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Summary. Let  # be a p robab i l i t y  measure  on a separab le  local ly  convex 
Fr6chet  space E and  let s u denote  the topo logy  on E'  of the convergence  in 
#. Then  (E', su) is nuclear  iff #((E', su) ')= 1. 

1. Introduction 

Let  E be a local ly  convex separab le  Fr6chet  space and  # a full 1 p robab i l i t y  
measure  on E. If  we endow the dual  space E'  with the t opo logy  s u of the 
convergence  in #, then J u = ( E ' , s , ) '  is a l inear  subspace  of  E of  the form 

GO 

J , =  U K , ,  K n convex and  compac t  [9, Prop,  2]. It is called the l inear  ker-  

nel of  #. 

The purpose  of  this paper  is to prove  tha t  (E', s,) is nuclear  iff #(Ju) =: 1. On 
one h a n d  the above  result  seems to be very closely re la ted  to the ce lebra ted  
Dua l i t y  Pr inc ip le  of  L. Schwar tz  [6], on the o ther  it is a comple t ion  of  a 
k n o w n  resul t  (W. S lowikowski  [8]  and  W. Smolenski  [9]) which asserts tha t  
(E', su) is local ly  convex iff Ju is a p re - suppor t  of  # (i.e. if # is scalar ly  
concen t r a t ed  on convex and  c o m p a c t  subsets  of Ju)" 

As an app l i ca t ion  we give cha rac te r i za t ion  of  nuclear  separab le  subspaces  
of  L o. W e  also answer  a ques t ion  of  A. T o r t r a t  [10]. 

2. Preliminaries 

In this sect ion we shall  fix t e rmino logy  and  nota t ion .  We shall  also prove  two 
l emmas  of  which the first is crucial.  

If  K is an absolu te ly  convex and  compa c t  subset  of  E then E K denotes  a 
n o r m e d  space ob t a ined  by t ak ing  K as a uni t  bal l  in span  K. Let  E o be a 

1 # is full if no proper closed subspace of E is of measure # one. This assumption is not essential 
for the results of this paper. However for the sake of simplicity we assume it from now on 
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linear subspace of E. E o is called conuclear if E o = @ K,,  K ,  absolutely convex 

and compact,  K c K ~ + ~  and for every n there exits m>n such that the in- 
clusion EK~--~EK~ is a nuclear operator. 

If  U is a symmetric neighborhood of 0 in E' then /~v denotes a normed 
space (E'/kerpv, Pv), where Pv is the Minkowski functional of U. If W c  U is 
another symmetric neighborhood then ~w,v denotes the canonical projection 
from/~w onto/~v.  If E and F are linear spaces in duality and Z is a subset of 
E then Z ~ denotes the polar of Z;  Z ~  �9 I@, f ) l< l ,  for every e6Z}. A 
cylinder measure # on E is said to be scalarly concentrated on a family s~' of 
subsets of E if for every e > 0  there exists A~s~' such that for every f e A  ~ 

#({eeE: l ( e , f ) l  < l ) > l - e .  

If X and Y are normed spaces and 0 < p <  + 0% then a linear operator u: X--* Y 
is said to be p-absolutely summing if there exists a constant C such that for 
e a c h  Xl, ..., x,~E 

[lu(xi)HP<=C sup ~ Kxi, x')[ p. 
i=1 x ' ~ X '  i=1 

IIx'tl_<l 

U is said to be 0-absolutely summing if there exists 0 < e <  1 and 8 > 0  such that 
if v is a purely atomic probabili ty measure on X and for every x'~X' 

then 
~({xsX-I(x',x)l>allx'll})<8 

v({~ex" Ilu(x)ll __<1)>1-e. 

Lemma 1. Let K and L be absolutely convex and compact subsets of E and let 
and 2 be positive real numbers. Suppose that # ( K ) > I - - K  and that L c ( A ~  ~ 
where Az={f~E':  #({e~E: I @ , f ) l > l } ) < 2 } .  I f  K<2 then the projection ~r: EKo 
~ ELo is O-absolutely summing. 

