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Summary. The change-of-variance curve (CVC) is generalized to M-esti- 
mators with piecewise continuous 0-functions, in which case it becomes a 
Schwartz distribution. An M-estimator is called most B-robust when it 
minimizes Hampel's gross-error sensitivity 7*, and most V-robust when it 
minimizes the change-of-variance sensitivity ~:*. In the general case, the 
median is most B-robust and most V-robust. If consideration is restricted to 
redescending M-estimators, then the skipped median is most B-robust and 
the median-type tanh-estimator is most V-robust. By means of these results, 
complete solutions of the problems of optimal infinitesimal robustness are 
obtained. 

1. Introduction 

M-estimators of location were introduced by Huber (1964), who studied their 
robustness properties by means of a minimax theorem for the asymptotic 
variance. The infinitesimal robustness of the asymptotic value was described in 
an intuitively appealing way by Hampel's (1974) influence curve (IC). In order 
to investigate the infinitesimal robustness of the asymptotic variance, Rous- 
seeuw (1981) defined the change-of-variance curve (CVC), rediscovering an 
idea of F. Hampel going back to 1972. With this tool a new class of redescend- 
ing M-estimators was constructed by Hampel, Rousseeuw and Ronchetti 
(1981). However, these papers imposed the severe restriction that the underly- 
ing @function be continuous, which excluded many interesting estimators such 
as the median and the Huber-type skipped mean. In the present paper this 
restriction is dispensed with, and the general CVC becomes a Schwartz distri- 
bution. 

The aim of this paper is to study and to compare various robustness 
concepts which may be associated with the IC and the CVC. To the first we 
assign the prefix "B-" from "bias", and for the latter we use "V-" from 
"variance". It was already proven in (Rousseeuw 1981) that V-robustness 
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implies B-robustness, and that Huber's minimax solutions are optimal B-robust 
as well as optimal V-robust. In Sect. 3 the notions of most B-robust and most V- 
robust estimators are introduced. In the general case, the median satisfies both 
properties (Theorems 1 and 2). This enables us to give complete solutions to 
the problems of optimal infinitesimal robustness. In Sect. 4, attention is fo- 
cused on redescending M-estimators. In this subclass the skipped median is 
most B-robust, whereas the median-type tanh-estimator is most V-robust. At the 
normal distribution, the corresponding problems of optimal robustness lead to 
skipped Huber estimators and to tanh-estimators. 

2. General Definition of the CVC and Basic Results 

Consider Huber's (1964) framework of robust estimation. Let X1, ..., X, be i.i.d. 
observations with distribution function G(x-O), where G satisfies certain reg- 
ularity conditions. An M-estimator of the location parameter 0 is given by an 
equation of the form 

n 

y ,  ~ ( x ,  - T,) = 0. 
i = 1  

There are several ways to select a solution, such as taking the root nearest to 
the sample median or using Newton's method starting with the median as in 
Collins (1976). Under regularity conditions on ~ and G (Huber 1967), the 
sequence (T.) is consistent and nl/2(T.-O) is asymptotically normal with 
asymptotic mean zero and asymptotic variance 

V(l~t, G) = ~ I/t2 dG/(~ ~' dG) 2 

The model distribution F (identified with its cumulative distribution func- 
tion) is fixed, and satisfies 

(F1) F has a twice continuously differentiable density f which is symmetric 
and strictly positive; 
(F2) the function A = - f ' / f = ( - l n f ) '  satisfies A'(x)>0 for all x, and 
J A'(x) f(x) dx = - J A(x) f'(x) dx < oo. 

The function A, which is continuously differentiable by (F 1), is the 0-function 
corresponding to the maximum likelihood estimator (MLE). The assumption 
A'(x)>0 for all x entails convexity of - l n f  and unimodality o f f  Condition 
(F2) implies that the Fisher information 

I(F)=~AZdF 

satisfies 0 < I(F) =~ A' dF < oo. Note that F also satisfies Huber's conditions 
(1964, page 80), so his minimax asymptotic variance theorem is applicable at F. 

