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A Note  on Temporal Games 

EzIo MARCHI 

Summary. We investigate strategic situations where the zero-sum two-person game in normal 
form is composed of a sequence of choices where the players are informed about the past and its 
relations between the orders of realizing them. The minimax theorem is improved for games having 
cartesian products as strategy sets. 

~ 

The minimax theorem for a zero-sum two-person game in normal form asserts 
that the safety levels of both players coincide. The heuristic interpretation of these 
safety levels depends only on the rules of the game. 

In the classic case, that is, when both players realize their respective choices 
independently upon any information about the opposite's choice, the safety levels 
have a very well known meaning. 

Now, one could associate to the maximin and minimax values somewhat 
different images as follows: Consider the game played in such a way that the 
first player is informed on the choice of the second player. Conversely, one has 
the other situation where the second player knows the choice that has been already 
made by the first player. In the first case, the minimax value is obviously the 
value of the game considered with the new rules. In a similar fashion, in the last 
case the value is equal to the maximin value. Thus, now the saddle point concept 
can be interpreted as an invariant point with respect to the information on the 
knowledge of the behavior of both players. 

The motive of this paper is to consider a natural extension of that strategic 
situation involved in the previous consideration, when the game is composed by 
a sequence of choices over the time of both players knowing the past. As a con- 
sequence of the presented results the minimax theorem for games where the 
strategy sets are a cartesian product will be improved. 

. 

Let Ap={Sl ,  s .N 2, z . �9 .-, ,,1 . . . .  ,Sin2, A; P} be a zero-sum two-person temporal 
game defined by a zero-sum two-person game {X1: s A} where the strategy 
sets S1k with k~{1,2} are cartesian products over Ik={1 . . . .  ,m~} of the non 
empty compact  and convex subsets s in the nk, j-tuple of real numbers R "~,j, A 
is a continuous real function and P a temporal  order. A temporal order P is a 
bijective function which assigns to each time t e T =  {1, ... ,  m 1 +mz} an element 

P(t)e h u 12 . 
From an intuitive point of view, the set T is regarded as the ordered time on 

which the game is played. Thus, a temporal order P determines the strategy set 
Xp(t) employed at time t~ T by the n. P( t )=  {k: P(t)elk}-th player knowing every 
previous choice ae(7)eXe6> made in the past f e l l ,  t )= {1 . . . . .  t - 1 } .  
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For the sake of simplicity we are only concerned with monotone temporal 
orders, that is, those such that for each k e {1, 2} and each l > [ in Ik: p - l ( / ) >  
p- i ( f ) .  This says that the ordering of choosing is realized in a monotone way. 
Without any explicit mention, temporal order means monotone too. 

Now, we introduce some definitions. Given two temporal orders P and Q, it 
is said that P follows Q and we write P~=Q, if for each jeI2:  p-!(j)<Q-i(j) .  
Similarly, P strictly follows Q, and we write P ~ Q  if P follows Q and there is an 
jEI  2 such that p - l ( j )<Q- l ( j ) .  ~3= {p1, ..., U} is called a chain if each element is 
a temporal order and for each s e { 1 , . . . , r - 1 } ,  ps strictly follows ps+l. The 
chain ~ is a refinement of~3 if it can be obtained from ~ by inserting some temporal 
order in the chain ~.  A chain is said to be maximal if it does not admit any refine- 
ment. Given a temporal order P, let us define the t-th associated function P~: 
T- - , I i~ I  2 with l<__t<ml+m 2 by P~=P.rc t where 7z~ is a permutation over T 
inverting the elements t and t +  1. In other words, 7c~(f) = f  if ~=~ t, t +  1; ~,(t)= t +  1 
and ~ t ( t + l ) = t .  If n.P( t )+n.P( t+l ) ,  then Pt is a temporal order. Indeed, for 
k~ {1, 2} and j, ] in I k but different to P(t) and P(t + 1), we have 

pt- l( j)= 7~tl. p-x(])= p- l ( j )  => p -  l(j) = p-~(]) 

when j>]. I f j=P(t),  then ]+P( t+l )  since n . P ( t ) # n . P ( t + l )  and therefore on 
the one hand 

Pt-i(j) = t +  1 ~ P - l ( ] ) =  Pt - l ( j  ) 

when j = j .  On the other hand 

Pt-i(j) = P - l ( j )  = > t +  1 = Pt- l(j) 

when j > j ,  thus, Pt is a temporal order. 

