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Summary. Each probability measure C on a first orthant is associated with 
a harmonic renewal measure G. Specifically we consider (N, SN) the ladder 
(time, place) of a random walk S,. Using bivariate G we show that when S~ 
is in a domain of attraction so is (N, SN). This unifies and generalizes results 
of Sinai, Rogosin. 

Introduction 

Let {Sn} ~ be a random walk generated by a random variable with step 
distribution F. Let N=inf{n :  S ,>0} be the first ladder index and S N the first 
ladder height. Our object here is t o  show that if S 1 is in a domain of 
attraction, then the bivariate (N, SN) is in an associated bivariate domain of 
attraction. The marginal results are theorems of Rogosin for N [11] and of 
Sinai [14] and Rogosin [12] for S N. 

We offer a unified treatment using harmonic renewal measures and double 
exponential representations. We rely heavily on the univariate results in [6]. 

w la. Univariate Case: Harmonic Renewal Measure 

Since we will heavily rely on the results for the univariate case we now 
formulate some theorems for that situation. We treat these results in such a 
way that they are optimally stated for future application in the bivariate case; 
the main methodology of the proof in the latter situation can be viewed as a 
generalisation from the univariate to the bivariate case. 

So let X~, X2, . . .  be i.i.d, with distribution C on (0, oo). We say that C is in 
a domain of attraction iff we can find constants a, Too such that a2l (Xl+. . .  
+ X~) converges in distribution to a r.v. nondegenerate at 0. 

Alternative formulations are contained in the well-known lemma. Lower 
case letters stand for LST (Laplace-Stieltjes transform) of corresponding capital 
letters. 
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Lemma 1.1. The following statements are equivalent for a. T m 
(i) a;  l(X1 + ... + X,) ~ U, non-degenerate at 0; 

(ii) gx=>0: C(")(a,x)-+ H(x)=P { U < x}, U non-degenerate at 0; 
(iii) Vs>0, n{1 -c(s/G)} -+ - l o g  h(s)~O. 

The conditions of Lemma 1.1 can be transformed into a variety of equiva- 
lent statements involving the tail of C or the harmonic renewal measure G 

o o  

associated to C. Recall that G (x) = ~ n-  1 C(,)(x) and that 1 - c (s) = exp - g(s). 
1 

Lemma 1.2. Let 0 < f l <  1 and L ~ s.v. Put R(x )=x  -p L~ The following state- 
ments are equivalent." 

(i) i [ 1 - C ( y ) ] d y ~ x R ( x ) / F ( 2 - f i )  as x-+m; 
0 

(ii) Vt>0:  G(xt)+logR(x)--+fly+fl logt  as x-+m; 
(iii) g0>0 ,  g(Os)+logR(1/s)-+-fi logO as s~O. 

Proof. (i)<=>(ii): It follows from Theorem 1 and 2 in [6] that (i) is equivalent to 

G(x) + log R(x)-+ fi T. (1) 

Change x into x t and use R(x t)/R(x)-+t-r 

(ii)*>(iii): Again in [6] it was shown that (1) is equivalent to 

g(s) + log RO/s)-+ o. 

Put s equals 0 s to obtain Off). [] 

As a guideline for the bivariate case we briefly indicate one possible 
procedure to link the above two lemmas. 

Assume (ii) of Lemma 1.2 holds. Then for any sequence antra and 
0 < x < u < m  

U u 
j G(a. dp)= G(a. u) - G(a. x)-+fl log - =  5 L(dp). 
x X x 

But then for 0e(0, oo), xe(0, oo) 

0 G(anx)=5(e_O,_l)G(Gdu) + e_OUG(a, du ) g 
0 x 

oO 

-+ 5 ( e-~ --I(o,x)(P))L(dp). 
0 

Or for 0e(0, m), xe(0, m), (2) implies 

(0) 
g ~ - a ( a  n x) -+  - fl(y +log 0 x) =- 7(0, x) 

(2) 

(3) 
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where we used the explicit form of L and one of the possible representations of 
Euler's constant [5, p. 946]. 

7= -1ogn =~(l-e- )---je- -- (4) 
1 0 W 1 W 

However (3) implies that for 0e(0, ~ )  

g - g  ~7(1, 1)-7(0 , 1)=fllog 0. 

