A Theorem about Infinitely Divisible Distributions

MEYER DWASS

Received February 14, 1967. In revised form May 8, 1967

Suppose that p_0, p_1, \ldots are probability masses on $0, 1, \ldots$, with generating function $P(t) = \sum p_n t^n$. Suppose the distribution is not defective and has first moment not greater than 1. That is P(1) = 1 and $P'(1) \leq 1$. Then u = u(t) = t/P(t) defines a one-to-one mapping of [0, 1] onto itself with inverse t = h(u). Suppose henceforth $p_1 \neq 1$.

Theorem. h(u) is a probability generating function of an infinitely divisible distribution which assigns its mass to 1, 2, ... and has first moment equal to $(1 - P'(1))^{-1}$. This is equivalent to saying that

$$h(u) = u \exp \sum_{n=1}^{\infty} a_n (u^n - 1), \quad 0 \le u \le 1,$$

with $a_n \ge 0$ and $\sum a_n < \infty$. $h'(1) = (1 - P'(1))^{-1}$.

The theorem will be proved with the aid of the following lemma which was proved as Corollary 2, Theorem 1 in [1].

Lemma. Suppose X_1, X_2, \ldots is a sequence of independent, identically distributed, non-negative, integer-valued random variables. Then

$$P\left(\sum_{i=1}^{n} X_i < n, n = 1, 2, ...\right) = \begin{cases} 1 - E(X_1) & \text{if } E(X_1) \leq 1, \\ 0 & \text{if } E(X_1) > 1. \end{cases}$$

Proof of theorem. For s in (0, 1) define

$$p_n^{(s)} = p_n s^n / P(s), \quad n = 0, 1, \dots$$

The $p_n^{(s)}$ are probabilities which sum to 1 with probability generating function

$$\sum_{n} p_n^{(s)} t^n = P(st)/P(t), \quad 0 \leq t \leq 1.$$

It is easy to verify that

(1)
$$\sum_{n} n p_n^{(s)} = s P'(s)/P(s) < 1 \quad \text{if} \quad 0 < s < 1.$$

Let $X_1^{(s)}, X_2^{(s)}, \ldots$ be a sequence of independent and identically distributed random variables such that

 $P(X_i^{(s)} = n) = p_n^{(s)}, \quad n = 0, 1, \dots,$

and let

$$T_n^{(s)} = X_1^{(s)} + \dots + X_n^{(s)}.$$

It follows from the definition of $p_n^{(s)}$ that

(2)
$$P(T_n^{(s)} = k) = P(T_n^{(1)} = k) s^k / P^n(s).$$

M. Dwass:

We now assert the following relationship:

(3)
$$1 = [1 - s P'(s)/P(s)] + \sum_{n=1}^{\infty} P(T_n^{(s)} = n) [1 - s P'(s)/P(s)].$$

This simply says that $T_n^{(s)} < n$ for all n = 1, 2, ... or $T_n^{(s)} = n$ only finitely often, with the probability of last occurrence at index n being

$$P(T_n^{(s)} = n) [1 - s P'(s)/P(s)].$$

This follows from the Lemma with s P'(s)/P(s) playing the role of $E(X_1)$. By (2) relationship (3) can be written

(4)
$$1 + \sum_{n=1}^{\infty} P(T_n^{(1)} = n) [s/P(s)]^n = (1 - s P'(s)/P(s)]^{-1}.$$

It is easy to verify that s/P(s) defines a one-to-one monotone mapping of [0, 1] onto [0, 1]. Let s = h(u) be the inverse of u = s/P(s). It is also easy to verify that h is differentiable in (0, 1) and that

$$[1 - s P'(s)/P(s)]^{-1} = u h'(u)/h(u)$$

when s is expressed as h(u). Hence (4) is equivalent to

(5)
$$1 + \sum_{n=1}^{\infty} P(T_n = n) u^n = u h'(u) / h(u)$$

(writing $T_n = T_n^{(1)}$ for simplicity).

Integrating (5) gives that

(6)
$$h(u) = c u \exp \sum_{n=1}^{\infty} u^n P(T_n = n)/n, \quad 0 < u < 1.$$

This already shows that h(u) is the probability generating function of an infinitely divisible distribution, but it is interesting to explicitly determine the constant of integration c. Since $p_1 \neq 1$, $P'(1) \neq 1$ implies that $p_0 > 0$. Since

$$\lim_{u \downarrow 0} h(u)/u = \lim_{s \downarrow 0} P(s) = p_0$$

it follows that $c = p_0 > 0$. On the other hand,

$$\lim_{u \neq 1} \frac{h(u)}{u} = \lim_{s \neq 1} P(s) = 1 = c \exp \sum_{n=1}^{\infty} P(T_n = n)/n$$

(This implies incidentally that $\sum_{n} P(T_n = n)/n < \infty$ since $p_0 < 1$.) Hence

$$h(u) = u \exp \sum_{n=1}^{\infty} \frac{P(T_n = n)}{n} (u^n - 1).$$

That $h'(1) = (1 - P'(1))^{-1}$ follows from (4).

Example. Suppose $P(t) = 1/2 + (1/2)t^2$. Then an elementary computation shows that

$$h(u) = [1 - (1 - u^2)^{1/2}]/u$$
.

288

A Theorem about Infinitely Divisible Distributions

h is the generating function of the time it takes simple symmetric random walk to travel from 0 to 1, which by the theorem is an infinitely divisible random variable. Similarly, the return time to the origin, whose generating function is uh(u) is also infinitely divisible. By a similar computation, these waiting time distributions for the non-symmetric random walk are also infinitely divisible.

Reference

 Dwass, M.: A fluctuation theorem for cyclic random variables. Ann. math. Statistics 33, 1450-1454 (1962).

> Dr. M. Dwass Dept. of Mathematics Northwestern University Evanston, Ill. 60201 USA