Proposition 1. A chain {Q, P} is maximal if and only if there is a 1 < t < m i + m2 
with n .P( t )= 1 and n .P(t + 1)=2 such that Q=Pt. 

Proof First of all, let P ( t+  1)ei2, then 

t=pt- l (p( t+ 1))< P-l(P(t+ 1))= t +  1 

implies Pt ~-P, since for all the remainingjeI2 : Pt-l(j)= p-l(]). 

Now, suppose that Q strictly follows P, then, there is a j e I 2 :  Q i(j)<p-i(j).  
Letjo be the f irst j~I 2 with this property. From here, for each t satisfying Q-i( jo)< 
t<P- l ( jo ) ,  we have Q(O=P(t)eI1. Indeed, suppose there exists a [ such that P(t-) 
or Q(f) belongs to 12. Then P(f)=Q(f)<P(P-l(jo)), since Jo is the first element 
with the property just mentioned. But Q (f)> Q (Q-l(]o) ) =Jo, which is impossible. 
Thus, n. n(n-~(Jo)-1)= 1 and n. P(n- l ( jo))= 2." This implies that the temporal 
order PP-~(jo)-i strictly follows P. Therefore Q-i( jo)=P-l ( jo) -1  must hold and 
Q = PP ~Uo)-~. Otherwise it would be Q N-Pp-~(jo)_ 1 which contradicts the fact that 
the chain {Q, P} is maximal. (q. e. d.) 

The temporal order Pt can be regarded as forward with respect to P at time t. 
Of course, the corresponding backward of P will be the tP=P. rot -1 with the 
property (tP)t = t(Pt)= P. Then the previous proposition for backward orders says 
that ~O. P} is maximal if and only if there is a 1 < t < ml + m2 with n. Q (t + 1) = 1 

~) (t) = 2 such that P = tQ. 
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Using this fact, we derive the following useful result: 

Proposition 2. I f  Q strictly follows P, then there is a maximal chain ~ relative 
to Q and P (i. e. Q and P are the respective first and last elements of 9~). 

Proof Let 
3 = {jeIa : Q-I(j)<P-IO)} 

be a non empty set of indices with first element J0 and from here we know that 
the chain {Pe-~(jo)-l, P} is maximal, since 

n . P ( P - ~ ( j o ) - l ) = l  and n .P(P- l ( jo ) - l )=n . ( jo )=2 .  

If Q-~(jo)<P-l( jo)- l ,  we repeat the procedure as far as it is obtained a 
positive integer hjo such that Q-~(Jo)= P-~(J0)-(hjo + 1). Thus, the chain 

~Jo= {pJo=(((pp_l(jo)_l)p_l(jo)_ 2)...)p_t(jo)_hjo, ..., pp l(jo),P} 

is maximal, since each chain composed by two adjacent terms is maximal. There- 
fore if ,3-{Jo} =0, p.io= Q and then we are through. Otherwise, define the sets 

