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The Central Limit Problem 
for Mixing Sequences of Random Variables 

WALTER PHILIPP 

Summary. In this paper the central limit problem is solved for sums of random variables having 
bounded variances and satisfying certain mixing conditions. In case of a stochastic process these 
mixing conditions essentially say that as time passes events concerning the "future" of the process are 
almost independent from the events in the "past". It turns out that the class of limit laws for sums of 
mixing random variables is exactly the same as for the bounded variances case of independent random 
variables. We also shall give criteria for convergence to any specified law of this class of possible limit 
laws. Finally we shall derive the central limit theorem involving a kind of Lindeberg-Feller condition 
and as a corollary thereof a kind of Ljapounov theorem. 

1. Introduction 

In recent years several authors  investigated stochastic processes satisfying 
certain "mixing condit ions".  The first paper  on this subject was by Rosenblat t  
[-9] who int roduced the not ion  of a stochastic process satisfying a " s t rong  mixing 
cond i t ion" :  Let (x , ,  n = l ,  2 , . . . )  be a stochastic process and denote by !lgla, b 
the o--algebra generated by the events l_<a<<_n<_b<_ oo. The process is said to 
satisfy a " s t rong  mixing condi t ion"  if for all A~?i)~I, t B~931t+n, oo 

[P(AB)-P(A)P(B)I<=~(n)J.O ( n - ~ ) .  (1.1) 

Later  several other  papers by Rosenbla t t  and Blum [113, R o z a n o v  [-123, Volkonskii  
and R o z a n o v  [15], Ib rag imov [-2], R jauba  [9], Statuljavi~jus [-14], Philipp [-4], 
Serfling [13] and others also dealt with stochastic processes satisfying some kind 
of  mixing conditions. Rough ly  speaking, all these mixing condit ions say that the 
dependence between the r andom variables is the weaker the farther they are 
apart,  or else the dependence between the end of  the process and its beginning 
is weak. In the second chapter  some of  these mixing condit ions are discussed 
in detail. 

In mos t  of  the papers ment ioned above, sufficient conditions are given for 
the central limit theorem to hold, and it is either assumed that the process is 
s ta t ionary in the weak or the strict sense or else heavy restrictions on the growth 
of the variances of  the partial sums are imposed. 

In the present paper  the central limit problem is solved for sums of  r andom 
variables satisfying certain mixing condit ions in case that the variances are 
bounded.  It turns out  that  the class of  possible limit laws for sums of  mixing 
r a n d o m  variables is exactly the same as for the bounded  variances case of  inde- 
pendent  r andom variables. This is, perhaps, surprising at the first glance, since 
the class of  independent  r a n d o m  variables is well contained in the class of r andom 
variables satisfying the mixing condit ion under  consideration. Moreover ,  necessary 
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and sufficient conditions are given for convergence to any specified law of the 
class of possible limit laws. 

It seems quite likely that the general case of the central limit problem can 
also be solved along the present lines but at the cost of a somewhat more involved 
analysis. I hope to return to this question at some other place. 

The fourth and last chapter deals with the central limit theorem itself. A kind 
of Lindeberg-Feller theorem is derived from the above mentioned general theorem 
using the standard argument. This theorem gives necessary and sufficient con- 
ditions for the central limit theorem to hold without stationarity hypotheses or 
assumptions on the growth of the variances of the partial sums. Finally some 
applications are given. 

I do not aim at the greatest possible generality but I shall only give a few 
sample theorems. Moreover, the method used in this paper could be combined 
with some of the papers cited above to give more general results. I shall not go 
into the details, however. 

The method of proof consists of introducing new random variables which 
are asymptotically independent and constitute a "nearly weak sense stationary 
process". This explains why the results obtained resemble of the case of inde- 
pendent random variables. 

In subsequent papers [7, 8] I shall prove the law of the iterated logarithm 
for mixing stochastic processes and give some applications to number theory and 
analysis, in particular continued fractions, Diophantine approximation and gap 
series. Another paper [6] deals with the rate of convergence to the normal law. 

2. The Mixing Conditions 

2.1. Mixing Conditions for Triangular Arrays 

Let (xN,, n = l ,  2, ..., nN, N = I ,  2 . . . .  ) be a double sequence of random vari- 
ables. We shall assume throughout this paper that nN--" oo as N ~ w. Denote 
by !lJl(,~ ) the a-algebra generated by the events { XN, < ~}, 1 < a g n < b <<- n N. We 
shall be concerned with the following four mixing conditions. 

(I) For any events Aff:~Jtlt and we have 

with 0 (n) ~ O. 

(II) 

IP(A B ) -  P(A ) P(B) I _-< O (n) P(A) P(B) 

sup sup ]P(BlfO~))-P(B)I<=~o(n)$O 
t B~U&,.~ 

with probability 1. 