Examples. Our favourite choice for F will be the standard normal q~ with 
density ~(x)=(27c)-l/Zexp(-x2/2) and I(~b)=l. The MLE is the arithmetic 
mean, given by A(x)=x. The logistic distribution provides another example, 
with F(x) = (1 + exp( - x))- 1, A(x) = tanh(x/2) = 2F(x) - 1 and I(F) = 1/3. 
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The class T consists of all real functions 0 satisfying: 
(i) 0 is well-defined and continuous on I R \  C(0), where C(0) is finite. In each 
point of C(0), there exist finite left and right limits of 0 which are different. 
Also 0 ( - x ) =  - 0 ( x )  if {x, - x}  o N \  C(0) and 0(x)>0 for x > 0  not belonging 
to C(0); 
(ii) the set D(O) of points in which 0 is continuous but in which 0' is not 
defined or not continuous, is finite; 
(iii) ~ 02 dF < oe ; 
(iv) 0 < ~ 0 ' d F =  - ~ O(x) f'(x) dx= ~ A O dF < oe. 
Clearly, C(0) and D(0) are symmetric about zero. We say the functions 01 and 
02 in T are equivalent if and only if C(01)= C(02) and all x not in this set 
satisfy 01(x)=r02(x)(r>0). 

Note that this class T generalizes those of Rousseeuw (1981) and Hampel, 
Rousseeuw and Ronchetti (1981), which only contain continuous 0-functions. 
The latter restriction made mathematical manipulations easier, while many 
estimators were covered. But on the other hand some important examples with 
discontinuous 0 were excluded, such as the median and the Huber-type skipped 
mean. To the author's knowledge, the present class T covers all 0-functions 
ever used for this estimation problem. 

What is the meaning of expressions of the type ~ 0'dG in this general case? 
The answer is given by Huber (1964, page 78) who states that 0' may be 
interpreted as a Schwartz distribution, so 

50'dG= ~ O'dG+ ~ [O(ci+)--O(ci--)] g(ci) 
] R \  (COD u D(0)) i = 1 

where the first term is a classical integral, c 1 <. . .  < c m are the points of C(0) and 
g is the density of G. Therefore, 0' formally denotes the Schwartz distribution 

0' 1~. (c(o)~ D(q,)) + ~, [0 (cl + ) - 0 (q - ) ]  8c,, 
i = 1  

which is the sum of a "regular" part and a linear combination of Dirac delta 
"functions" 8c. With this in mind, put 

A(O)=~OidF and B(O)=~O'dF. 

From the definition of T it follows that 0<A(0)<o�9 and 0<B(0)<oo.  
Hampel's (1974) influence curve (IC) describes the infinitesimal behaviour of 
the asymptotic value of the estimator corresponding to 0, and is given by 

0(0 , F, x) = O(x)/B(O) 

on IR \ C(0). The gross-error sensitivity equals 

7*(0)= sup Is 
x e R - .  COD 

Let us now generalize the change-of-variance curve (Rousseeuw 1981) to 
the class T. Given some 0 in T, we want to investigate the infinitesimal 
stability of V(0, G) in the vicinity of F. Consider a distribution G which has a 
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symmetric density g and satisfies 0 < S 0 2 dG < oo and 0 < S 0' dG < oo. Keeping 
in mind the interpretation of 0', we may verify that 

~[lnV(O,(1-e)F+gG)J,  0=~[1  ' 02(x) 2 0'(x)] dG(x). 

This motivates the following definition. 

Definition. The change-of-variance curve if(0, F, x) of 0 e ~  at F is the Schwartz 
distribution consisting of the sum of the regular part 

1 ' 02(x) 2 O'(x)l 

which is continuous on ~ \ (C(O) w D(0)), and 

/7/ 

B(r 

Now (J(0,F,x) is skew-symmetric, ~(r  is symmetric and 
for all 0 in 

Examples. The median corresponds to r SO V(0meo,F) 
= 1/(2f(0)). 2 and 

1 
~,( O,~ed, F, x) = 2 [ l~, ~o}(X) -- ~-(~ 6o(X) ] �9 

On the other hand a Huber-type skipped mean, given by r . . . .  1(X) 
where 0 < c <  0% yields a CVC containing two delta "functions" with positive 
factor, because of the downward jumps of 0sk(~) at c and - c. 

Definition. The change-of-variance sensitivity K*(0) is defined as + oo if a delta 
"function" with positive factor occurs in the CVC, and otherwise as 

to* (0) = sup {if(0, F, x); x dR  \ (C(O) w D(0))}. 

This definition generalizes that of (Rousseeuw 1981), where a rationale can 
be found. On a heuristic level, ~:*(0) may be compared with the robustness 
measure sup{V(O,F);F~3} that was recently studied in detail by Collins 
(1977) and Collins and Portnoy (1981). 

