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Summary. Let g be a probability measure on a separable locally convex
Fréchet space E and let s, denote the topology on E’ of the convergence in
p. Then (E', s,) is nuclear iff u((E’,s,))=1.

1. Introduction

Let E be a locally convex separable Fréchet space and u a full’ probability
measure on E. If we endow the dual space E’ with the topology s, of the
convergence in y, then J,=(Es,) is a linear subspace of E of the form

Juzngl K,, K, convex and compact [9, Prop. 2]. It is called the linear ker-
nel of u.

The purpose of this paper is to prove that (E',s,) is nuclear iff u(J,)=1. On
one hand the above result seems to be very closely related to the celebrated
Duality Principle of L. Schwartz [6], on the other it is a completion of a
known result (W. Slowikowski [8] and W. Smolenski [9]) which asserts that
(E,s,) is locally convex iff J, is a pre-support of p (ie. if u is scalarly
concentrated on convex and compact subsets of J,).

As an application we give characterization of nuclear separable subspaces
of L,. We also answer a question of A. Tortrat [10].

2. Preliminaries

In this section we shall fix terminology and notation. We shall also prove two
lemmas of which the first is crucial.

If K is an absolutely convex and compact subset of E then E; denotes a
normed space obtained by taking K as a unit ball in span K. Let E; be a

L uis full if no proper closed subspace of E is of measure p one. This assumption is not essential

for the results of this paper. However for the sake of simplicity we assume it from now on
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linear subspace of E. E,, is called conuclear if E,= | ] K,,, K, absolutely convex
n=1

and compact, KcKn +1 and for every n there exits m>n such that the in-
clusion EK < E, is a nuclear operator.

IfUisa symmetrlc neighborhood of 0 in E’ then E, denotes a normed
space (E'/ker py, py), wWhere p, is the Minkowski functlonal of U If WU is
another symmetrlc neighborhood then 7y, ; denotes the canonical projection
from E,, onto E,. If E and F are linear spaces in duality and Z is a subset of
E then Z° denotes the polar of Z; Z°={feF: |[{e, f)|£1, for every ecZ}. A
cylinder measure u on E is said to be scalarly concentrated on a family o7 of
subsets of E if for every £>0 there exists Ae.s/ such that for every feA°

u{eeE: Ke, fO|=1)>1—e.

If X and Y are normed spaces and 0 <p< + oo, then a linear operator u: X =Y
is said to be p-absolutely summing if there exists a constant C such that for
each x,,...,x,€E

Z lux)IP=C sup Z <%, X/ DI

=t EIETS
u is said to be O-absolutely summing if there exists 0<e<1 and >0 such that
if v is a purely atomic probability measure on X and for every x'eX’

v({xeX: [Kx,x>[>6|x"[})<é
then
v({xeX: Ju(x)|=1)>1—e.

Lemma 1. Let K and L be absolutely convex and compact subsets of E and let x
and A be positive real numbers. Suppose that u(K)>1—x and that L<(A))°,
where A,={feE": u({ecE: e, f>|>1})<A}. If k<A then the projection m: Ego
—E,, is O-absolutely summing.

Proof. k< / implies that L<K and, consequently, that = is well defined and
continuous. Let ¢ and § be real numbers such that O0<e<1, 0<d<1 and
(1—x){(1—8)>1—¢l. Let v be a purely atomic probability measure on E o such
that VeeK v({feEg: [{e,fD|>6})<é. Thus Kc{ecE: v({f€Ego:
[<e, f>|>1})< 6. Hence pfecE: v({feEyo: e, f>|>1})<5}>1—1c By the Fu-
bini theorem

u®vile, f): Ke, HIS1}>(1—xw)(1-8)>1—¢el.
Using the Fubini theorem once again we get that
v(A)=v{febyo: ulecE: e, fHI>1})<i}>1—s.

Since L<(4,)° this implies that v({feEo: [7(f)lig,,=1})>1—e So we have
proved that there exist 0<e<1 and 0<d<1 such that for every purely atomic
probablllty measure v on E, if for every eeK v({feEK0 |<e, f>>08}) < then
V({fEEKo In()z,0=1})>1—e Since K is a weakstar dense subset of the unit
ball of (E,o) this proves that 7 is 0-absolutely summing.
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Lemma 2. Let E,= UK K, absolutely convex and compact, be a linear

subspace of E. If E, is conuclear then there exist a probability measure. [t on E
such that i(E,)=1 and J,;=E

Proof. Since E, is conuclear we can assume that for every n Ep is a Hilbert
space, Ex —Ey ., and the inclusion i,: Ex —Ey  is a Hilbert-Schmidt opera-
tor (cf. L. Schwartz 7], Part 2, Ch. 4). Let y, be the canonical gaussian cylinder
measure on Ey . Then %,=i/(y,) is a probability measure on Eg and J;
=Eg (because in the case of a gaussian measure the kernel J coincides with
RKHS - (Reproducing Kernel Hilbert Space). If we put =) 27"%, it is easy

to see that i(E,=1) and E,= U J;, =J;. This implies that E,=J; (C. Borell,

[2]). This completes the proof.