Condition (II) is equivalent with (for a proof see [2]) 

(II') For any events AE!IJI(I~ ) and B=!Ol (N) we have t-b n, n N 

IP(A B ) -  P(A) P(B) I <= go (n) P(A). 
(III) 

sup sup IP(AB)--P(A)P(B)I<=a(n)$O. 
t A~fgll i~ ), B ~ l l ~ ) n ,  nN 
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(IV) For all choices of integers r > l ,  l < i l < . - . < i r ,  l < j < r  and pv>0 
(1 < v < r), p > 1, q > 1 with p ~ + q- 1 = 1 the mixed moments exist and satisfy 

x~r ~ E ( x~r ' xP'ir) I IE (xf~lil ... x f ~ r ) -  E (xf~li~ ... ,,,~ . . . . .  ~+~ ... 

<=fll/P(ij+ 1 -  ij)II xfvli~ ... x~ijll ,  Ilxf~i;+~ ... x~i~llq 
where fi (i) $ 0. 

Of course, condition (III) is a consequence of (II) which in turn is a consequence 
of (I). The following lemma shows that (IV) is a consequence of (II). 

Lemma 1. Suppose that condition (II) is satisfied and that ~ and r 1 are measurable 
over ~(N)..,at and fOl (mt_l_n,.u respectively. I f  E I~1"< oo and g lr/Iq< oo with p,q > l and 
p - l + q - l = l  then 

IE(r r/)-E(~)E(tl)l<2~o~/P(n)IIr [Ir/l[q. 

For a proof of Lemma 1 as well as of the following one see [2] and [15]. 

Lemma 2. Assume that condition (III) is satisfied. I f  the random variables 
and 11 are measurable (N) (m over 9J~it and ~JJtt + . . . .  respectively and are essentially bounded 
then 

IE(~ t/)-E(~) E(~/) I <4  I1~. II ~ I1~1[ ~ ~(n). 

Lemma 3. I f  condition (I) is satisfied and if ~ and r l are measurable over ~(N) ~ l t  

and ql?(N) respectively then ~ t - b  ti, tl N 

IE(~ r l ) -  E(~)  E(~)I _-<0(n) E 141E I~1 

provided that they are integrable. 

Proof. It is enough to show the lemma for simple functions ~ and t / that  is for 

r = ~ 3~, Z (Ai), Ai~ ~ Ai2 = ~) (il + i2), 
i 

t l = Z # J Z ( B j ) ,  Bj, c~Bj2=O (J~ :~J2) 
J 

where all the ,~ ~m(N) B . ~  r But for such ~ and/7 the lemma ~-i . . . .  it and all the j~--.t+ . . . .  �9 
follows trivially from (I) - as a matter of fact so does the lemma. 

Condition (IV) does not quite follow from (III) because of the form of the 
error term. On the other hand the following example shows that (IV) does not 
imply (III). 

Example. Let f ( x )  be any function of bounded variation with period 1. Then 
the process (f(2"x),  n=0,  1, . . .)  is, of course, a strict sense stationary process. 
We set XN,=f (2"X  ) for n=0,  1, 2, ... ,N, N = I ,  2 . . . .  (and thus we may suppress 
the index N in the formulas). As is shown in [5], formula (20) condition (IV) is 
satisfied with fi(z)= 0(2 -~/2) whereas, of course, (III) is not if we choose f ( x )  to 
be any function continuous and strictly increasing on [0, 1) and extended with 
period 1. 

There are many examples of processes satisfying (I*), (II*), (III*) and (IV*) 
(see Section 2.2 below). Of course, if the random variables are independent 
condition (I) holds whereas (II) holds for the case of m-dependent random vari- 
ables, and Markov processes satisfying Doeblin's condition (see e.g. Doob [1], 
p. 221f.). Some more examples are mentioned ia [2]. 
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2.2. Mixing Conditions for Stochastic Processes 

Let (x , ,  n=  1, 2 , . . . )  be a stochastic process and denote by 9J~ab the a-algebra 
generated by the events {x,<a},  l<_a<_n<_b<~. Upon setting xN,=x,  (n= 
1, 2, ..., N; N =  1, 2, ...) the mixing conditions ( I ) - ( IV)  transform to (I*)-(IV*) 
if we replace n N by oo and suppress the index N in the remaining places. 

3. The Central Limit Problem 

3.1. Preliminaries 

Let (xN,, n= l ,  2, ..., nN; N = I ,  2, . . . )  be a double sequence of random vari- 
ables centered at expectations and with finite variances a2n = E(x2n). Throughout  
this chapter we shall assume that 

a 2-- max a 2 , ~ 0  ( N ~ o o ) ,  (3.1) 
l<_n<_nN 

Z 2 - E (  2 Xun) 2<c<~176  (3.2) 
l<_n<_nN 

where c is a constant not depending on N and that 

SN/a N ~ oo (N --, o9). (3.3) 

Moreover, we shall suppose that one of the following conditions holds. 
oo 

(ii) (xN,)  satisfies (II) with ~ @(n)<  oo. 
n = l  

(iii) (xNn) satisfies (III) with ~ c~(n)< m. The xu, tend uniformly towards 0 
n = l  

almost surely as N ~ o% more precisely 

c ( N ) -  max IIxNnlI~--'0 (N--,oo). 
l<_n<_nN 

and 
ZN/c(N) ~ oO (N ~ oo). 