Clearly, upward jumps of 0 (adding only a negative delta function to the 
CVC) do not involve ~c*(0), but any downward jump makes it infinite. For 
example, we have tC*(Or~ea)=2 and ~*(0sk(~))= oo. An M-estimator is called B- 
robust (from "bias") when 7*(0) is finite, and V-robust (from "variance") when 
~c*(O) is finite. 

Lemma 1. V-robustness implies B-robustness for all O in 7 t, and they are equiva- 
lent for monotone 0. 

Proof The proof is a straightforward generalization of Theorem 1 and its cor- 
ollary in (Rousseeuw 1981). In the second part we note that O(c~+)-O(c~-) 
>0 for all c i in C(0), hence ~c*(O)=sup{~(0,V,x); xeIR\(C(O)uD(O))}, r] 
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Remark. In general we do not have equivalence, as is exemplified by the 
Huber-type skipped mean. 

Examples. The median is both B-robust and V-robust. The same holds for the 
MLE if A is bounded, as is the case when F is the logistic distribution, where 
2"(A)=3 and tc*(A)=4. However, if A is unbounded (e.g. at F = ~ ) ,  then the 
MLE is neither B-robust nor V-robust. 

3. Most Robust M-Estimators 

The main purpose of this paper is to determine those estimators which do not 
only have finite sensitivities, but which even possess the smallest sensitivities 
possible. An estimator minimizing 7*(0) we call most B-robust, and when it min- 
imizes ~c*(0 ) we say it is most V-robust. 

Theorem 1. The median is the most B-robust estimator in ~Y. For all 0 in 71 we 
have 7*(0) > (2f(0))- t, and equality holds if and only if ~ is equivalent t o  @med" 
Proof. Assume that 0 is bounded, otherwise 7*(0)= oo and there is nothing left 
to prove. Clearly sup ]O(x)l>0, or else we would have A(O)=0. Then 

xE~. -. C(q,) 

B(~)=SIAII~IdF< sup I~(x)iSIAIdF. 
xeN ".. C(O) 

O0 

It holds that SIAtde=2(- f ' (x)dx=2f(O) ,  hence 7*(0)= sup IO(x)l/B(O) 
> (2f(0))- 1 = 2*(Omed)' 0 xelR\  C(O) 

For the uniqueness part, suppose that some ~ in 7 j satisfies 2*(0) 
=(2f(0)) -1. This implies y[A[I~IdF=SIAI sup ]O(x)ldF, where f ( y ) > 0  for all 

x~IR'. C(O) 

y and IA(y)[>0 for y+0 .  By means of some elementary analysis it follows for 
all y~IR\C(O) that 10(y)l= sup 10(x)l, which is a strictly positive finite 

xeJ#.-.C(~) 

constant. Suppose w.l.o.g, that this constant equals 1. But from 0(x)>0  for 
positive x in I R \  C(O) and skew symmetry of ~, this implies O(x)=sign(x) for 
all x @0 not belonging to C(~). Therefore C(~)= {0} and 0 = 0met, which ends 
the proof. [] 

Remark. P. Huber (1981, page 74) already showed in a different setting that the 
median gives the smallest asymptotic bias. 

The M- estimators corresponding to 

O,(x) = A(x) Ixl _<- t 

=A(t)sign(x) I x l > t  

(where 0 < t <  ~ )  were introduced by P. Huber (1964, page 80) as solutions to 
his minimax asymptotic variance problem. In the special case F=~b, they 
correspond to min(t, max(x, - t ) )  and are generally called Huber estimators. We 
say that an M-estimator is optimal B-robust if it minimizes V(0,F) under the 
side condition of an upper bound on 7*(0). Hampel (1974) proved that the 0t 
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are optimal B-robust. Now that the range of ?* is known from Theorem 1, it 
becomes possible to list the complete solution of the problem of optimal B- 
robustness. 

Corollary l. The only optimal B-robust M-estimators are (up to equivalence) 
given by {@reed, I / / t ( 0 < t <  00)} i f  A is unbounded, and by {@med, 0 t (0< t<  oo), A} 
otherwise. 