and 
T= T -  [1, Q-l(jo)], I = I  1 -Q(Q- I [1 , j o ] )~ t  1 

I2 = I2 - [ 1, Jo] = I2 - Q (Q - 1 [ 1, Jo]) r I2 

whose numbers of elements are respectively 

Irl--=llll+li21=lTl-IQ-l(jo)l<m~ +m2, [[11<=lIll-IQ(Q.-l[l,jo])C~I11<=lIll 

and 
lie 1= Ilzl-Jo < Ilal- 

Then, a temporal order over T induces a temporal order over T,, namely: its 
natural restriction and as a consequence, the order ~ for temporal orders on T 
also induces an order ~ on T. Hence, one is allowed to apply the transfinite 
induction. Certainly, let P J~ and (~ be the restrictions over Tof  P J~ and Q, respec- 
tively. Because ,3-{j0}4=0, obviously Q~/sjo holds true and therefore by well 
ordering the cartesian product N x N of the positive integers N by the relation 
(u,v)~(u',v') if u<~( or i fu=u',  v<v', one has (I]11, li21)~(1Ill, 1121). Thus, by the 
transfinite induction hypothesis, the existence of a maximal chain ~ ( 0 ,  PJ~ 
relative to (~ and ~Jo over T is guaranteed. Now for each Re~3 (Q, pio) define the 
extension R over T by R(t)=Q(t) if t<Q-l(jo) and R(t)=/~(t) if t>  Q-l(jo), thus 
the extension chain ~ (Q, P J~ composed by all the corresponding temporal orders 
is clearly maximal over T. Hence, the chain {~3(Q, pJo), ~Jo_ {pJo}} is the desired 
maximal chain over T relative to (2 and P. (q. e. d.) 

The method of finding the maximal chain just given is constructive, but it is 
not unique. In fact, one could make a similar analysis getting another maximal 
chain going backward by operating on the last element instead of the first. 
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, 

Given a temporal order P, let us define recursively an operator 

~))1P, t : R2P[I't]-+R2Pfl't-I] (t~T), 

[ max A (o-r t - 11, SP(o) if n. P(t) = 1 

min A(~rp[1,t_ll, if n. P ( t )=2  Sp(t)) 
Sp(t) 

where R z indicates the space of continuous real functions on X. Thus, introducing 
the operator 

9) l )  = IV I 9Jtp, r = ~)1p, t 9 ~ p , t + l  . . .  ~)1~, , .1+, .2-1  ~)1P, r. l+m2, 
r~ t  

the natural value vp(A) of the temporal game A played with respect to the temporal 
order P, is the number 

ve=vp(A)= 9)11(A). 

Of course, this quantity determines the safety levels for both players when the 
game A is played as indicated by P. 

Proposition 3. I f  Q follows P, then v e > v e. 

Proof For a maximal chain {Pt, P} consider for fixed o-v[1, t 1]eXe[1,~_11 the 
continuous function 

t + 2  9)1p (A)(o-p[1, z_l] , O-p(0, O'p(t+l) ) 

defined on Xe( 0 x Xp(t+t). Then the inequality between the minimax and the 
maximin values asserts: 

OJ~Pt t ~J~Pt t + l  q ' ~ t + 2  t + 2  , , ~ , e ,  ( A ) ( a v t l , ~  ~j)>~,~,~+l!~p (A)(apt~,,_l~), 
which implies v~, >__ vp. 

Now, by iteration of this result to every maximal subchain of two elements 
of the maximal chain {Q, ..., P}, one obtains v e >= vv. (q. e. d.) 

For  example, if Pf  and U are the f inal and the initial temporal orders respec- 
tively given by P*[1, II z I] = I2 and pi [1, II1 [] = I1, then for every temporal order P, 
we have that 

vps = rain max A (s h, si~) > Vp > max min A (s h, si2) = re,, 
SI 2 Sll sI1 s12 

holds true and therefore if the minimax theorem is satisfied for the game {Xi~, 
2~;  A}: 

Vpf ~" Vp = Vpi �9 

This equality expresses the fact that the game is invariant with respect to each 
temporal form of playing. 