Obviously if (XN~) satisfies (iii) then (3.1) and (3.3) are automatically satisfied. 

To simplify the notation we agree that n may assume the values 1, 2 . . . .  , nN 
nN 

and hence ~ stands for ~ and so does max for max . Further, we omit the 
n n = l  n l<-n<-nN 

index N in the random variables xN,, Ym, zN~ defined below. With this convention 

we write for fixed N 
l / + 1  

X u -  Z x = E yj + Z zj==_ Yu + Zu (3.4) 
n j = l  j = l  

where we set 

Here we put 

y l  = X l  -+- . . .  -q- Xh~ , 

y l - ~ - X p l + l  @ . . .  "~-Xpt+hz,  

Z l  ~ X h l -  ~- . . .  -3V Xhl__k,  

Z l ~ X p l + h t + l - ~  ' ' '  - 3 v X p l + l  , 

ZI + I ~ X p t +  I-~ - . . .  -~ X n N .  

p,= E(hv+k) 
v < : i  

the integers h~ and k being at our disposal. 
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Definition. Suppose that (ii) holds and let ~cu ~ 0 and S N be any two sequences 
of real numbers satisfying 

~ = ~N S~/a~ --, ~ ,  2,~/S N ~ ~ ,  ~o (~N)" Z~/SN --, O. (3.5) 

Such a pair (~cN, SN) we shall call admissible for (xN~} and we shall do so in case 
that (iii) holds and tc N ~ 0 and SN satisfy 

~N- ~cN S~/c ~ (N)-~ o0, Z~/SN ~ oo, ~ (~ ) .  Y,~/SN-~ O. (3.6) 

Admissible pairs always exist. For  instance SN = SN aN and ~c N = (aN/SN) ~ do what 
required since both (p (0 and c~(r) are assumed to be monotone and hence satisfy 
r2 ~o (0 ---' 0 and r2 ~ (r) _~ 0 respectively. 

Lemma 4. Suppose that (iii) holds and let (~u, SN) be any admissible pair for 
(XN~}. Then we can represent XN in the form (3.4) subject to the following conditions 

E(yf)=sN(I  +o(1)), E(z})<=q ~CNSN, 
(3.7) 

(~L 0 ~ sN (1 + o (1)) 

uniformly in l <=j<=I. Here q > 0  denotes a constant independent of N and j. 

k = ~N, (3.8) 

l = t/N (1 + o (1)) with 'IN = N2N/SN �9 (3.9) 

Lemma 5. Suppose that (ii) holds and that (to N, Su) is admissible for (xN.}. Then 
the conclusions of Lemma 4 remain valid except that we have to replace (3.8) by 

k = ~ .  (3.1o) 

The proofs of the lemmas are similar. Due to Lemma 1 the proof of Lemma 5 
is somewhat simpler so that we shall prove Lemma 4 only and indicate the changes 
to be made for the proof of Lemma 5. 

We choose k equal to -~N to satisfy (3.8) and the hj inductively to be the largest 
integer h < N such that [ pj+h \ 2  

E ( 2 ___<sN 
k v ~ p j + l  / 

At least for large N such a choice is always possible since ~N --' oo. (3.7) follows 
now at once since 

Eid) < sN< EIyj + %+1) 2 < EIf~)+: (E (y~))~ aN + ~ 

which in view of (3.6) implies the first part of (3.7). To prove the second part we 
note that we have for/~ ~ v as an application of Lemma 2 

Ig(x~ x.)l _-< 4cz([v-~l) c2(X). (3.11) 
Since 

E~(n)<~<o�9  
n 

we obtain upon setting I j=  [p j+ hj+ 1, Pj+i] 

e ( 4 l ~ E e ( ~ ) + 8 c ~ ( N )  E ~(pv-~l) 
ie l j  v < # e / j  

<k(1 + 8c0 c2(N). 
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This together with (3.6) gives the second part of (3.7). So it remains to show (3.9). 
Weexpand  S g = E ( y ,  y j+  y, zj) ~ 

j < l  j<=l+l 

= E E ( y 2 )  + E E(z~)+2 E E(YiYJ) 
j<-l j<=l+l i < j < l  

+ 2 y E(z, zj)+ E(y, 
i < j < l + l  i<l 

j < l + l  

Call these sums ~tl), ..., ~5)  respectively. From (3.7) we infer that 

E (1) = I Sx(1 + o (1)) (3.12) 
and 

E (2) = O (I ~c N SN) + O (SN) = o (1 SN) + O (SN). (3.13) 

Consider now a term E(y  i yj) in ~(3) with i<j .  We estimate 

E (Yi Y)  = ~ E (x~ y,), I* = [pj + 1, pj + hi] 
wI* 

by a simple truncation argument. Let M > 0 to be chosen later. Using Lemma 1, 
(3.6) and (3.7) we obtain for fixed ve I*  

IE(x~y31<-_l j x~yil+[ j x~y,I 
Ird > M lYd <M 

< c (N) SN M -  1 + 4 c (N) M o~(v- P i -  hi) 

by Cauchy's and Chebyshev's inequalities. We choose 4M 2 =SN/c~(v-p i -h~)  so 
that we get 

[E (x~ yi) l< 4 c (g )  S~ c~ ~ (v - Pi - hi). (3.14) 
Hence 

tl N 

[E(3'lN2E E IE(x~y~)l 
i<l  v = . p j  .+ 1 

j > t  

< 8 c (N) S~ l ~ ~ (n) 

= 0 (1 S~ c (N))= o (l SN). 