Proof From an extension of Lemmas 1 and 2 of (Rousseeuw 1981) it follows 
that for each constant g in ((2f(0)) -1, 7*(A)) there exists a unique t in (0, oo) 
such that Y*(0t)= g, and that this 0t minimizes V(0, F) among all 0 in ~ which 
satisfy 7"(0)<g; moreover, any other solution is equivalent to 0t. Theorem 1 
implies that no solution can exist for any g <(2f(0))-1__ 7*(0med)" If one puts g 
=(2f(0)) -1, then only functions equivalent to 0med can satisfy 7 '(0)<g, and 
therefore the median itself is automatically optimal B-robust. Let us now 
consider the upper extremity 7*(A). If 7*(A)= o% the MLE is not B-robust. I f  
7*(A)< oo, the consideration of any g>7*(A) always yields A itself, because A 
minimizes V(0, F) in T (Cauchy-Schwarz). [3 

Theorem 2. The median is also the most V-robust estimator in 4. For all 0 in ~P 
we have ~c*(0 ) > 2, and equality holds if and only if 0 is equivalent to 0mea" 

Proof We start by proving the desired inequality. In case 0 is unbounded, it 
holds that 7*(0)= oo which implies ~*(0)= oo by Lemma 1. We may therefore 
assume that 0 is bounded, so 0< sup 10(x)l<~. We put this supremum 

x~.'-. C(O) 
equal to 1 w.l.o.g., so A(0)< 1. We also assume that in each point of C(0) (if 
any) the jump 0(c i + ) -  0 (c i - )  is positive, because otherwise again ~:*(0)= oo. 

Case A. First suppose that sup 10(x)l is reached by 0 or by one of the left 
x e]R'-. C(0) 

and right limits of 0 at points of C(0 ). We restrict our attention to [0, c~), 
where 0(x)>0 for x e N \  C(O). Case A.1 Suppose there exists ys[0, oo) such 
that y(~(C(O)uD(O)) and ]0(y)l=l. Then 0(y)=l ,  and y > 0  because of skew- 
symmetry of 0. Clearly O'(Y) =0. Finally ~(0, F, y) = 1 + 02(y)/A(O) ~ 1 + 02(y) 
=2, hence ~*(0)>2. Case A.2. Suppose there exists ye[0, ~ )  such that yeD(O) 
and 0(y)=l ,  or ysC(O ) and 0 ( y + ) = l .  Then there is some 6>0  such that (y,y 
+6)cN\(C(O)wD(O)).  For all e in (0, g) there exists a point z in (y,y+e) for 
which O'(z)<0, or else the supremum would become strictly larger than 1. We 
can therefore construct a sequence x,;y, x ,s (y ,y+ 6) such that 0'(x,)<0 for all 
n, hence S(O , F, x,) => 1 + O2(x,)/A(O). Now lim (1 + 02(x,)/A(O))= 1 +A(O )- 1 > 2, 

n ~ o o  

hence x*(0) > sup {~(0, F, x,); n > 0} > sup { 1 + 02(x,)/A(O); n > 0} > 2. 

Case B is the negation of case A. Now [0(x)l<l for all x e N \ C ( O ) ,  so 
A(0)<I,  hence 1 /A(0)= l+3e  where e>0. There exists 0 < K < o o  such that 
(C(O)wD(O))c(-K,K).  Clearly, sup 0(x)=1. However, sup0(x)<l  by 

[0, co) --, C(~,) [0, K] 
the Weierstrass theorem, because 0 is piecewise continuous and [-0,K] is 
compact. Hence, sup 0(x)= 1 and on this set 0 is continuously differentiable. 

(g, oo) 
There exists x > K  such that O(x)>(A(O)(l+2e)) 1/2. Case B.I. Suppose 
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~'(x) < 0. Then E(0, F, x) > 1 + O2(x)/A(O) > 2 + 2 e, hence ~c*(0 ) > 2. Case B.2. 
Suppose 0'(x)> 0 and there exists y > x such that 0'(Y) < 0. By continuity of 0', 
x<z=in f{ te[x ,y] ;  0'(t)<0}__<y and 0'(z)=0. But now 0(z)>0(x)  or we could 
find ue(x,z) with 0'(u)__<0 by Lagrange's mean value theorem. Thus Y,(O,F,z) 
= 1 + 02(z)/A(O) > 2 + 2e, hence ~:*(0) > 2. Case B.3. Suppose O'(Y) > 0 for all 
y>x.  It is clearly impossible that O'(y)>B(O)e/2>O for all y>x,  because then 
0 would ultimately grow larger than 1. Therefore there exists z__> x for which 
0'(z) _-< B(0) 5/2, and 0(z) > 0(x). Hence E(0, F, z) > 1 + 02(x)/A(O)- e > 2 + ~, so 
~:*(0) > 2. The inequality ~:*(0) > 2 is hereby proven in all cases. 