From here, a natural question arises: whether the corresponding values for 
two different temporal orders coincide or not. Indeed, in general this problem 
could be quite involved. Nevertheless it is certainly an application of the next 
result. 
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Given the set 
U~= {o-~(r): ~-<-A(o-~(~))} 

of strategies in X/,~h with the o-v(T)-section 

u~(o-p(r)) = {o-Pc~- T): o-~cr)e U~} = ~ ( r -  r) 

for any subset T c  T, let us define recursively the upper strategy set 

US)= ~ US'~">)(s~,(.))~Zp(r); Uy)=  v~; 
Sp(tl) 

where tl is the first element of T -  T, and the symbol (3) represents the union w 
if n . P ( h ) = l  and the intersection c~ when n .P( t l )=2 .  In a similar manner, 
considering the set 

L~= {O-P(T): )L~A(O-P(T))} 

and introducing the symbol ~f)which means intersection if n, P (q)=  1 and union 
if n. P(q)=  2, we can well define the lower sets 

LP(T~{,~})ts ~. LP(T)=Lz" 
Sp(tt) 

Directly from the definition of the section for upper sets, one obtains that if 
t + f are elements of T,, then 

O-P(t) E uP(T)(O-P(T-{,})' O-PC'i)) if and only if o-~,(i)e uP(T)(O-P(T-{t}), O-PCt)) 

and consequently the induction principle guarantees the following equality: 

mP[1, t+l]t O. ,+2 > ~ PEl,,-ll, o-e(,+.)={o-e.): 9~p (A)(o-pLl,,+~])=.~} ~ec,)- 

Analogously, for the lower sets, we have 

L~[I, ,+ 11 (o-Pit,,_ 11, o-P(,)) = {o'p(, + t)" 9X~ + 2 (A) (o-Ptl, * + I])---< 2} = Zp(t + i)" 

Now, the next result which is nothing more that the minimax property for the 
game {Np(t), ~e(t+l); ~P+Z(A)} remains clear: 

Proposition 4. Given a maximal chain {Pt, P}, if for f ixed o-po, t- i l ,  o-e(t) and 
o-e(,+1) the upper and lower sets 

U~EI"+'(O-~LI,,_I], o - p . + . ) = Z p , ) ,  L~EI"+I~(O-pEI,,_I 1, o-~c,))~Z~(,+l) 

are convex for all the 2, then the values vp, and Vp coincide. 

Proof The properties imply the quasi-concavity of the function ~fJ~+2 (A) with 
respect to o-p,) and the quasi-convexity in o-e,+l)- Thus, by virtue of the minimax 
theorem, 

t+2 93l~,,, ..,,p,, ~ t+l ~t+Z(A)(o-edl , _ 1])= 9"Jlp, ,9~e, ,+1 9JIp (A)(o-ptl,,_a]) 

and therefore v~ = vp t. (q.e.d.) 
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. 

Let us consider some interesting applications of the above fundamental 
proposition for temporal games. First of all, we present this very simple example: 
IT[=3, [111=1 and 1121=2, where the only three possible temporal orders are 
PiN-pli>Pf=P2i , defined respectively as 

P*(1)= 1 e I  1, U(2)= l e I  2 

P~'(1)= 1~I;, P1~(2)= 1 eI1 

Pr = leI2,  Pf(2) = 2eI2 

and Pi(3)=2EI2,  

and Pli(3)= 2sI2, 

and PY(3)=1~11. 

By iteration of the previous result we will get sufficient requirements for the 
validity of the equality vp~ = vpi=v~,s. In the first place the quasi-concavity in 
Ovi(a) and the quasi-convexity in ap~(a) of the payoff function A for fixed ap,(2) 
by virtue of the minimax theorem assures the second relation Ve~= vv~. On the 
other hand, since 

~,~ (A)(., .)= rain A(. , . ,  sv,(3)), 
Spi(3) 

then by virtue of the quasi-convexity of A, the upper set 

U) Pi l l '  21(0"p/(2))= {O'pi(1): min A(~rp,(1), Or,(2), sp*(a/)>)o} 
Spi(3) 

= 0 {ap,(1): A(ap,(l~, a,,(2~, sp~(3~)>;~} 
Spi(3) 

is convex and the lower set has the following expression: 

