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Suppose that pg, p1, ... are probability masses on 0, 1,..., with generating
function P(f) = ant". Suppose the distribution is not defective and has first
moment not greater than 1. That is P(1) =1 and P’(1) =< 1. Then u = u(f)
= t/P(t) defines a one-to-one mapping of [0, 1] onto itself with inverse ¢ = A(u).
Suppose henceforth p; =+ 1.

Theorem. % (u) is a probability generating function of an infinitely divisible
distribution which assigns ifs mass to 1,2,... and has first moment equal to
(1 — P'(1))~1. This is equivalent to saying that

h(u)=wuexpy an(ur —1), O0=w=l,

n=1
with an = 0 and Y an < o0. k'(1) = (1 — P/(1))~L.
The theorem will be proved with the aid of the following lemma which was
proved as Corollary 2, Theorem 1 in [1].

Lemma, Suppose X1, X, ... is a sequence of independent, identically distributed,
non-negative, integer-valued random variables. Then

>={1—E(X1) if BX)<1,

n
PS> Xi<nn=12,..
(Z P 0 if B(X)>1.

i=1
Proof of theorem. For s in (0, 1) define
PP = pas?/P(s), n=0,1,....
The p{) are probabilities which sum to 1 with probability generating function
2P0 = P(st)|P(), 0=t<1.
n

It is easy to verify that
(1) S>apPd =sP(s)|P(s)<1 if 0<s<1.
n

Let X, X§,... be a sequence of independent and identically distributed
random variables such that

PXO=n)=pP, n=0,1,...,
and let

T§f)= X(f) ek ng).

Tt follows from the definition of p{® that
(2) P(T =k) = P(TL = k)sk[Pnr(s).
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‘We now assert the following relationship:

3) 1= [1— s P/(s) P(9)] + 3 P(T® = m)[L — s P'(s)/P(s)].

n=1
This simply says that T < nforalln = 1,2, ... or T = n only finitely often,
with the probability of last occurrence at index n being
P(T® = n)[1 — s P'(s)| P(5)].

This follows from the Lemma with s P'(s)/P (s) playing the role of & (X;). By (2)
relationship (3) can be written

(4) 14 fP(Tﬁf’ = n) [s/P(s)]* = (1 — s P'(s)[ P (s)] L.
n=1

It is easy to verify that s/ P (s) defines a one-to-one monotone mapping of [0, 1]
onto [0, 1]. Let s = A(u) be the inverse of u = s/P(s). It is also easy to verify
that 4 is differentiable in (0, 1) and that

(1 — s P(s)/P(s)]71 = uh'(u)/h (u)
when s is expressed as & (u). Hence (4) is equivalent to
6)) 1+ i P(Tn=mn)u?=uh'(u)h(u)
n=1

(writing T = TP for simplicity).
Integrating (5) gives that

(6) h(u)=cuexp Y ur P(Tp=mn)n, O0<u<1.
n=1

This already shows that & (u) is the probability generating function of an infinitely
divisible distribution, but it is interesting to explicitly determine the constant of
integration ¢. Since p; = 1, P/(1) #+ 1 implies that po > 0. Since

lim A (u)fu = lim P (s) = pqg
u, 0 s{0

it follows that ¢ = pg > 0. On the other hand,
lim b (w)/u = lim P(s) = 1 = cexp > P(Tn=mn)n
utl i1 n=1

(This implies incidentally that Z P (1'% = n)[n < oo since pp < 1.} Hence

h(u) :uexp§ Iﬂ"’?—_ﬂl(u"—— 1).

n=1
That 2'(1) = (1 — P’(1))-1 follows from (4).
Example. Suppose P(f) = 1/2 - (1/2)#2. Then an elementary computation

shows that
h(u) =[1 — (1 — u2)/2)ju.
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k is the generating function of the time it takes simple symmetric random walk
to travel from 0 to 1, which by the theorem is an infinitely divisible random
variable. Similarly, the return time to the origin, whose generating function is
wh(w) is also infinitely divisible. By a similar computation, these waiting time
distributions for the non-symmetric random walk are also infinitely divisible.
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