Choose a, in such a way that g(1/a,)=logn then using -g(s)=log(1-c(s)) we 
get 

log n + log(1 - c(O/a,)) ~ log [ - log h(0)] =/3 log 0 (5) 

which is (iii) of Lemma 1.1 with h(O)=exp(-OP). 
The point of the above analysis is that in the bivariate case we do not have 

such a simple expression for the limit quantities L and h. In the bivariate case 
a relation of the form (2) is given in Lemma 3.1. The consequence (3) is treated 
in Lemma 2.2. The analogue of (5) is the content of Theorem 3.2. 

w lb. Univariate Case: Double Exponential Representations 
of Infinitely Divisible Distributions 

The limit h can be put in a form that generalizes to more dimensions. Suppose 
that C is infinitely divisible and let C (t) denote the t-th power of C, i.e. the 
distribution corresponding to the LST d(s); equivalently C (t) is the distribution 
of X t where X is a process with stationary independent increments such that 
XI has distribution C. 

We will use the Frullani integral form of log(a/b), i.e. for a > 0  and b > 0  [5, 
p. 3341~ 

a ~ e - a w - - e  -bw 
dw.  - l o g ~  o w 

Write a =  1 and b = - l o g  c(s); then successively 

or  

oo 

l ogF- log  c(s)] = ~ w-l{e-W-[c(s)] "~} dw 
0 

= ! w - 1  e-W-o ~e-s=P{XwEdz} dw 

= ~w-l{e-W-e-~z}p{x,~edz}dw 
0 0 

oo 

log[ - logc(s ) ]  = ~ w-l{e- '~-e  -~z} C(W)(dz)dw. 
0 0 

(6) 
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Hence when C is infinitely divisible we have as a companion to 

log [1 - c(s)] = - ~ e-SZ G(dx) 
0 

the "continuous time" representation (6). We call (6) the double exponential 
representation of the distribution C or of its transform c. 

It is useful to note at this point that the above derivation of (6) is equally 
straightforward if C is a distribution on ( - ~ ,  oo) and c its characteristic 
function, or, in fact if C is a distribution on a higher dimensional space. The 
bivariate version of (6) will be used in w 2. 

Return to (5). Then as 

log{ - l o g  h(s)} -- ~ ~ w-l{e  -w - e  -sz} B(W)(dz) dw 
0 0 

we can write for sE(0. oo) 

l o g n -  + l _ e _ ~  ) _1 c(m)(a~dx)_ e -~x _ C(m)(a. dx) 
m = l  gn 0 m=l m o r e = n + 1  /T/ 

oo OOdw 
- 7 +  .[ (1 - e  -~)  ~ - -B(W)(dx)-  ~ e - S ~  B(W)(dx) (7) 

0 0 W 0 1 W 

where we performed some simple algebra on the double exponential repre- 
sentation of h(s). 

The limiting operation in (7) constitutes another alternate form of the 
conditions listed in Lemmas 1.1 and 1.2; it tells us that the convergence of the 
functional of a sample path of the random walk which can be read from either 
side of (7) is equivalent to the regular variation of C. 

The analogous version of (7) for bivariate C is of additional interest and 
use because in the bivariate case we do not know how to write the characteris- 
tic exponent - log  h for the limiting stable distribution in closed form. 

w 2. Bivariate Case 

Let C be a distribution on (0, oo)x (0, oo) such that C(0+, 0 + ) = 0  and let c be 
its Laplace-Stieltjes transform; let G be the corresponding harmonic renewal 
measure with LSTg.  Hence 

V2=O,p__>O 

V2__>0,/~>0 

V2>0,#_>_0 

(3O 

c(2,#)= j e x p - ( 2 x + # y )  C(dx, dy) 
0 0 

G(x, y)= 1_ y) 
n = l  n 

1 - c(2, #) = exp --g(2, #) 

g(2, p)= ~ ~ e x p - ( 2 x + # y ) G ( d x ,  dy). 
0 0 

(8) 
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A bivariate distribution C is in the domain of attraction of a bivariate stable 
distribution H if there exist real sequences a.To% b.i"oo such that for x>0 ,  
y_>_0 as n--*oo 

C (")(a, x, b, y) ~ H(x, y) 

in the sense of convergence of distribution functions. The distribution H is, by 
definition, bivariate stable if it is such a limit. 