L~ tl' 2](0"pi(1))= {O'Vi(2): min A(ap,(1), Gpi(2), Spi(3))~_~,~ }. 
Spi(3) 

Now, the convexity of the lower set, that is, the quasi-concavity of the minimum 
function is assured by the following condition: given ap~(1) for each real p~l-0, 1], 
2 and each pair ae, t2 ' 31 and ~Vi[2 ' 31 such that 

A(o'pi(1), ~rpi[2, 31)=<2, A(opi(1) ,  ~pi[2,  31)~ 3~ 

u satisfying there is an Zpi(3) 

A(o-e,(1),/2 av,(2 ) + (1 -/2) (7PI(2), r ~ J ]  = " 

In fact, taking for a fixed Crp~(1 ) those strategies api(s) and ffP,(3) where the 
minimum of the function over ap,(2) and 6e,(z) is respectively reached, that condi- 
tion immediately implies the convexity of the lower set. 

With the above conditions for the payoff function the previous result guaran- 
tees the equality vv, = vei. It follows at once from both equalities an improvement 
of the minimax theorem for the game {Ze,(1), Ze,(2 ) • Zpi(3); A}. Indeed, the very 
well know minimax theorem for this kind of game is obtained directly by checking 
that the quasi-convexity of the payoff function with respect to the variable 
(ae,(2), ae,(3)), implies the condition given above, that is the quasi-convexity of the 
minimum function. An ze~(3 ) ~ satisfying that requirement is/2ere,(3)+(1--/2)~Pi(3),' 
8 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 12 
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A further condition less restrictive than the last one which implies the con- 
vexity of the minimum function is the following: given o-e,(1 ) for each #~ [0, 1], 
2 and each pair Gpi[2" 3], ~pi[2, 3] there is an ~(3)  such that 

A(opi(1), # Op,(2 ) -}- (1 -- ].2) (7Pi(2), "c~i(3)) 

#A(o-p~(1), O'p~(2), O-pq3) ) -k (1 - #) A(crp,(1), 6pi(2), gVi(3)). 

As a second illustration, this example can be easily extended to a wider kind 
of temporal games, where [TI = m2 + 1, 1Ii1 = 1 and I/2]= m2. Here we have only 
m 2 + 1 possible temporal orders, which are of the form pt defined by PV(t)=t~I 2 
when t<f ,  PZ(t)=l~I1 and finally P T ( t ) = t - l ~ I 2  for t > L  We have p t ~ p r  if 
t > {  and pm2+~ =p~, p1 = p i  

We are interested to examine the equalities among the values corresponding 
to the different temporal orders. For  this reason, consider a t < m  2 + 1. If the 
payoff function A is quasi-concave with respect to o-e~(z)=%qt) for the fixed 
remaining strategies, then the upper set 

g~'tl'~+u(a~'~l,,-l~,aF'.+~) = 0 '" 0 {~w<,~: A(aF~l,~+mse~t,+2,~2+~)<--_ "~} 
Sp t ( t+ l )  Sp t (m2+l)  

is convex, On the other hand, under the following modification of the property 
just used: given %,t1,,1, for each real #t~[0, i],  2 and each pair ae, t,+l,.,~+11, 
<Te, tt+l,,.~+,] such that 

A(ap:[1, tl, ae,i~+l,,.~+11)_ -<)~, A(crp,[1,tl, <Ye~[t+l, m2+l])= <2  

there is an Tf,~L~+2 ' ,.~+1~ satisfying 

A(ae~tl, t~, #t aet(t+l) + ( 1 - # t )  ge~(t +1), z~gtt+ 2, m~+11) <2 ,  

the convexity of the lower set 

L~'JI' '+IJ(ae~[l,,_11, ( T V t ( t ) ) = { O ' p t ( t + l ) :  rain A ( G p t [ 1 ,  t+11,  S p t [ t + l , r n z + l ] ) < ~ 2 } ,  
Spr i t+l ,  m2+1] 

is assured. Thus, under such conditions, by virtue of Proposition 4, the equality 
re, = vp} holds. We remark that for t = m 2 it is exactly the definition of the quasi- 
convexity in ~v~(,.~)- 