In the same way we obtain in view of (3.6) 

E '~' = O (1 ~ S~ c (N)) = o (t S~) 
and 

F, IE (y~ zj)l = o(l SN) 

where the summation is extended over all i<l ,  j <  l+  1 with j # i ,  i - 1 .  For the 
estimate of these terms we apply Cauchy's inequality and get 

E(ylz3=o(SN), E(ylz~_l)=o(SN). 
Hence 

~(5) = o (l SN) + o (SN). 

Adding the estimates for ~ )  (1 < v < 5) we obtain 

S~ = 1 Su + o (l Su) (3.15) 

which yields (3.9). This completes the proof of Lemma 4. 
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The proof of Lemma 5 is essentially the same but requires a few minor changes 
at these places where the uniform boundedness of the xN, was used. (3.11) is to be 
replaced by 

_ ~o~(Iv-~l) ~r~ iE(x~ x,)l_<2 ! z 

which follows from Lemma 1 and similarly we get as a direct application of 
Lemma 1 

IE (x~ Yi) l < 2 a N SIN (p~ ( v -  P i -  hi) 

to replace (3.14). We remark in passing that the proof of Lemma 5 could be 
further simplified, of course, by direct applications of Lemma 1 to E(y i yj) and 
the like. Later we shall use the following 

Corollary. Under the hypotheses of the lemmas we have 

(z~) = o (~N z~) 
and 

E(Y~)= S~ . (I +o(1)). 

Proof With the notation of the proof of Lemma 4 we have 

E(z~)=  Z~2)+ 2 (4, = o (l ~N sN) + o(sN)+ o(1 ~ s~ c(N)) 

= o (~N. z~) 

using (3.6). Similarly using (3.9) 

E(y2)=•(1) + Z(3)=ISN(I +o(1))=Z2(I +o(1)). 

The proof of the case corresponding to Lemma 5 is the same. 

3.2. The Theorems 

Let (xN,) be given as in section 3.1 and let (~N, SN) be any admissible pair. 
According to Lemmas 4 and 5 there is a uniquely determined sequence yj = YNj 
(1 < j <  l) associated with (~N, SN). Denote by Fj=FNj the distribution function of 
yj (1 <j=< 1). 

Following the presentation in Lo6ve 1-3] we say that a sequence of distribution 
functions F u converges weakly to a distribution function F, if F N-~ F on the 
continuity set of F and we say that F N converges to F completely if F N --, F weakly 
and FN(_+ oo)--. F(_+ oo). 

Theorem 1. Let (XN,) be a double sequence of random variables centered at 
expectations and with finite variances a 2, satisfying (3.1), (3.2) and (3.3). Suppose 
that (ii) holds. Then 

1) the family of limit laws of sequences 

n 

coincides with the family of laws of random variables centered at expectations with 
finite variances and characteristic functions of the form f =  e ~, where ~ is of the form 

O(t)--~(e i"~- 1 - i  u x) ~ -  dK(x) 

with K continuous from the left and nondecreasing on ( -  o% oo) and var K < c < oo. 
Here c is the constant in (3.2). Moreover, ~t determines K and conversely. 
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2) Let (•N, SN) be any admissible pair. Then 

(E x~.) -~ ~ (X) 
n 

with characteristic function necessarily of the form e q' if, and only if, K N ~ K weakly. 
Here K N is defined by 

KN(X)= E i y2 dFNj. 
j < l  --oo 

I f  Z 2 < c < ~ is replaced by S~ -~ o 2 (X) then K N -~ K weakly is to be replaced by 
K N -~ K completely. 

Remark. The statement 2) implies that i f K  N ~ K is satisfied for some admissible 
pair (~N, SN) then KN ~ K is automatically satisfied for all admissible pairs. This 
remark applies for all the theorems of this section. 

Theorem 2. Let (XNn) be as in Theorem 1 but suppose that, instead of (ii), condi- 
tion (iii) holds. Then the family of limit laws of sequences 

n 

is contained in the family of laws of random variables as described in Theorem 1 
under 1) and conclusion 2) of Theorem 1 remains valid. 

As is obvious the possible limit laws of the sums 

E X N n  
n 

are all infinitely divisible. 

