# A Theorem about Infinitely Divisible Distributions 

Meyer Dwass

Received February 14, 1967. In revised form May 8, 1967
Suppose that $p_{0}, p_{1}, \ldots$ are probability masses on $0,1, \ldots$, with generating function $P(t)=\sum p_{n} t^{n}$. Suppose the distribution is not defective and has first moment not greater than 1. That is $P(1)=1$ and $P^{\prime}(1) \leqq 1$. Then $u=u(t)$ $=t / P(t)$ defines a one-to-one mapping of $[0,1]$ onto itself with inverse $t=h(u)$. Suppose henceforth $p_{1} \neq 1$.

Theorem. $h(u)$ is a probability generating function of an infinitely divisible distribution which assigns its mass to $1,2, \ldots$ and has first moment equal to $\left(1-P^{\prime}(1)\right)^{-1}$. This is equivalent to saying that

$$
h(u)=u \exp \sum_{n=1}^{\infty} a_{n}\left(u^{n}-1\right), \quad 0 \leqq u \leqq 1
$$

with $a_{n} \geqq 0$ and $\sum a_{n}<\infty$. $h^{\prime}(1)=\left(1-P^{\prime}(1)\right)^{-1}$.
The theorem will be proved with the aid of the following lemma which was proved as Corollary 2, Theorem 1 in [1].

Lemma. Suppose $X_{1}, X_{2}, \ldots$ is a sequence of independent, identically distributed, non-negative, integer-valued random variables. Then

$$
P\left(\sum_{i=1}^{n} X_{i}<n, n=1,2, \ldots\right)= \begin{cases}1-E\left(X_{1}\right) & \text { if } E\left(X_{1}\right) \leqq 1, \\ 0 & \text { if } E\left(X_{1}\right)>1 .\end{cases}
$$

Proof of theorem. For $s$ in $(0,1)$ define

$$
p_{n}^{(s)}=p_{n} s^{n} / P(s), \quad n=0,1, \ldots
$$

The $p_{n}^{(s)}$ are probabilities which sum to 1 with probability generating function

$$
\sum_{n} p_{n}^{(s)} t^{n}=P(s t) / P(t), \quad 0 \leqq t \leqq 1 .
$$

It is easy to verify that

$$
\begin{equation*}
\sum_{n} n p_{n}^{(s)}=s P^{\prime}(s) / P(s)<1 \quad \text { if } \quad 0<s<1 \tag{1}
\end{equation*}
$$

Let $X_{1}^{(s)}, X_{2}^{(s)}, \ldots$ be a sequence of independent and identically distributed random variables such that

$$
P\left(X_{i}^{(s)}=n\right)=p_{n}^{(s)}, \quad n=0,1, \ldots,
$$

and let

$$
T_{n}^{(s)}=X_{1}^{(s)}+\cdots+X_{n}^{(s)} .
$$

It follows from the definition of $p_{n}^{(s)}$ that

$$
\begin{equation*}
P\left(T_{n}^{(s)}=k\right)=P\left(T_{n}^{(1)}=k\right) s^{k} / P^{n}(s) \tag{2}
\end{equation*}
$$

We now assert the following relationship:

$$
\begin{equation*}
1=\left[1-s P^{\prime}(s) / P(s)\right]+\sum_{n=1}^{\infty} P\left(T_{n}^{(s)}=n\right)\left[1-s P^{\prime}(s) / P(s)\right] \tag{3}
\end{equation*}
$$

This simply says that $T_{n}^{(s)}<n$ for all $n=1,2, \ldots$ or $T_{n}^{(s)}=n$ only finitely often, with the probability of last occurrence at index $n$ being

$$
P\left(T_{n}^{(s)}=n\right)\left[1-s P^{\prime}(s) / P(s)\right]
$$

This follows from the Lemma with $s P^{\prime}(s) / P(s)$ playing the role of $E\left(X_{1}\right)$. By (2) relationship (3) can be written

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} P\left(T_{n}^{(1)}=n\right)[s / P(s)]^{n}=\left(1-s P^{\prime}(s) / P(s)\right]^{-1} \tag{4}
\end{equation*}
$$

It is easy to verify that $s / P(s)$ defines a one-to-one monotone mapping of $[0,1]$ onto [ 0,1$]$. Let $s=h(u)$ be the inverse of $u=s / P(s)$. It is also easy to verify that $h$ is differentiable in $(0,1)$ and that

$$
\left[1-s P^{\prime}(s) / P(s)\right]^{-1}=u h^{\prime}(u) / h(u)
$$

when $s$ is expressed as $h(u)$. Hence (4) is equivalent to

$$
\begin{equation*}
\mathbf{1}+\sum_{n=1}^{\infty} P\left(T_{n}=n\right) u^{n}=u h^{\prime}(u) / h(u) \tag{5}
\end{equation*}
$$

(writing $T_{n}=T_{n}^{(1)}$ for simplicity).
Integrating (5) gives that

$$
\begin{equation*}
h(u)=c u \exp \sum_{n=1}^{\infty} u^{n} P\left(T_{n}=n\right) / n, \quad 0<u<1 \tag{6}
\end{equation*}
$$

This already shows that $h(u)$ is the probability generating function of an infinitely divisible distribution, but it is interesting to explicitly determine the constant of integration $c$. Since $p_{1} \neq 1, P^{\prime}(1) \neq 1$ implies that $p_{0}>0$. Since

$$
\lim _{u \downarrow 0} h(u) / u=\lim _{s \downarrow 0} P(s)=p_{0}
$$

it follows that $c=p_{0}>0$. On the other hand,

$$
\lim _{u \uparrow 1} h(u) / u=\lim _{s \uparrow 1} P(s)=1=c \exp \sum_{n=1}^{\infty} P\left(T_{n}=n\right) / n
$$

(This implies incidentally that $\sum_{n} P\left(T_{n}=n\right) / n<\infty$ since $p_{0}<1$.) Hence

$$
h(u)=u \exp \sum_{n=1}^{\infty} \frac{P\left(T_{n}=n\right)}{n}\left(u^{n}-1\right)
$$

That $h^{\prime}(1)=\left(1-P^{\prime}(1)\right)^{-1}$ follows from (4).
Example. Suppose $P(t)=1 / 2+(1 / 2) t^{2}$. Then an elementary computation shows that

$$
h(u)=\left[1-\left(1-u^{2}\right)^{1 / 2}\right] / u .
$$

$h$ is the generating function of the time it takes simple symmetric random walk to travel from 0 to 1 , which by the theorem is an infinitely divisible random variable. Similarly, the return time to the origin, whose generating function is $u h(u)$ is also infinitely divisible. By a similar computation, these waiting time distributions for the non-symmetric random walk are also infinitely divisible.

## Reference

[1] Dwass, M.: A fluctuation theorem for cyclic random variables. Ann. math. Statistics 33, 1450-1454 (1962).

Dr. M. Dwass<br>Dept. of Mathematics<br>Northwestern University<br>Evanston, III. 60201<br>USA

