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A generalized random walk is a process of partial sums of a stationary and 
ergodic sequence of random variables. It is remarkable that many results of 
random walk theory (where the variables are supposed to be independent) 
carry over to this general setting. In Sect. 1 we give the basic definitions and a 
survey of some of the main results (which are rather scattered around in the 
literature). In Sect. 2 we give an example of a symmetric one step transient 
generalized random walk on 2g 2, whose increments have mean zero. In the last 
section we generalize this construction, obtaining a class of generalized ran- 
dom walks which might be called deterministic, as the corresponding dynami- 
cal systems have zero entropy. A related class of random walks is studied in 
[1]. Thanks are due to Karl Petersen for introducing the author to some of the 
relevant literature. 

w 1. Generalities 

Let A be a locally compact, second countable group with unit e. Although the 
following can easily be adapted to make sense in general, we shall simplify 
somewhat by assuming A to be abelian. Then A is metrizable, and we might as 
well suppose that the topology on A is given by a symmetric invariant metric, 
determined by a norm II.I}- 

Let (X,),~ ~ be a stationary and ergodic sequence of A-valued random 
variables on a probability space (f2, ~ ,  P). As usual, we suppose f2=A ~, with 
~- the product ~r-algebra of the Borel g-algebra of A, and assume that X n 
= X l o T  " - i ,  where Xl(co)=co 1 if co=coio~ z .. . .  Here T : f2 ~ f2  is the shift 
defined by (Tco),=co,+ 1. Stationarity of (X,) is equivalent to shift-invariance of 
P, and ergodicity to triviality of the a-algebra of shift invariant measurable 
sets. 

The process (Sn),~ o, defined by S o = e  and S , = X i + . . . + X  . for n>0,  is 
called a generalized random walk (GRW) on A (starting at e) ([2, 10, 14]). 
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An open neighbourhood base of e is given by (U~),>o, where 

g~={x~A: /Ixll <8}. 

A G R W  (S,) is called recurrent ([10]) if 

P[3n>O:S, eU~]=I for all e>0.  

If (S,) is not recurrent, then (S,) is called transient. If follows readily (proving 
by induction that P [ S , ~  U,, m> n] = 0  for all e>  0) from the stationarity of (Xn) 
that (S,) is recurrent iff 

P[S,~U~oo-often]=l for all ~>0  

([10, Cor. 11.2]), and hence that (Sn) is transient iff 

P[lISnll ~ o o ]  = 1 

([10, