4 
leads to the following theorem. 

Theorem 6. I] 
o o  

(5.5) S lxl~dF(x) < 
- - o o  

/or some ~ > l, then the Fourier series 

(5.6) ~ Cn e 2in~t/~, 0 < t < T 
n ~ - - o o  

converges absolutely with probability one. 

Proo]. I f  (5.5) holds for some ~, then it also holds for all smaller values of ~. 
Hence we may  suppose tha t  1 < g < 2. 

Consider 

(5.7)  ICnl=  5EICnl_-< levi 2 
n = l  ~ = 1  n = 2 . - 1 - ~ 1  ~ - - 1 \ n = 2  - 

Because of (4.5), the last expression is not larger than  

(5.8) ~ 0 (2-  ~ (~- 1)/2). 0 (2 ~/2) - -  0 (2- '  (~- 1)/2) __ 0 (1). 
~ = 1  ~ 1  

Similarly we have 
0 

Therefore we have tha t  ~ E ICn I < oo. Hence the series ~ [ C n  I converges with 
n ~ - o o  - - o o  

probabili ty one. This proves the theorem. 
Incidentally Theorem proves the following theorem. 

Theorem 7. I /  (5.5) is true/or a given stationary processes X (t), then X (t) is 
continuous with probability one. 

When the process is a Gaussian process with condition (5.5), the same result 
has been shown by  D~PO~TE [3]. 

We mention tha t  Theorems 6 and 7 are generalized in the following form. 

Theorem 8. In  Theorems 6 and 7, (5.5) can be replaced by a weaker condition 
o o  

(5.9) SI~I (l~ < oo, ~ > 2. 
- - c o  

As in the proof of (4.5) we may  show tha t  ff (5.7) is true, then 

1 
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I f  we insert (5.10) in (5.7), then we have ~ 0 (v-~) in place of (5.8), which leads to 
v = l  

the same conclusion. 

6. The Almost Everywhere Convergence of the Fourier Series 

We shall consider the almost everywhere convergence of the Fourier series (5.6) 
of the stationary process X (t) under consideration. The theorem below is an ana- 
logue of the Kolmogorov-Seliverstov theorem A in 1. For its proof we will require 
the following variant of Theorem 4. 

Lemma 1. 1/ 
oo 

flog+121 d (2) < (6.1) 

then 

(6.2)  log(ln[ + 1)EIC.I  < 

where C~ is the ~ourier coe//icient o/ X (t). 
Pro@ Using (4.2) we have 

~ f sin-e(2-T/2et)dF(2) I =  E [log n[ Cn[2]  = l ogn  2 (2T- -2n~)  z 
n ~ 2  n ~ 2  

_ 1 f X;~ !ogn'_sin2(ZT/2Zt)dF(2)_4 - 
4 ~2 n >=A~T/2 (n - -  )~ T/2 ~)~ 

o o  

1 f w log n. sin 2 (,~ T/2 zt) . . . . .  

ay. Let  us suppose 2 > 1. Then the integrand in 11 is not greater than 

~o log n 
0 (log 2) -~ ~ (n ~ TT//2 ~12 

n = [ , I T / 2 ~ ]  + 1 

---- 0 (log 2) + ~ Iog(k + [X T/2 M + 1) 
k2 

= O ( l o g 2 ) - ] - O {  ~ logk] ~ 1 ] + O(log2)SIV= 
= O (log ~). 

Again, the integrand in I2 is 

0 (log 2) -? 
1 < k < [ 2 T / 2 : t ]  + 1 

0 (log ([2 T/2 ~r] -4- 1 -- k)) 
k 2 

1 = O(log2) = O (log 2) + O (log 2)- ~ 
k = l  

I f  2 < 1, the same result holds and (6.2) follows. 
We now prove the following theorem. 
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Theorem9.  I /  (6.1) holds, then the Fourier series ~ C n e  2:zint/T o] X(t), 
0 < t < T,  converges almost everywhere in 0 ~ t ~ T, with probability one. 

N 
Needless to say the convergence of the Fourier series means that  of lim ~ .  