Now, if the last modified condition is satisfied for every t < m2 + 1, then 

1)pt ~ I)p2 ~ " " " ~ 1)pro 2 ~- Upm2 + 1 

is valid, and again the minimax theorem for the game {Xp,(,), [ I  Xe,(,); A} 
has been improved. 1 _< t_<,.~ +, 

Again, when the payoff function is quasi-concave in the joint variable %,t2,,.~ + 1~ 
then the modified condition is fulfilled for every t < m 2 +  1, as one can see im- 
mediately. 

This example can also be used for temporal games having IT[ =m,  + 1, [11[ =rn~ 
and 112[= 1. In fact, changing the roles of both players and considering the payoff 
function - A  in the case just considered, one obtains under the condition: given 
ae~tl, ,1 for each real #re [0, 1], 2 and each pair o-Q~[t+l ' m~ +11, 6(2~[t+1, ~ +11 such that 

A(aQ~[a,, 1 , aQ~tt+~, m~ + 11) >_ --i. , A(aQ~tl,0, ~e~t,+l,.,~+ 11) >= ~. 
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m with the property there exists a n  "CQt[t+l, mi+l] 

r m ~ -> 2 A(ao~[1, t], lLt crf2~(t ) +( l  --fit) 80_~(t), Qt[t + l, ml+ l]J-- 

where the temporal order is given by QT(t)=teI1  when t< f ,  Q ~ f f ) = l e I  2 and 
finally Q T ( t ) = t - l ~ I 2  if t > f ;  and under the quasi-convexity in aQ,(1)=o-Q~(t ) of 
the payoff function, that v~, = ve~. Thus, if the property just explained is satisfied 
for every t < mt + 1, then, the respective values of all the temporal orders coincide. 

After dealing with these simple cases, finally we are concerned with a very 
general case based on those examples, because of its own interest. 

Let us consider a general temporal game with I T ] = m ~ + m 2 ,  ]I , l=ml and 

We wish to see that under the following conditions of minimum-convexi ty  and 
maximum-concavi ty  all the values coincide. 

The temporal game satisfies the maximum-concavity condition if for all the 
ml < t < m~ + m2, given ae:[~,~]~ for each real #t ~ [0, 1], 2 and each pair ae:[t +~,,,, +~3, 
GPY[e+I, mt+mz] s u c h  that 

A(O'eS[1, tl, ~TpY[t+l,m~+m2])~ "~" , A(~e~[1, tj, #ec[,+~,.,1 +,.~j) ~ A 

there exists a n  "@~[t+2, m~+m21 with the property 

A(OpZ[1, t], gt O'pf(t + 1 ) + ( 1  - # t )  (ffP:(t +1), ~Pf[t+2,ml+m2]]~- 

For all those t this condition implies the convexity of the upper set 

aPf[l'{+l](Gpf[1, t]) = {O'pf(t+l): m a x  A(~ypj[1,t+l], Sp,[t+2, ml+mzl)>=).}. 
SpY[t + 2, ml +mz] 

The minimum-concavity condition is the following: for all the m 2 _< t < m i + m2, 
given aei[,,t~, for each real # ~ [ 0 ,  1], .;~ and each pair O'pi[t+l,ma+m2], ~pi[t+l, ml+m2 ] 
such that 

A(~p,[,,, l,c~e,~+~,,,~+m2~)<=;*, A(c~p~,, 1,~p~,+,,,.~+,.~j)<=2 

m satisfying there is a n  75pi[t+2 ' ml+m2] 

A(o'pi[1, tl, ,a t Opqt+l) + (1 --/ i t) ~Ypi(t+l), "@}[,+2, m,+m2]) ~-'7~. 