In the second part of the proof we suppose that some 0 in 7 j satisfies tc*(0 ) 
=2. This implies that 0 is bounded (Lemma 1), and again we put sup 10(x)l 

x~P. \ C(g,) 

= 1. Revisiting the different cases of the first part of the proof, we see that case 
13 is excluded because there always ~c*(~)>2. In case A, we can only have 
equality if A(0)= 1. By means of some elementary analysis it follows that 10(y)l 
= 1 for all y d R  \ C(0). The proof then proceeds as in Theorem 1. ll 

If we now replace 7*(0) by ~:*(0) in the definition of optimal B-robustness, 
then we can speak of optimal V-robustness. 

Corollary 2. The optimal V-robust M-estimators coincide with the estimators listed 
in Corollary 1. 

Proof. Lemma 1 implies that ~c*(A) is finite if and only if A is bounded. From 
an extension of Lemma 1 and Theorem 2 of (Rousseeuw 1981) it follows that 
for each k in (2, ~*(A)) there is a unique t in (0, c~) for which ~c*(0t) -- k, and 
that this Ot minimizes V(O,F ) among all 0 in ~ which satisfy ~:*(0)<k; any 
other solution is equivalent to 0t. Theorem 2 implies that no solution can exist 
for any k < 2. The result then follows as in Corollary 1. [3 

4. Redescending M-Estimators 

In this section we focus our attention to the subclass 

~ = { 0 e ~ ;  0 (x)=0  for all Ixl>c} 

of 7 j, where 0 < c < o e  is a fixed constant. This implies that Hampel's (1974) 
rejection point P*(0) is not larger than c, which means that all observations 
farther away than c are rejected. Such estimators are called redescending. They 
became well-known after their appearance in Andrews et al. (1972); for a 
recent survey, see Huber (1981, Sect. 4.8). On the other hand, estimators of this 
type go back to Daniel Bernoulli (Stigler 1980). 

In ~ ,  Lemma 1 becomes useless since each 0 is already B-robust by the 
Weierstrass theorem (being bounded on [ - c , c ]  because of piecewise con- 
tinuity), and this class does not contain any monotone functions. On the other 
hand, there exist elements of ~ which are not V-robust, such as the Huber-type 
skipped mean. The lower bounds for 7* and ~c* as given by Theorems 1 and 2 
remain valid, but they can no longer be reached because the median is not 
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redescending. Exact bounds will be given in the present section. Inspired by 
Theorem 1, we introduce 

@med(c)(X) = sign (x) 1[ . . . .  ](x). 

We call this estimator a skipped median, because observations farther away 
than c are skipped. (Here "skipped" refers to the Huber-type skipped mean, 
and not to Tukey's skipping procedures (Andrews et al., 1972).) 

Theorem 3. The skipped median is the most B-robust estimator in ~ .  For all ~ in 
we have 7*(0)__>[2(f(0)-f(c))] -1, and equality holds if and only if ~ is 

equivalent to ~med(c)' 

Proof The proof is a simple adaptation of that of Theorem 1, where the real 
line is replaced by [ - c ,  c]. [3 

The problem of optimal B-robustness also has to be solved anew, because 
the mappings 0t do not belong to ~ .  For all t in (0, c) we define: 

(At F=~b, we could say that q)~,t determines a skipped Huber estimator.) If we 
let t equal c, then the horizontal part disappears and we obtain 

~ = A l[_~,d. 

We also introduce the notation 

J(c)-- ~ d2dF, 
[-c,c] 

and it follows that A(~c)=B(~c)=J(c). (If F =  #, then ~c determines the Huber- 
type skipped mean, and J(c)= 2 q~(c)- 1 -  2c d)(c).) 

Corollary 3. The only optimal B-robust estimators in ~ are (up to equivalence) 
given by {~/rned(c), I~c,t(O<t <c), ~lc}" 
Proof By means of a reasoning analogous to Lemma 1 of (Rousseeuw 1981), 
we verify that t_~7*(~,c,t) is an increasing continuous bijection from (0, c) onto 
(~/*(0rned(c)), ~;*(~/c))" The rest of the proof mimics that of Corollary 1, keeping in 
mind that the upper endpoint 7"(~c)= A(c)/J(c) is always finite. [] 

Unfortunately, all 0-functions of Corollary 3 possess downward jumps at c 
and - c ,  hence they all have infinite change-of-variance sensitivities. Therefore, 
the most V-robust and the most B-robust estimators can no longer be the 
same. 