Proof K < 2  implies that L c K  and, consequently, tha t  n is well defined and 
continuous. Let e and 8 be real numbers such that 0 < e < l ,  0 < 8 < 1  and 
(1-K)  ( 1 - 8 ) >  1 -  e 2. Let v be a purely atomic probabili ty measure on EKo such 
that Ve~K v({fE/~KO: ](e,f)[>8})<8. Thus K~{e~E:  v({f~EKo: 
[ @ , f ) [ > l } ) < &  Hence #{eeE: v({f~EKo: ] ( e , f ) ] > l } ) < 8 } > l - - ~ c .  By the Fu- 
bini theorem 

# |  {(e, f )"  I(e, f ) [  < 1 } > (1 - ~c) (1 - 8 )  > 1 - ~  2. 

Using the Fubini theorem once again we get that 

v(A~) = v {fe/~Ko: #(eeE: [(e, f ) l  > 1}) < 2} > 1 - e. 

Since L c (A~) ~ this implies that v({fe/~KO: Ilrc(f)]l~o < 1}) > 1 -- e. So we have 
proved that there exist 0 < e <  1 and 0 < fi < 1 such that for every purely atomic 
probability measure v on s if for every eEK v({f~/~Ko: ](e, f ) l  > a}) < a then 
v({fe/~vo: II~z(f)]l~Lo < 1 } ) > 1 - e .  Since K is a weakstar dense subset of the unit 
ball of (/~Ko)' this proves that ~ is 0-absolutely summing. 
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Lemma2.  Let Eo= ~ K~, K ,  absolutely convex and compact, be a linear 
n = l  

subspace of E. I f  E o is conuclear then there exist a probability measure. ~ on E 
such that ~(Eo)= 1 and J~,= E o. 

Proof Since E o is conuclear we can assume that for every n EK, is a Hilbert 
space, EKCEK,+~ and the inclusion in: EK,~EK.+~ is a Hilbert-Schmidt opera- 
tor (cf. L. Schwartz [7], Part 2, Ch. 4). Let 7, be the canonical gaussian cylinder 
measure on EK. Then ~,=in(7, ) is a probability measure on Er,+~ and J~, 
=EK, (because in the case of a gaussian measure the kernel J coincides with 
RKHS - (Reproducing Kernel Hilbert Space). If we put f i= ~ 2 -~ ~, it is easy 

to see that ) ( E o = l  ) and E0= U J f c J ~ .  This implies that E o = J  ~ (C. Borell, 
n = l  

[2]). This completes the proof. 

3. Main Result 

Theorem 1. Let E be a locally convex separable FrOchet space and # a probabili- 
ty measure on E. Then the following conditions are equivalent. 

(a) ~(J,) = a; 
(b) (E', su) is nuclear; 
(c) J~ is conuclear and # is scalarly concentrated on convex compact subsets 

of 4 ;  
(d) (E', s~) is locally convex and there exists a probability measure ~ on E 

such that J~=J~ and ~(J~)= 1. 