Let us take a look at the proof of Theorem A in Lo6ve [3] p. 293 which served 
as a model for Theorems 1 and 2. First ofaU Theorem A remains valid if we impose 
the additional condition 

k oo. (3.16) 
max a2,k 

k 

All what we have to check is that the family of possible limit laws of sequences 

2(E xok) 
n 

subject to (3.16) does not become smaller. So let us find out which limit laws 
might occur if (3.16) does not hold. In this case 

l i m i n f ~  2 _ f f  nk - -  0 
n k 

which implies 
lira sup P ( ~  X,k ~ 0)= 1. 

n k 

Hence the only limit law towards which the sequence 

x.k) 
k 

possibly can converge is the degenerate law ~ (0) which, of course, can be obtained 
as the limit law of a sequence of independent random variables satisfying (3.16). 
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Simply set 
1 xN,=~-u, n=l ,  2 , . . . ,N  

where un is a stationary process of independent random variables centered at 
expectation and of finite variance. 

The second remark is to the effect that the independence of the random 
variables Xnk is expressed as 

f,, = 1~ f.k 
k 

where f.k is the characteristic function of X.k, and f .  is the characteristic function of 

Y~Xnk. 
k 

But inspection of the proof of Theorem A shows that all what is actually needed is 

L = I ]  Lk+o(1 ) .  
k 

With these two remarks in mind we see that Theorems 1 and 2 will be proven 
if we show the following 

Lemma 6. Let (~cN, SN) be any admissible pair. Then we have with the notation 
introduced earlier 

lira sup ~ E(y2)<c< oo, (3.17) 
N~oo j = l  

max E (y 2) ~ O . (3.18) 
l < j < l  

Moreover, for f ixed T > 1 we have uniformly in It] <= T 

l 

E(exp(i t Yu))= lq E(exp (i t yj))+ o(1), (3.19) 
j = l  

E (exp (i t XN) ) = E (exp (i t Yu)) + o (T2). (3.20) 

Proof. To prove (3.17) we note that by (3.12), (3.9) and (3.2) 

l 

Z E(Y 2) = l SN(1 + 0 (1))= ~2(1 + 0 (1))__< c + 0(1). 
j = l  

(3.18) follows from (3.7) and (3.5) or (3.6). Since (II) implies (III) we get after apply- 
ing Lemma 2 1 times and using (3.5) and (3.6) respectively 

]E(exp(i t YN))- 1] E(exp(i t yj))l <41 ~(k) 

j__<l (3.21) 
< 4~N(1 + O (1)) Ct ((N) = O (1). 

So it remains to prove (3.20). From the corollary of Lemmas 4 and 5 we know 
that E (Z 2) = o (Z 2) and thus 

E (exp (i t XN) ) = E (exp (i t YN))" (1 + O (t 2 E (Z2))) (3.22) 

which implies (3.20). 
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The following theorem is a corollary of Theorems 1 and 2. For  a proof see 
Lo6ve [-3, p. 295]. Denote by 9l(0, 1) the normal law with mean 0 and variance 1. 

Theorem 3. Let (xN,)  be as in Theorem 1. Suppose that either (ii) or (iii) holds 
and that Z N ~ 1 (N---, oo). Let (~c N, SN) be any admissible pair. Then 

!~(ZXN,)~9l(0,1  ) and aN~O or CN~O 
n 

respectively if, and only if, for any e > 0 

~ y2dFNj~O. 
j < l  lYl_->e 

Although in this paper we are primarily interested in the case that the random 
variables are centered at expectations it is, perhaps, worthwhile to remark that 
Theorems 1 and 2 carry over to case where E(xsn) does not necessarily vanish to 
yield an analogue of what in [3, p. 294] is called the "extended convergence 
criterion' .  It is quite obvious how this extended theorem would read in our case 
so [ shall not give a formal statement but mention only an important particular 
case, namely the convergence to Poisson law ~3 (2). 

Theorem 4. Let (XN,) be a triangular array of random variables satisfying (3.1) 
and Z 2 ~ 2 (N -~ oo). Suppose that either (ii) or (iii) holds. Let (~CN, SN) be any admis- 
sible pair. Then 

P~ (Z XN.) --* ~ (.t) /f, and only if, Z E (Xu.) --+ 2 
n n 

and, for any ~ > 0 
Z I Y2dVNj(Y+E(YN.)) - ' ~  
j < l  [y-ll_->e 

I t  is perhaps surprising that the theorems do not cover the case of independent 
variables. As a matter of fact we have hj ~ ~ (1 =<j < ~) .  But it is, of course, pos- 
sible to formulate the theorems in such a way that they cover the independent 
case, too. 

4. The Central Limit Theorem for Stochastic Processes 
and Ljapounov's Condition 

In this chapter we shall continue to specialize the theorems of the preceding 
chapter. We start with 

4.1. The Lindeberg-Feller Condition 

Let (x , ,  n=  1, 2, . . . )  be a stochastic process with E (x , )=0  (n= 1, 2 . . . .  ). Set 

a*2=  max E(x~) and s 2 = E ( ~  x,) 2. 
I<_n<_N n<_N 

We shall assume throughout this chapter that 

o-* ~0 ( N ~ ) .  
SN 
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Moreover, suppose that one of the following conditions holds 

(ii*) (x , )  satisfies (II*) with ~ @(n)< oo. 
n 

(iii*) ( x , )  satisfies (III*) with 

c~ ~(n)<oo and max 
l<_n<_N n 

Upon setting 

[ I x . l l ~  _ c*(N) 
- -  -, 0 ( N - - >  o o ) .  