Lemma 2. There exist constants ~c c and B~ such that the fimction 

Zr = (Kr 1) 1/2 tanh [1S~(Kc- 1)1/2(c --Ix])] sign(x) 1L . . . .  l(x) 

belongs to ~ and satisfies A(Zc)=I and B(Zr c Moreover, K*(Zc) 
= ~ > 2F(c)/(2F(c) - 1) > 2 and 0 < V(Zr F)-I  = S2 < J(c) < I(F). 
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Proof. This is a straightforward generalization of Lemma 3.1 of Hampel, 
Rousseeuw and Ronchetti (1981), where 7~c was merely considered as an auxil- 
iary construction because it is not continuous. To prove ~c*= •c, note that ff(7~c, 
F,x)=~% if 0<Ix l<c .  

In Table i some values of ~c c and Bc can be found at F=~b. Note that the 
asymptotic efficiency e equals B~ because A(Zc) = 1 = I(~). Uniqueness of ~c and 
B~ will follow from Theorem4. Looking at Table 1, it appears that the esti- 
mator corresponding to Zc yields an acceptable alternative to the median 
(corresponding to c=  oo) provided c is not too small. Apart from a finite p* 
and 7* it also possesses a finite ~:*, so Zc is "more robust" than 1//meal(c). In fact, 
Theorem 4 states that Zc is most V-robust in ~ ,  a property shared by the 
median in iv. Moreover, C(Z~)= {0} = C(r and in both cases the jump is 
upward, so both estimators show the same behaviour at the center. Because of 
all this, we call the estimator corresponding to Xc a median-type tanh-estimator. 

Theorem 4. The median-type tanh-estimator is the most V-robust estimator in ~.  
For all ~ in ~ we have tc*(~)>=~%, and equality holds if and only if ~ is 
equivalent to Z~. 

Proof. Assume that ~:*(r Consider the function ( given by ((x) 
=r ) for xe(O,c)\C(r and ((0)=r which is continuous 
on [(0, c ) \  C(r w {0}, satisfies ((x) > 0 and is continuously differentiable on 
(0, c) \ [ c ( ~ )  • D(4/)]. 

Case A. Suppose sup ((x) is reached by ( on [0, c) or by a left or right limit 
[0,c) \ C(~0) 

of ( in a point of C(r Suppose w.l.o.g, that this supremum equals 1. Case A.1. 
Suppose there exists y in [0, c ) \ [ C ( r 1 6 2  with ~(y)=l.  Then y>0,  )G(Y) 
=~,(y) and ('(y)=0, hence r We have A(r and B(r so 
S(O,F,y)>~%. Case A.2. Suppose there exists y in [0, c) such that y~D(4) and 
((y) = 1, or y~ C(~,) and ((y +)  = 1. Constructing x,$y such that r < Z'~(x,) 
(see case A.2 of Theorem 2), we again verify that ~*(r ~%. 

T a b l e  1. Values of ~c c and B c at F = 

c ~% B c e Y* 

2.0 4.457305 0.509855 0.2600 2.6946 
2.5 3.330328 0.604034 0.3649 2.0688 
3.0 2.796040 0.668619 0.4471 1.7491 
3.5 2.505102 0.711310 0.5060 1.5694 
4.0 2.331507 0.739426 0.5468 1.4610 
4.5 2.221654 0.758161 0.5748 1.3922 
5.0 2.149604 0.770809 0.5941 1.3471 
5.5 2.101379 0.779423 0.6075 1.3168 
6.0 2.068765 0.785313 0.6167 1.2964 
7.0 2.031553 0.792091 0.6274 1.2731 
8.0 2.014392 0.795236 0.6324 1.2623 

10.0 2.002953 0.797340 0.6358 1.2552 
oo 2.000000 0.797885 0.6366 1.2533 
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Case B is the negation of case A. From ~c*(O)< ~ it follows that O(c)=0, and 
there exists M > - O ' ( x )  for all x. Choose 0 < b < c  such that [c -b ,c )  
c I R \ [ C ( 0 ) u D ( 0 ) ] .  Then O<tp(x)<M(c-x)  for all x in [c-b ,c] ,  hence 
sup ~ ( x ) < ~ ;  put this supremum equal to 1. Because sup ( (x)< l ,  we 