2V--> c~ n = - - ~ V  

The theorem is an easy consequence of the Kolmogorov-Seliverstov theorem A ff 
Lemma 1 is applied. In fact, the conclusion of the lemma implies that  

Z Ic [ log(Inl + 1)< oo 

with probability one, which in turn implies the conclusion of the theorem. 

7. The Limit Joint Distribution of Fourier Coeifieients 

In  this section we assume again that  the stationary process X (t) is real-valued 
and conditioned as in 1. A n  and Bn are Fourier cosine and sine coefficients of 
X (t), 0 < t < T, given by (1.6) and (1.7). 

We shall study the joint limit distribution of the random variable 

(7.1) ( �89 Ao , A1 . . . . .  A n ,  B1, . . . , Bn) 

when T --~ ~ .  
We further assume that  X (t) has a spectral density /(2). I t  is well known that  

in this case X (t) can be written as 
o o  

(7.2) X (t) -~ S C(2 - -  t) dy(~) ,  - -  co < t < ~ ,  
- - o o  

where C(u) is a numerical function in L 2 ( - - ~ ,  oo) and y(2) is a stochastic 
process with orthogonal increments such that  

(7.3) E I dy (2) ]~" = d2. 

I t  is also known that  the covariance function can be written in the form 

(7.4) (t) = S i c  (2) e 
- - o o  

o o  

(see [4] p. 532) where C is the Fourier transform in L2 ff e i~ C (t) dt of C (t). We shaft 

prove the following theorem. 

Theorem 10. Let X (t) be the real-valued stationary process o / t h e / o r m  (7.2) with 
C (u) e L2 (--  r r and with y (2) having independent increments and satis/ying 
(7.3) and E I dy (2) 13 = 0 (d2). Moreover i /C (u )  e L1 n L3(--  oo, c~), then the joint 
distribution o/ the set o] the Fourier coef/icients o / X  (t) in 0 < t ~ T,  

( 7 . 5 )  (�89 Ao  T 1/2, A1 T 1/2 . . . .  , A n  T 1/2, B1 T 1/2 . . . .  , B n  T 1/2) 

2n* 
converges to iV (0, �89 c 2) * ~ I  2/(0, c 2) as T --> c~, where 

o o  

c =  lyC(w)dwl, 
- - r  

2 n *  

and ~ means 2 n-/old convolution. 
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Lemma 2. (i) I / a  random variable X is real and is such that E X -= 0 and 
o o  

(7.6) x = y c (2) dy~ (2), 
- -  o o  

where C(2) ~ L2 (3 La( - -  0% c~) and y~(2) is a stochastic process with independent 
increments with 

(7.7) Eldy~(2) l  2 - -  ~d2 ,  Edyc~(2) = O, E l d y ~ ( 2 ) p  =- O(~d2) 

:r > 0 being a constant, then the characteristic/unction/~ (u) o/ X is given by 

(7.8) /~ (u) = exp --  C 2 (2) d2 -t- 0 (~ u 8) 

/or small u. 

(ii) The distribution o / X / e  1/2 converges as o:--+ c~ to the normal distribution 
c o  

N(o, S C2(2)d2). 
- - o o  

This is substantial ly known (e. g. [4], [5]). For  completeness, we shall give its 
proof. 

I f  C(2) is a step funct ion 

C(2) = 0,  2 < a0, 
(7.9) --~c i, a j - l = < 2 < a j ,  

= 0 ,  2>--an, 

where a0 < al  < "'" < an are points on the real axis, then,  by  definition 
OO n 

(7.10) ] C (2)dy~ (2) -= ~ cj (y~ (a I --  O) --  y~ (ai_l -f- 0) ) .  
- c o  ] = 1  

For  any  C (2) e L2( - -  0% oo), there  is a sequence of step functions which converges 
to C (2) in L2-mean and the integral is defined as the limit in L2 (sQ) of the r ight  
hand  side of (7.10). 