3. Main Result

Theorem 1. Let E be a locally convex separable Fréchet space and u a probabili-
ty measure on E. Then the following conditions are equivalent.

(@) ul)=1;

(b) (E, s,) is nuclear;

(c) J, is conuclear and y is scalarly concentrated on convex compact subsets
of J,;

(d) (E',s,) is locally convex and there exists a probability measure Ji on E
such that J,=J, and i(J;)=1.

Proof. We shall prove that (a)—(b)—(c)—(d)—(b) and (c)—(a). (a)—>(b): Let J,
={JK,, K, absolutely convex and compact, K,=K, . Since u(J)=1, the
topology s, on E’ coincides with the topology of the uniform convergence on
K. s ([9], Theorem 2). We have to prove that for every n there exists m such
that =, , EK&AEKQ is nuclear. It is known that the composition of two 2-
absolutely summing operators is nuclear (A. Pietsch [5]) and that every O-
absolutely summing operator is p-absolutely summing for every p>0 (S. Kwa-
pien [3], cf. L. Schwartz [6]). Thus it is enough to prove that for every n there
exists m such that «,, , in O-absolutely summing. But this follows directly from
the Lemma 1. Indeed, given n there exist >0 and 0</A<1 such that « K, < 4,.
Since u(J,)=1 there exists m such that u(K,)>k—//2. Applying Lemma 1 we
get that =: E —>EaK is O-absolutely summing, which is equivalent to O-
absolute surnmabrhty of n,, ,. (b)—(c): Since J,=(E,s,), nuclearity of (E’s,)
implies co-nuclearity of J, (ef L. Schwartz [7], Part 2, Chapter 4). On the other
hand (E’, s )-locally convex implies that u is scalarly concentrated on convex
and compact subsets of J, (W. Slowikowski [8]; or [9], Theorem 1). (c)—(d). If
u is scalarly concentrated on convex and compact subsets of J, then (E',s,) is
locally convex (W. Slowikowski [8];0r [9], Theorem 1). The second part of (d)
follows directly from the Lemma 2. (d)—»(b) From the proofs of previous

implications it is clear that (E',s,)=(E’, s;) and that (E, 5;) is nuclear (c)—(a):
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This is precisely the celebrated Minlos Theorem (Minlos [4], cf L. Schwartz
[71, p. 233). The proof is finished.

4. Application

Theorem 2. Let X be a linear space of random variables on a probability space
(Q, P). Let us endow X with the topology s of the convergence in probability and
assume that X is separable. Then the following conditions are equivalent:

(1) (X, s) is nuclear,

(ii) there exists Q,<=Q, P(Qy,)=1 such that the topology s on X coincides
with the topology of pointwise convergence on .

Proof. If X is finite dimensional the theorem is trivial. If not let (£,) be a
linearly independent sequence of random variables dense in X. Then ()
defines a measurable mapping T from  into the space of sequences R*; T(w)
=(¢,(w)). Let u denote the image of P under T; py=PoT~'. T induces a map
T* from the dual RY of R™ into X; T*(f)=feT It is easy to see that T*
constitutes a linear and topological isomorphism between (RY,s,) and
(span(&,), s).Thus if (X, s) is nuclear, so is (Rg, s,), and by Theorem 1 u(J,)=1.
Since J,=(R¥,s,) to get (ii) it is enough to put Q,=T"(J)).

Conversely, if (i) is fulfilled then T(Q,)<=J,. Hence u(J,)=1 and, con-

sequently, (R, s,) is nuclear, which gives (i). This finishes the proof.

5. Remarks

1. There exists a nondegenerate probability measure u such that J,={0} [9,
Example 2]. Thus the local convexity of (E, s,) is essential in (d).

2. A linear subspace of E is called p-Lusin-measurable if it contains convex
and compact sets of measure p arbitrarily close to one. C. Borell [1] proved
that the intersection of all p-lusin-measurable subspaces is equal to the kernel
J,. Thus, by Theorem 1, the existence of a minimal p-Lusin-measurable sub-
space is equivalent to the nuclearity of (E', s,).

3. A. Tortrat [10, p. 68], asked whether in every Banach space one can find
a probability measure p such that u(J,)=1 and p does not charge finite
dimensional subspaces. Lemma 2 gives the existence of a measure with the
properties listed above in every topological vector space which contains at
least one infinite dimensional convex compact subset. Namely every such space
contains a conuclear subspace. Indeed, let K be an infinite dimensional convex
compact set. We can assume that K is symmetric. Then the Banach space Ey
contains a closed infinite dimensional subspace with a basis (C. Bessega and A.
Pelczynski [1]). Let (e,) be this basis and suppose that |le [ =1. It is easy to see

0 2k o0
that E,=span | J ¢l conv ({E'— en}
k=1 n: n=1
consequently, of a given topological vector space.

) is a conuclear subspace of E, and,
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