[c - 6,c)  [ 0 , c  - ~] -.  C (0 )  

have A(O)< 1 and B(O)<B~. Case B.1. Suppose there exists 0 < b ' < b  such that 
is nondecreasing on (c-b ' ,  c), hence ~(x)T1 for x'fc. There exists 0 < b " < 6 '  

such that ~2(y)>A(0 ) on [c-b" ,  c). Choose e>0  such that (1 -O/B(O)>I /B  c. 
There exists z in [ c - b " ,  c) such that O'(z )<(1-0  Z;(z), or else ~(x)< 1 - e  on [c 
-b",c) ,  a contradiction. Finally, S(O,F,z)>~c~. Case B.2. Suppose that for 
every 0 < b ' < b  the function ~ is not nondecreasing on (c-b' ,c).  By some 
elementary analysis, a sequence ( c - b ) <x ,~c  can be constructed such that 
~(x~)]'l and ~'(x~)=0 for all n. This implies O'(x,)=~(x,)z;(x,), so limO'(x,) 

n ~ o G  

= Z;(c-)  < 0. Moreover, lim O2(Xn)/A(~) = 0 --= lim Z~(x,). Finally, 
n ~ o o  n ~ o o  

~*(~) > lim Y.(O, F, x,) > ~c~. 
n ~ o o  

The uniqueness part is proven as in Theorem 2. [3 

Lemma 3. For each k > ~ there exist A, B and p such that 

Z~,k(x)=A(x) 0__<[xl__<p 

=(A(k-1))a/Ztanh[�89 p<[x[<c 

=0 e<lxl 

where 0 < p < c satisfies 

A(p) =(A(k - 1)) I/2 tanh [�89 - 1)B2/A)l/2(c -p ) ] ,  

belongs to ~ and satisfies A(Zc~k)=A, B(Zc,k)=B and ~:*(Zc,k)=k. Moreover, 
0 < A < B < J(c) < I(F) < ~ and V(Oc, F) < V(Z~,k, F) < V(Zc, F). 

Proof. This generalizes Theorem3.1 of Hampel, Rousseeuw and Ronchetti 
(1981). The inequality V((/c,F)<V(zc,k,F ) follows from Bz<J(c)A (Cauchy- 
Schwarz) and V(~, F) = J(c) - 1. 

The estimators determined by these Z~,k are called tanh-estimators. A dis- 
cussion of their properties and a table of values of A, B and p at F = ~ can be 
found in Hampel, Rousseeuw and Ronchetti (1981). Uniqueness of A, B and p 
follows from Corollary 4. 

Corollary4. The only optimal V-robust estimators in ~ are (up to equivalence) 
given by {Xc, Z~,k(k > K~)}. 

Proof. This follows from Theorem 4, combined with a straightforward generali- 
zation of Theorem 4.1 of Hampel, Rousseeuw and Ronchetti (1981). Note that 
the upper endpoint ~*(~) is always infinite. 

Remarks. This last situation completes the picture. Corollaries 1 and 2 depended 
on the upper extremities 7*(A) and ~c*(A) being finite or infinite. In Corollary 3 
we saw that ?*(~) was always finite regardless of F, so ~c is itself optimal B- 
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robust. In the last corollary ~c*(~c) is always infinite, so ~c is never V-robust. 
We further remark that optimal B-robustness and optimal V-robustness lead in 

to markedly different solutions, because the ~0-functions of Corollary 3 have 
abrupt downward jumps at c and -c ,  whereas those of Corollary 4 all 
redescend in a smooth way. 

In the case where also a scale parameter a occurs, it is possible to estimate 
a using the median deviation (Hampel 1974), given by MADn=median {IX i -  
median {Xj} l} (usually multiplied with a tuning constant). Then one can es- 

timate the location parameter 0 by means of ~ O((X i -  T,)/MAD,,)=0. 
i=1 

The sensitivities 7" and ~c* are local concepts, which may be compared with 
global ones. In fact, for M-estimators there is a relation between B-robustness 
(7*<oe) and a nonzero breakdown point (Huber 1981, p. 54 and p. 114, 
Donoho and Huber 1982, Sect. 1.2). Moreover, there also seems to be a con- 
nection between V-robustness (~*<oe) and a nonzero variance breakdown 
point (Donoho and Huber 1982, Sec. 4.2). 
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