Conditions equivalent to the bivariate domain of attraction condition in 
the more general setting where C is a distribution on IR z and centering 
constants may also appear, were obtained by Resnick and Greenwood [7]. 
The following additional result is also useful. 

Lemma 2.1. The following statements are equivalent 
(i) V(x, y)MR 2" C(")(a,x, b , y )~H(x ,  y), 

(ii) V 2 > 0 , / ~ > 0 : n { 1  -c(2/a, ,  #/b,)} ~ - l o g  h(2, #). 

Going from (2) to (3) is generally possible in the bivariate case as shown in 
the following result. Let G be as defined in (8). 

Lemma 2.2. I f  for (x, y, u, v) satisfying 0 < x < u, 0 <= y < v but x > 0 or y > 0 

x y  x y  

as n~o% then for positive O, t7, x, y there exists a function 7(0, 17, x, y) such that 

( 0 ,  , ) -G(aox,  b,y)-~ ~(0, ~, x, y). (10) g ~ y ,  

i f  (9) holds with v = 0% then (10) holds with y = oo. 

Proof The hypothesis implies convergence of the measure G, associated with 
G(a, x, b, y) on Borelsets in IR 2. 

Let A(x, y)=(0, x) x (0, y) and A(x, y)C =A(oo, oo)-A(x, y). Then 

(O, ~l)-G(anx,  b,Y) = SS [e-~  du, b, dr) g2. y. 
A (x, y) 

+ ~ e-~ du, b, dv). (11) 
A ( x , y )  ~ 

Denote the first integral on the right of (11) by I,(x,y), the second by 
II.(x, y). 

Pick e > 0. By assumption for x > a, y > 

But 

I.(x, y ) -I . (a ,  e)-+ ~ [e -~ - 1] L(du, dr). 
A ( x , y ) - -  A(~,r 

O< -I.(~,  ~)< S~ (Ou+rlv)G(a, du, b, dv). 
A (~:, a) 
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3C 

For the first term of the integral we write Gl(x ) = ~ u G(du, oo); then 
0 

OG 

i u i G(a, du, b, dv)< ~ u ~ G(a, du, b, dv)=a21Gl(a,e). 
0 0 0 0 

But G 1 satisfies the conditions of Lemma 3.1.1 in [6]. Hence uniformly in n, 
Gl(a,e)<__a,e and II,(e, e)l<e(0+t/). Letting n--, oo and then e~0 we find 

I,(x, y)~ ~ (e -~ 1) L(du, dr). 
A (x ,  y) 

We pass to II., and write II.(x,y)=IIn(xo, Yo)+(II.(x,y)-II.(xo, Yo)) where 
(Xo, Yo) will be determined directly. By assumption the second part of II.(x, y) 
will converge. Now 

c~ yo 

II.(Xo, yo)= ~ ~ e -(~ G(a.du, b.dv) 
Xo 0 

(X) O0 

+ ~ ~ e -(~ G(a. du, b. dr). (12) 
0 yo 

The first integral on the right, say J,, is estimated as follows: 

But as proved 

uniformly in n 

Jn< S ~ e-~ l.G(a, du, b, dv) = e-~ du, oo) 
Xo 0 Xo 

O0 

=0 ~ e-~ oo)-G(a, xo, oo)} du. 
xo 

in Lemma 3.1.1 [6], IG(u, oo)-G(v, oo)l<l+log u .  Hence 

J.<O S e -~ l + l o g  u du 
Xo k X o J  

and this can be made as small as we want by taking x o large enough. 
A similar argument estimates the second integral on the right of (12). 
This proves the lemma. [] 

The form of the limit in (10) can be conveniently written as 

7(0, rl, x, y)-- ~ {e-~215 q)} L(dp, dq). 
0 0 

(13) 

For future reference we write down the double exponential representation for 
the case when C is infinitely divisible: for 2>0 ,  # > 0  

l o g { - l o g c ( 2 , # ) } = ~ [ e - W - e - ~ ' - # ' ] C ~  dy) dw. (14) 
0 0 0 W 
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w 3. The Bivariate Distribution of (N, SN) 

Now we consider a random walk {Sn} ~ generated by $1; we let N=in f{n :  
S, > 0} be the ladder index and S N the ladder height. From now on 

C(x, y)=P{N <x, S~ < y}. 