S N S N 

X n XN,-- for n= l ,  2 , . . . , N  
Sn 

we see that (3.1), (3.2) and (3.3) are all satisfied and that in fact XN-1 (N=I ,  2, ...). 
Throughout this chapter we call a pair (~cr~, S*) admissible for the process if 
(ts S ~  s N 2) is admissible for 

Xn 
X N , = - -  (n=l ,  2, . . . ,N ;  N = I ,  2, ...). 

Sn 

According to Lemmas 4 and 5 there are two uniquely determined sequences YNj 
and zNj ( l < j <  l+  1) associated with (•N, S* SN2). We set Yj=YNj SN and zj= zNj s N 
( l < j < l +  1) and denote by Fj the distribution function of yj (1 < j <  l). With this 
notation we obviously have 

Lemma 7. Suppose that either (ii*) or (iii*) holds. Then (~cN, S]) is an admis- 
sible pair for ( x , )  if, and only if, ~c N O, 4*= , ,2 2 , --)" tg N S N / a  N --+ 00 ,  S N / S  N --~ O0 and 

, 2 , _ ~  ~ ( ~ ) o ~ 1 ~ * _ ~  (p (~N)s~,/S N 0 or omo N 0 respectively. Moreover, uniformly in 1 < j <  l 

E(y2)=S*(I+o(1)), E(zy)=KsS*(l+o(1)),  E(z{+l)<S*(l+o(1)), 

- -  * 2 , k -  K u SN, l :  SN/S N (1 + O (1)), 

E(Z2)=O(tcNs 2) and E(y2)=s2(l+o(1)).  

Theorem 5. Let ( x , )  be a stochastic process as described above and suppose 
that either (ii*) or (iii*) holds. Then 

\ S N n<N / 

if and only if, for any admissible pair (PEN, S~v) and each g > 0 

1 
s~ E ~ y2dF~(y)_.O ( N ~ ) .  

j < l  lyl>esN 

This is an immediate consequence of Theorem 4. 

4.2. The Ljapounov Type Conditions 

Instead of having necessary and sufficient conditions depending on the choice 
of certain parameters for the central limit theorem to hold it frequently is more 
desirable to have only sufficient conditions not depending on such a choice and 
thus being easier to handle when it comes to applications. One of them is a kind 
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of Ljapounov condition. For convenience we shall assume throughout the rest 
of the paper that 

supa~< l  and s ~ o o .  
n 

Moreover, we shall suppose that one of the following conditions holds: 

(~) (x,> satisfies (I*) with ~ 0~-(n)< oo; 
n 

(~1) <x,> satisfies (II*) with ~ @(n)< oo and sup I[x, N4<l. 
n n 

Theorem 6. Let (x , )  be a stochastic process satisfying the standard conditions. 
Suppose that ~) holds and the fourth moments E(x2) exist and satisfy 

and 

2 Elx,  l = ~  ) /I ) H--,oo (4.1) 

Z E (x•) = o E x,, H-~ oo (4.2) 
n=M+l \ \n=M+l / 

uniformly in M = O, 1 . . . . .  Then 

I f  in particular 
sup I[x, lloo<l 

n 

then (4.1) implies (4.2) which thus can be omitted. 

Theorem7. Let (x,> be a stochastic process with the standard conditions. 
Suppose that (fi) holds and that 

n=M+12 IlX"II4 = ~  \ E \n=~M+l xn (H--+oO) (4.3) 

uniformly in M = O, 1, 2,... .  Then 

2 x3  (o,1) 
\SNn<N / 

Remarks. It will be clear from the proof of the theorems that conditions (4.1), 
(4.2) and (4.3) can be relaxed somewhat at the cost of a restriction of the conver- 
gence of ~ @/~(n) and ~ @/S(n) to values bigger than 2 or 5 respectively. 

On the other hand the theorems would become false if (4.1), (4.2) or (4.3) 
respectively were omitted even if we assumed sup/Ix.II oo_<1. Take for example 
a stationary process of independent random variables x, and define a new process 
y , = x ~ + l - x  . which is a stationary process of m-dependent random variables 
with m= 1. (4.1) or (4.3) are no longer valid and in both cases 

(N- Z Y~ -' (0). 
~i<N 
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To prove the theorems it is enough to prove the following 

Lemma 8. Suppose that either the hypotheses of Theorem 6 or Theorem 7 are 
satisfied and set s = 2 or 5 accordingly. Then we have for any admissible pair (trN, S*) 
uniformly in l <_j<=I 

E(yC)=o(Sy+2). 
We postpone the proof  of the lemma and deduce the theorems from it first. 