Proof We shall prove that (a) ~ (b) ~ (c) ~ (d) ~ (b) and (c) ~ (a). (a) ~ (b): Let J,  
= ~ K ~ ,  K n absolutely convex and compact, K , ~ K n +  a. Since #(J~)=l,  the 
topology s~ on E' coincides with the topology of the uniform convergence on 
K'~s ([9], Theorem 2). We have to prove that for every n there exists m such 
that z~m, n /~Ko ~/~KO is nuclear. It is known that the composition of two 2- 
absolutely summing operators is nuclear (A. Pietsch [5]) and that every 0- 
absolutely summing operator is p-absolutely summing for every p > 0 (S. Kwa- 
pien [3], cf. L. Schwartz [6]). Thus it is enough to prove that for every n there 
exists m such that ~m,n in 0-absolutely summing. But this follows directly from 
the Lemma 1. Indeed, given n there exist c~ > 0 and 0 < 2 < 1 such that a K,  ~ A~. 
Since #(J , )= 1 there exists m such that #(Kin)>k-2/2.  Applying Lemma 1 we 
get that n: /~K ~/~Kn is 0-absolutely summing, which is equivalent to 0- 
absolute summability of nm,,- (b)--*(c): Since J,=(E',su)', nuclearity of (E', s~) 
implies co-nuclearity of J ,  (cf. L. Schwartz [7], Part 2, Chapter 4). On the other 
hand (E', s~)-locally convex implies that # is scalarly concentrated on convex 
and compact subsets of Ju (W. Slowikowski [8]; or [9], Theorem 1). (c)~(d). If 
# is scalarly concentrated on convex and compact subsets of J,  then (E', s~) is 
locally convex (W. Slowikowski [8] ; or [9], Theorem 1). The second part of (d) 
follows directly from the Lemma2. (d)~(b): From the proofs of previous 
implications it is clear that (E', s~)=(E', s~) and that (E', s~) is nuclear (c)~(a): 
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This is precisely the celebrated Minlos Theorem (Minlos [4], cf. L. Schwartz 
[7], p. 233). The proof is finished. 

4. Application 

Theorem 2. Let X be a linear space of random variables on a probability space 
(f2, P). Let us endow X with the topology s of the convergence in probability and 
assume that X is separable. Then the following conditions are equivalent: 

(i) (X, s) is nuclear, 
(ii) there exists f2 ocO,  P(f2o)=l such that the topology s on X coincides 

with the topology of pointwise convergence on f2 o. 

Proof If X is finite dimensional the theorem is trivial. If not let (4,) be a 
linearly independent sequence of random variables dense in X. Then (4,) 
defines a measurable mapping T from Q into the space of sequences R~; T(co) 
=(~,(~o)). Let # denote the image of P under T; # = P O T  -I. T induces a map 
T* from the dual R~ of R ~ into X; T * ( f ) = f o T .  It is easy to see that T* 
constitutes a linear and topological isomorphism between (R~,su) and 
(span(~,), s~t. ,Thus if (X, s) is nuclear, so is (R~, su), and by Theorem 1 #(Ju)= 1. 
Since Ju=(R~,s,) '  to get (ii) it is enough to put f2 o = T-(Ju). 

Conversely, if (ii) is fulfilled then T(f2o)~J ~. Hence #(Ju)=l  and, con- 
sequently, (R~, su) is nuclear, which gives (i). This finishes the proof. 

5. Remarks 

1. There exists a nondegenerate probability measure # such that J ,={0} [9, 
Example 2]. Thus the local convexity of (E', su) is essential in (d). 

2. A linear subspace of E is called #-Lusin-measurable if it contains convex 
and compact sets of measure # arbitrarily close to one. C. Borell [1] proved 
that the intersection of all #-lusin-measurable subspaces is equal to the kernel 
Ju. Thus, by Theorem 1, the existence of a minimal #-Lusin-measurable sub- 
space is equivalent to the nuclearity of (E', su). 

3. A. Tortrat [10, p. 68], asked whether in every Banach space one can find 
a probability measure # such that #(Ju)=l  and # does not charge finite 
dimensional subspaces. Lemma2 gives the existence of a measure with the 
properties listed above in every topological vector space which contains at 
least one infinite dimensional convex compact subset. Namely every such space 
contains a conuclear subspace. Indeed, let K be an infinite dimensional convex 
compact set. We can assume that K is symmetric. Then the Banach space E K 
contains a closed infinite dimensional subspace with a basis (C. Bessega and A. 
Pelczynski [1]). Let (en) be this basis and suppose that Ile.ll = 1. It is easy to see 

that Eo=span  ~ ) c l  conv e, is a conuclear subspace of E K, and, 
k=l ~ n !  .=1 

consequently, of a given topological vector space. 
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