The Spitzer-Baxter identity provides an identification of the harmonic renewal 
measure G associated with C in terms of the distributions of {S m, meN}. 
Indeed 

log{1-c(X,u)}- S mP[S edY]  (dx) 
0 0 ( m = l  

where 6 m is a unit-step distribution at m. Hence 

G(dx, dy)= 
1 

~=1 mP[Sm~dY] 6m(dx) 

or in integrated form 

[x] 1 
G(x,y)= ~ --P[O<Sm<=y ]. (15) 

m = l  m 

We first show that if S 1 is in a domain of attraction, G satisfies (9). From the 
resulting relation (10) we then show that (ii) of Lemma 2.1 is satisfied. On the 
basis of [6] and Lemma 1.2 one might expect that we should look for a 
bivariate version of de Haan's result [1] linking the bivariate G to g and hence 
to c. We leave these questions aside and prove a result which looks like a 
deHaan-type theorem in two variates, but which is actually univariate along 
certain curves in 2-space. 

We now provide the bivariate analogue of (2). 

Lemma 3.1. Suppose 0 < c , ~ o o  is chosen in such a way that S,/c,--+X1, stable 
with index c~. Let G be defined by (15). Then for 0 < x < u < o %  O<=y<v<oo but 
x > 0  or y > 0  

" 1 

x y  y 

where {Xt, t >0} is the associated stable processes. 

Proof. First assume 0 < x < u < o e ,  0 < y < v < ~ ;  then the left hand side of (16) 
can be written as 

u n 
! ~ P { y < c 2 1 S [ , t ]  _-<v} dr. 

By assumption P{y<c21S[,t]<v}--+P{y<Xt<v}; since X~=tI/=X1 and X1 has 
a continuous distribution, the convergence is uniform [9, p. 139]. Also uni- 
formly n/[nt]~l/ t .  From the uniform convergence of the integrands to a 
continuous limit it follows that the integrals converge. 

Let now y=0 ,  v=e, for a fixed e>0.  Then an entirely similar argument 
yields the required convergence on Ix, u] as long as x > 0. 
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Finally, let x=0 ,  u=e,  v<oo but y>0 .  The next argument has been 
inspired by a result of Heyde [-8, p. 306] on large deviations. We look for an 
upper bound on P [-Sm > c, y] where 1 _-< m __< [-n el. 

Let Yk--Sk--Sk_l (k>l ) ;  take Y~ as a symmetrized version of Yk; finally 
truncate Yk s at z -- c. y: 

{y, s if ] YkS[ --< Z l k 

Yk = 0 if not. 
Then 

P { k~= YkS > z } <= m P { , YkS , > z } + P { k~__ l Y ~ >z}.  

Put for brevity H ( x ) = l - F ( x ) + F ( - x )  and U(x)= i y2dF(y) where F is the 
- x  

d.f. of Y1 =$1. By a weak symmetrization inequality [10, p. 257] we obtain 

{ z } < = 2 H ( z / 2 ) .  P{lYkSI >Z} < 2 P  ]Ykl > ~  

By Chebyshev's inequality and part of Heyde's reasoning 

P >z ~?,-2E '2<=2mz-2 xP{lY;l>x}dx 
0 

z/2 

> 16mz -2 ~ yH(y)dy=2m{H(z/2)+ 8z -2 U(z/2)}. 
0 

Combining the above inequalities we get 

P >z <4m{H(z/2)+2z -2 U(z/2)}. 
k 

Since S 1 belongs to the domain of attraction of a stable law with index e, 
uZH(u)/U(u)-*(2-cO.c~ -1 as u~oe ,  [-3, p. 313]; moreover U(u)~uZ-~L(u)for 
some s.v. L, [-3, p. 312] while c, is determined by nc~ZU(cn)--~l. Hence 
z -2 U(z/2)=y-2c~ 2 U(�89 -1. But then there exists a constant K1 
independent of m, n and e such that 

P Yk s >Z <KlY - ~ -  
1 n 

This is the desired inequality for the symmetrized sequence. Using another 
weak symmetrization inequality [10, p. 257] we find a constant K 2. 

m 
P{S m-#,. > z} < K 2 y-~-- (17) 

n 

where g,, is a median for S,,. 
In order to get rid of #~ we first note that #re~c,. is a bounded sequence; for 

if not take a subsequence m'~oo along which say #m,/c,.,--, oo. Then by as- 
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sumption 

�89 <=P{Sm, >=#m'} =P{(Sm'/cm' => (#m'/Cm')} --*P{X1 ~ o0} 

which is a contradiction. Hence for 1_  m < [n 8] and constants K i (i= 3, 4, 5) as 
before we have 

I#m[/c, = K3 (%/G) = K 4 (cr,~I/G) < Ks el/~ =- e'. 