Let #N>E(y~)S *-s -2  with # N ~ 0  SO slowly that l~NSN~O0. Then the pair 
(~CN,S*) with tC)+l=#n and o Nez-K'*s+l]A~(s+l)- o N is admissible for {Xn). In fact 

~2/K'~ __+ ~c N ---, 0, K N S* --* o% ~N/ON oO and 

q)[~ ~*'~,,2/~*__r,~[~,1/(s+l)~* ~ , ,s/(s+l)~*s 
U~N ~ ~176 -- "U \l~N ON! t~N o N ~ 0 ,  

similarly for r Hence we obtain 

E 17[~,d-]~, lq~s+2__, ,1/(s+l)  4 4 �9 -J kyj ! = t~N ~ o N -- I~N S N = 0 (SN). 
j<l  

But this implies for any e > 0 

1 E ~ y 2 d F j ( Y l < ~ E  I y4dFj(Y)=~ 
S2 j<l  lYl>esN ~ SN j<l  ]yl>=eSN 

and hence Theorem 5 applies. 

We prove Lemma 8 at first for the case that the hypotheses of Theorem 6 
hold. Lemma 8 is an immediate consequence of 

Lemma 9. Let (x , )  be as in Theorem 6 and set for r = l ,  2, 3, 4 

M+H 
P~(M,H)= ~ Elx~[. 

n=M+I 

Suppose that uniformly in M = 0 ,  1, ... 

P~ (M, H) <= Pa (H) and P4 (M, H) <- P4 (H) (4.4) 

for some PI(H) and P4(H) depending on H only. Then 

P2(M,H)<P~(H)P4+(H ) and P3(M,H)<P~(H)P4~(H ) (4.5) 

uniformly in M=O,  1 . . . . .  Moreover, uniformly in l < j < l  

E(y~)'~P4+A1Pl +Pl~P4+~t(A1;+AZPl +P141)(A2)+~2+P~r (4.6) 

Here the symbol ~ stands for the 0 symbol; the constants Ao, A1, A 2 are arbitrary 
and 111 = P1 (hi) and P3 = P~ (hi). 

Proof. To prove (4.5) we note that for any a , >  0, fixed, 
M+N 

log ~ a~=f ( r )  
n = M + I  

considered as a function of r  is convex from below. In fact we have as a consequence 
of H61der's inequality for 0 < s < r 

( M+N \ 2  ( ~ N  ) / M+N 
2 a:} <_ a: +~ ( Z a's s) 

n = M + I  //  - -  n = M + I  \ n = M + I  / 

12 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 12 
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which implies the convexity of f(r). (4.5) follows now immediately. In order to 
prove (4.6) we expand E(y~) by the multinomial theorem 

4~ 
E(y2)=e(Ex.)'= E , p4,<E<,f(x~'...x~:). nr pl+...+p4=4 Pl . . . . .  �9 ... " 

pi>=O 

Here Ij is the set of indices v of x,, defining the yj and the summation is extended 
over all ik ( l < k < 4 ) e l j  subject to the conditions indicated. We shall estimate 
only the sum ~E(x~x xi~ x~a xi4), the other sums are treated similarly. We split 
~, into two parts ~ = ~ ' + ~ "  according to whether or not both i2-ia<=A 2 and 
i 3 -  i2 <A2 are satisfied. In the first case we have 

~'<_ ~ '  E Ixil xi2 xi3[ E [xi4 [ 0( i4 - i3 )  

< ~ ' E  Ix,ll E Ixi2l E Ixi~l E Ixi41 ~ ( i4 - i3 )  
~ '  E [xi3] t~( i4- ia)~A2 p1 �9 

In E"  one of the two conditions is violated and we split E " -  E *+ E** accord- 
ingly. Since i 3 - - i  2 > A  2 in ~**  we obtain 

IF**[ =<~** IE(x,, x,2)l IE(x,3 x,4)i +E**E Ix,, x,2l E tx,~ xi~l O(A2) 

"~ 2 ElxixlElxi2[~(i2- i l )  " 2 E[xia[E]xi4]~l(i4-i3) 
i, < i2 i3 < i4 

+ ~  E IxJ E Ixz~l E Ix~3[ E Ixi4[ ~/(A2) 
P( + P( ~' (Ag. 

The estimate of ~ *  is similar. 

Proof of Lemma 8. From the hypotheses of Theorem 6 it follows that 

P,=O(S~) ,  P~ =O(S~3). 

We choose AI = A2 = S} and obtain the conclusion of Lemma 8 since as before 
~ (S~r = 0 (S1~ -2). 

In case that, instead of the hypotheses of Theorem 6, those of Theorem 7 
are assumed to be valid Lemma 8 is deduced in the exact same way from the 
following Lemma 10 which then replaces Lemma 9. 