We take  a sequence of  step functions of the form (7.9) which converges to 
C (2) in L2-mean. Then  the characteristic funct ion of X is the limit of the characte- 
ristic funct ion of the right hand  side of (7.10). Hence 

c o  

/~ (u) = E (exp (i u f C (2) dy~ (2)) ) 
- - o o  

--= lim E (exp [i u ~ c f (y~ (aj - -  0) - -  y~ (aj-1 + 0))] ) 
i = 1  

n 

= l i m l ~ E ( e x p [ i u c j ( y ~ ( a ~  -- O) --  y~(aj-I  + 0))]) 
i = 1  

= l i m ] ~  E(1 ~- iuc j (y~(a  I --  O) --  y~(aj-1 -~ 0)) 
] = 1  

~ 2  C /  

2 (ya(aj --  O) --  y~(aj-1 ~- 0)) 8 ~- 

+ o(v~u3ly~ (aj - O) - y~(aj- i  + 0)] 3) 

= l i m I ~  (1 ~ i=1 2 (a l - -a j -1 ) - t -O(~u3c~(a j - -a j -1 ) ) )  " 
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Here we have used (7.7). Since 

c~ (aj -- a1-1 ) --> I C2 (4) d2, 
i=l - ~  

we have (7.8). (ii) is obvious from (7.8). 

Lemma 3. Suppose that a real.valued function ~ (4) ~ L2 (-- 0% oo) sati4ies 

o o  

(7.11) SlW~(2)-W(Z)pd2-~0 as ~-~0 
- - o o  

/or some ~o(2) E L2 n Ls ( - - ~ ,  ~ ) .  Let ye(2) be a stochastic process with 
independent increments, satisfying (7.7). Then the characteristic/unction of 

r  

(7.12) Y~- -  ~/2 yJa(2)dya(2) 
- - r  

converges uniformly in every finite interval as o~ -+ 0 to the characteristic function of 

N (o, S V (4) d2). 

Proof. Denoting 

1/ 
X:~ -- ~1/2 ~p (4) dye(4) 

- -  o o  

(this integral exists), we have 

IEe~X==--E~'== I <--_ l u ] E J Z = -  r=] =< lu] ( E [ X ~ - -  y~p)l/= 

which converges to zero, since 

- - c o  

On the other hand Ee iX~u converges to the characteristic function of 

o o  

iv (0, f ~2 (4) d2) 
- - r  

by Lemma 2. This shows Lemma 3. 
We are now in a position to prove Theorem 10. The characteristic function of 

(7.1) is written as 

! ( ~ 0 , ~ 1 , . . . , ~ , 3 1  . . . .  ,~=) 

2 i  1 n . 
----E exp T1/2 X(t )  y(~0 "= ( ~ i c o s ~ - ~  1:1sin dt 

(7.13) -/ F= f 7/ 
= .  L oJ ( . .  . 



Fourier Series of a Sta$ionary Stochastic Process 243 

where 

(7.14) ~n(t, T) 1 n 
1 = 1  

t Ienee from (7.6), we have 

T T c o  

2 2 T1/2 f x(t)~n(t, T ) d t =  ~ f ~n(t, T)dt f C(t-- ~)dy(A) 
0 0 - - c o  

c o  T 

f = d y ( , ~ ) ~  c f n ( t , T ) C ( t - - 1 ) d t .  
- - r  0 

(7.15) 

where 

I t  is easy to see tha t  the interchange of integration is permitted. The above 
expression is equal to 

co 1 

2 T 1/2 f dy (T v) 5 Cfn (U T, T) C (u T -- v T) du,  
- - o o  0 

n 

9n(u T, T) = �89 ao + ~ (ajcos2~ju + zj s in2ziu)  
(7.16) 

] = 1  

= ~n(u),  0 - -<u- -< l  

is independent of T. 
Now write 

(7.17) T y ( T v )  : YT (v). 