Indeed c, is a r.v. sequence with index e-1 and hence is asymptotically 
monotone. It follows that 

P{Sm>c,y} <P{Sm-#, ,>Gy'}  

where y ' = y - e ' .  By the first part of the proof we can assume without loss of 
generality that y ' > 0  by taking e small enough. Then by (17) finally for 
1 G m < [ n s ]  m 

P{S m > c, y} < K 2 (y')-~ --. 
n 

Returning to (16) we see that 

[n~] 1 
i i G(ndp, Gdq)= E mP{GY<Sm<c,  v} 
Oy m=l 

["~1 1 
< ~ --P[GY<Sm]<K2(Y') ~e. 

m=l m 

On the right hand side of (16) we remark that by the stability of the limit {X~} 
there exists a constant K' such that 

P{y <X~} =P{y t -1/~ <X1} _-<K' y-~ t. 
Hence 

i d--tt ! P{Xt~dz} <-_K' y - ~ .  

Letting e+0, (16) is fully proved. [] 

As a consequence of the above lemma we obtain 

OO dt 
7(O'rl'x'Y)= ! t o t~ ~(o,~)• P{Xt~dz} �9 

We finally prove our main theorem. We will choose the {G} sequence on the 
basis of the domain of attraction condition of N; the sequence {b,} will then 
automatically be determined. 

Theorem 3.2. Suppose that S a is in a domain of attraction of a stable distribution 
with parameters c~,p,q where 0<cr but ~ 1  unless p=q=�89 Let 0 < c , ~ o o  
be chosen in such a way that S,/c,----*X 1. Then (N, Su) is in a bivariate domain 
of attraction and the limiting Laplace-Stieltjes transform is h(2, #) where 

log{-log h(Z #)} {e P{X  dz} 
d w. 

o o w 
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P r o o f  Let  GN(x)= G(x, oo) be the ha rmon ic  renewal measure  corresponding to 
N. Since Sjc n converges, N is in a domain  of a t t rac t ion  of index fl = P ( X  1 > 0). 
See [2, 10] or example  1 in [61. Note  that  e=~ 1 unless p = l / 2  is basically used 
here. 

By (ii) of L e m m a  1.2 there exists a sequence of constants  0 < d , ~ o o  such 
that  for 0 < y and n ~ oo 

GN(n y)-  log dn--+ fl y + fl log y. 

By the definition of G N then 

n 

GN(n)-logd,= ~ 1p(s,,>O)-logd,~flY. 

Define for all n >  1, an=n and b~=G; then by (16) 

')" ci~ ! i  1 lim G(dp, dq) = t P{Xt~dz} dt 
n--~oc nx  r Y 

and hence for 2 > 0 ,  # > 0  by (10) 

g(2/n, #/c,)-G(n, o o ) ~  7(2, #, 1, oo). 

We work  towards  (ii) of  L e m m a  2.1. Let  us write 

logd.-g(2/n,#/c.)={logd.-~11mP[Sm>O] } 

+ - -  1 - e x p -  + 8m(dx) PESmsdy] 
m = l  0 o m 

- meXp-(2x+#Yt6m(dx)P[Sm~dy ]. 
m = n + l  0 0 \ H C n / 

The first te rm has limit -177 as n ~ o o ;  in the two other  terms one uses the 
effect of the point  masses c~.~ to write 

lim {log d . -  g(.~/n, #/c.)} 
n ~ o o  

= - f l y +  lim 1 - e x p -  + cSm(dx) P[Sm~dy] 

- m exp - c~,,(dx) P[S,,edy] 
m = l n  0 \ I ~  C n ]  

= - f l Y +  lim {G(n, oo)-g(2/n, #/c.)} 

= - ~ 7 - 7 ( , ~ , # ,  1, ~). 