Lemma 10. Let ( x , )  be as in Theorem 7 and suppose that uniformly in M =  
O, 1, 2 . . . .  M + H  

]Lx.I[4 < P(H) 
n = M + l  

for some function P(H) depending on H only. Then we have uniformly in l <j<__l 

E (y]) ~ A~ P + p3 9~ (AI) + A~ P + p4 @ (A2) + p2. (4.7) 

Here we set P(hj)= P and the constants Ao, AI, A2 >= 1 are arbitrary. The proof 
of Lemma 10 is exactly the same as that of Lemma 9 however we have to apply 
Lemma 1 at those places where we applied Lemma 3. That is where the exponent 
�88 in q~+ comes from. 
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4.3. Some Applications 

In this section we shall consider two special cases. First we suppose that the 
random variables x, are defined as x,=~o,-#(~o,) (n=l ,  2, ...) where ~0, is the 
indicator function of the event E,. Then we have the following 

Theorem 8. Let (E,,  n = 1, 2, ...) be a sequence of events such that P(E,) ~ O. 
Let ?Ol,b be the a-algebra generated by the E, (a < n < b). Suppose that (I*) is satisfied 
with ~ O~(n)< oo and that 

4(N)-- ~ P(E,)-~ or. 
n<=N 

Then 

o r  e l s e  

(4- (N)( Z 4 (N))) (0, 1) 
n<N 

(4-  + (N) (A (N, x) - 4 (N))) ~ ~ (0, 1) 

where for given x in the sample space A(N, x) denotes the number of integers n < N 
with xEE,. 

Proof. In order to apply Theorem 6 we have to check condition (4.1). For 
integer M, N > 0 we write 

M + N  

4 ( M , N ) =  ~ P(E,). 
n = M + l  

Then with 101 < 1 

E cp, -4(M,N)  = 4 ( M , N ) + 2  ~, P(E, ,E,) -42(M,N) 
n = M + l  M<m<n<=M+N 

= 4 ( M , N ) - 4 2 ( M , N )  +2 Z P(EmlP(E,)(I+O~t(n-m)) 
M<m<n<=M+N 

M + N  

= 4 ( M , N ) -  Z (P(E,,)) 2+0 Z P(EmlP(E,IO(n-m) �9 
n = M + I  M < m < n < M + N  

Since P(E,,)--+O we obtain setting M = 0  that s2=4(N)(l+o(1)). Now let mo 
have the property that P(Em)<(4~ 0(n)) -1 for m>mo. Then for N - , o o  

M + N  2 

E =~M+lg~ ) >az4(M,N)(l+o(1)) 

uniformly in M > m0. Hence we have uniformly in M =  0, 1 . . . .  

(M+N _ 4 ( M , N ) ) 2  ( N ~  c~) 
4(M,N)~E \n= M~+ lq)n 

which in view of E [x,[<2P(E,) proves (4.1) and thus the theorem. 

12" 
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Remark. It is not difficult to see that Theorem 8 remains valid if we assume 
~ (n)< ~ only. For this purpose we estimate E(y i yfl in Lemma 5 as a direct 

application of Lemma 3 without employing the truncation argument. Similarly 
the estimate of E (y~) in Lemma 9 can be simplified considerably since for example 
~4  ~ S* 3. I shall not go further into the details. 

As a second application we suppose that (x , ,  n=  1, 2, ...> is a weak sense 
stationary process. Then we have for example 

Theorem 9. Suppose that (x , ,  n--1, 2 , . . . )  is a weak sense stationary process 
with E(x , )=0  and sup E(x4)< 1 satisfying condition (II*) with ~ q~+(n)< ~ .  Then 

n 

o'2 =E(x2)+  2 ~ E(xl x~+i) 

exists. Moreover, if a # O, 

Proof. We have 

since 

{_ 1 E x,~ ~ 92(0, 1). 

N N 

s~--E( E x ,)e=NE(xf)  + 2N E E(xl x~+1)-2 Z Y E(x1 xv+ 1) 
n~=N v = l  v = l  

N 

=Nor ~ - 2 N  ~ E(xi x~+O-2 ~ v E(x i x~+i) 
v > N  v = l  

=N a2 +O(1) 

v = l  v = l  v = l  

(4.8) 

using the monotonicity of (p(v) and ~ @(v)<  m. That o- actually exists is con- 
tained in the above argument. Hence o-+ 0 implies SN ~ ~ .  Moreover, from (4.8) 
and the weak sense stationarity 

M+N / M+N ,~2 
Ikx .H,<N~Ncre~E~ ~ x , ) .  

n = M + l  \ n = M + l  / 

The result follows now from Theorem 7. 
Remark. For strict sense stationary processes Ibragimov [2] has Theorem 9 

in a slightly sharper form. Instead of Lemma 8 he uses the following one which I 
was unable to generalize to the nonstationary case. He also has theorems involving 
condition (III*) only. 

Lemma 11 (Ibragimov [2], see also Doob 1-1], p. 225 and Philipp [4]). Suppose 
that the stationary process satisfies (III*) and that E Ix1 [2 + ~ < oo for some 6 > 0. Then 

E(L E +~ 
n < N  
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