This has the mean square increment given by 

(7.18) E l d y T ( v ) ] Z =  T d v ,  E l d y T ( v  ) ]8= O(Tdv)  

Now the function T1/2/(cro, cq . . . .  , (~n, ~1 . . . .  , lrn) is, from (7.15), the value for 
t = 1 of the characteristic function g (t) of 

(7.19) 
co 1 

2 T -z/2 f dyT(v )  Scfn(u) T C ( T ( u  --  v ) )du .  
- - o o  0 

Then it is sufficient to show tha t  the characteristic function of (7.19) converges 
to the product of the normal characteristic function. 

(7.19) is of the form (7.12) with ~ ---- T and 

1 

~o~ (v) = 2 f qZn (u) T C (T  (u - -  v) ) du - yJ (v, T ) .  
0 

Take 

c o  

( v ) = 2 ~ n ( v ) [ C ( w ) d w ,  0 - - < v - - < l = 0 ,  elsewhere. 
- - o o  
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We are going to show tha t  

o o  

(7.20) ] I ~o (v, T) - -  ~ (v)] 2 dv ~ O, 
- - o o  

as T --> c~. 

Since Cfn(U) is continuous and C(w)~ LI(-- oo, c~), we m a y  see tha t  

(7.21) ~(v, T) -+ ~(v) 

for every v except v = 0 and v = 1. Because we see tha t  

T - -  Tv 

(7.22) w(v, 2 f = 2 f 
- - T v  - - c . ~  

defining ~n (u) ---- 0 outside 0 ~ u --< 1 and since ~n (u) is bounded the dominated  
convergence theorem applies to get  (7.21). 

Fur thermore  y: (v, T) is uniformly bounded which is seen f rom (7.22). Hence in 
(7.21), the convergence is the bounded convergence. Therefore in order to  show 
(7.20), it is sufficient to show tha t  

(7.23) .[ly~(v,T)--W(v)12dv-->O, as T - + c o ,  
] v [ > A  

for some A. 
Take A > 1 arbitrari ly and fix it. Now 

- -A - -A - A  

S]~(v,  T) -- y~(v)]2dv : Sl~pT(v)12dv ~ K ~[~p~(v)ldv 
- - o o  - - o o  - - ~  

for some constant  K, since ~T (v) is uniformly bounded.  Hence the last expression 
does not  exceed 

- -A 1 

K f dv f lw(u)l TIC(T(u-- v) )l du 
- - o o  0 

1 - -A  

~- K ]]Vn(u) lduT SIC(T(u--v) ) idv  
0 - - o o  

1 o0 

: KSIgn(u) ldu]]C(w)ldw 
0 A + T u  

which converges to zero as T -> r 
Similarly 

c o  c o  

A A 
0o 1 

K S dv ]iq~n(U) l T[ C(Z(u -- v)) I du 
A 0 

1 T ( u - - A )  

---- K S l~ (u ) Id~  SIC(w)ldw 
0 - - 0 o  

which converges to zero as T -~ oo. Hence we have shown (7.23). FhlaUy it  is 
obvious tha t  ~ (v) L3 ( - -  c~, r since it belongs to L2 (--c~, c~) and is bounded.  
Hence from Lemma 3 we obtain tha t  the characteristic funct ion of  (7.19) 
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1 

converges to the characterist ic func t ion  of N(0,  f ~f2(~)d~). This shows t h a t  
0 

T1/~/ ( (~o,  a l  . . . . .  a n ,  "h . . . .  , "on) converges to 

1 

exp ( - -  �89 ] ~2 (~) d~) 
0 

co 1 

= ( -  e I f e(w) dw f dv) 
- - o o  0 

o o  n 
1 

-oo  ]=1 
n q~ 

i=I k=l 
oo 

where C ---- If C(w)dw I. This proves the theorem. 
-co 

Added  in proof: Theorem 7 may be derived also from M. Lo]~v]ts lemma, Supplement to 
P. L~vY, Processus stochastique et mouvement brownien (1948), p. 331. For the stationary 
Ganssian process, a better result is known, Yu K. B~AY~v, Continuity and H61der's con- 
ditions for sample functions of stationary Ganssian processes. Fourth Berkeley Symposium 
vol. 2, 23--33 (1961). 
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