Replace [d.] by m then for some sequences 0 < a ~ o o  and 0 < b ~ , ~ o o  

log rn + log { 1 - c()L/a'm, #/b~)} --+ - fl 7 - 7( 2, #, 1, oo). (18) 
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It remains to identify the limit. Now by (13) 

log{ - log h(2, #)} = - f l  7 - ~ Y [ e-~'-" '-I(o, 1)(t)] P[Xtffdz] 
d t 

0 0 t 

=--13~ ~ ~ {e-'-e ;.t-..} p[Xt~dz] 
dt 

0 0 t 

+ ~ ~ {I(o,l)(O-e -t} P{X,~dz}  dt 
0 0 t 

The last integral is easily evaluated using (4); it equals 7P[X t >0]  =7/~ since fl 
=P[X ,> O ]= P[XI>O] .  [] 

According to (14) we expect log{-logh(2,#)} to be of the form given in 
the double exponential representation for some H (w). Denote by (Yl(t), Y2(t)) 
the limiting bivariate stable processes associated with a random walk having 
steps distributed like (N, Ss). Then we can write 

l og{ - l og  h(),, #)} = J [e ' - e  - ; ' ' - " ' ]  P{(YI(t), Y2(t))~(dx, dy)} dt 
o o o  t 

Theorem 3.2 gives alternatively 

l og{ - log  h()~,/~)}= ~ ~ ~ [e - t -e  -x~-"' ]  g),(dx)P{X,~dy} dt 
o o o  t 

Hence we see that the measures P{(YI(t), Y2(t))~(dx, dy)} and 6,(dx)P{X, mdy} 
play the same role in the representation of log{-logh(L,/~)}. This does not 
mean, of course, that the measures are the same on IR2+; it actually is the 
continuous time analogue of the fact that on (0, oo) 

m = l  n l  m = l  

where C(dx)=P[SNedx ]. 
The form of log{- logh(2 ,  ~)} in the theorem is the form of the characteris- 

tic exponent of the time-space maximal process of any L6vy process X t found 
by Fristedt [4]. In the present setting, X t is the limiting stable process as- 
sociated with the random walk S,. 

Corollary 3.3. Suppose S 1 is as in Theorem 3.2. Then (N, SN) is in the domain of 
1 

attraction of a stable law on IR2+ with parameters (fl, o:fl) where f l = ~ + ~  and 
with c5 defined by 

P-q= (tan~)/(tanT)" 

Proof The value for 13 =P[X1 >0] is well known. See for example [2, 6]. By (ii) 
of Lemma 1.2 

G N (x) + log R (x) ~ fl ? 
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where R(x)={xL(x)} -~ for some s.v.L. In the 
sequence d, by 

GN(n ) -- log d, ~ ]3 ~. 

theorem we identified the 

Hence by (ii) of Lemma 1.2 R(n)~l/d, or nL(n)~d~, or n~d~/~L*(dan/~) where 
L* is the conjugate of L [13]. However we defined m by m = [ d , ] ;  hence we 
obtain similarly that n~ma/~L*(ml/~). 

On the other hand S 1 also is in a domain of attraction of a stable law with 
parameter c~; hence for some s.v. L 0 

as n - ~ .  Hence in (18) 

and 

C n = n 1/~ L o (n) 

a'~=n or a'~ml/t~ L*(ma/~) 

b~=c, or b~ml/(~t~)Ll(m) 

for some s.v. L 1 [13, p. 18]. 
Reversing the argument, used above for N, we find that S N is in the domain 

of attraction of a stable law with index c~/3. [] 

The above corollary unifies some results of Rogosin [12]. Since 1 6 l < l - [ 1  

-c~l, 0<]3<1  if 0<c~<1 and 1 __1</~__<_1 if l<e__<2. Hence c~/3__<1. If e=2 ,  S 1 

is in the domain of attraction of the normal law and the sample paths are 
continuous; then/3=�89 and c~/~=l. If ct<2 and e / ? = l  then S 1 is in the domain 
of attraction of a spectrally negative stable process. If e ( 1 - / ~ ) = l  then the 
index of S N is e/~ = c~-1, a separate result of Rogosin [12]. 
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