Under such a condition the convexity of the lower set for all the n h _<_ t < m t + m 2 , 

L~'fl"+l](ae,[1,~]) = {ae~(,+l): rain A(~e,[1,~+,}, se,[~+2,,,~+,,~])<=2} 
Spi[t + 2,ml+m2] 

is guaranteed. 

Consider the chain {P, II, pi}. On one hand, by virtue of the minimum convexity 
property, taking t =m2, we find that the respective lower set of Proposition 4 is 
convex. On the other hand, the respective upper set is convex since the payoff 
function has the maximum-convexity property for t ' --ml +m 2 -  1, that is, the 
quasi-concavity with respect to ae~(mi ~m2)= aei(,,l), and because the minimum of 
quasi-concave functions is quasi-concave. Thus, ve~. = ve~. 
8* 
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Now, let us examine the chain i ,.1 { ( P m l ) m l -  1 ,  Phil1}" By virtue of the previous example, 
for each joint strategy ap, tl ' re.l, we have 

r n l + l  
9J/e~ ' (A)(ap%ti, m,[ ) -  max m i n  A(~yp~,[1, ml],sP~ni[m,+l,m,~_rnz] ) 

SP~ (ml + l) SP~l[m, + 2,m, +m2] 

= min max A(avi . , v , . .  l,SPimltml+l,m,+m2] ) 
SPim,[ml+ 2, ml+m2] sPiml(mi+ l) 

and therefore because of the minimum-convexity property, the minimum is quasi- 
convex and its maximum maintains this property, the function 9J /~  + 1 (A) is quasi- 

convex in ffeL~(m0=O'p,(m,+l). Similarly, by an analogous argument using the 

second term of the last expression, we obtain the quasi-concavity with respect to 
0"p/ml(mi_l) = O'V,(m,_l) of the function m~,,~+l(a~ --,p% v-J, so that v(e~,)ml_ , = Ve, l. 

Now, using the induction hypothesis, we admit the minimax theorem: 

~ ) ~ 1  m l _  I ( A )  (O-pro1, m l _  111, n i l -  1]) 

= m a x  m i n  A(aP.., ,~,-,[1,m,-,],  se~v. . , -A . . . . .  +rod) 
sPml,m,- l[tal, rnl + l] Spml,ml-llmi + 2,ml +m2] 

= min m a x  A ( c r p . . , , ~ _ l t l ,  m,_l]  , Svral,ml_,tml, ml+ra2] ) 
SPrat, m, - ,  [/7/1 -~- 2,  ml + m2] spml, rnt - 1 [m,, ml + 1] 

�9 '((P~)m~-l)'")m with re<m1.  for fixed Gpml,,~_,tl, ml_l] , where P~,,m indicates (. i 

Again, the minimum of the first term is quasi-convex in ae,.~ ,~ _l(~)=ae~(m~+l) 

which implies the same property for the function 9~em~l,m_,(A ). On the other hand, 

the maximun in the second term is quasi-concave in ae~,, ~-'(m'-1)= ap, (m,-1) and 

hence 931~,, ~,-,(A) is too. Therefore Proposition 4 assures the validity of v ~ ,  "-, _ ~ = 

[)Pro 1, m, - 1" 

By iteration of this procedure, we obtain the equalities 

/)Pint,  i = " " " ~ V P m l , m l - ,  = 1)Pro, ~ 1)pi. 

Finally, using again the minimax theorem as induction hypothesis for the 
function 9X~ml.JA ) it is guaranteed ve~,. 1 = vw ,  and so we have the desired result. 

The well known minimax theorem for games having both strategy sets as 
cartesian products is derived from the previous improvement recalling that the 
quasi-convexity property in the joint variable of the second player implies the 
minimum-convexity property described above and similarly the quasi-concavity 
in the joint variable of the first player satisfies the maximum-concavity condition. 
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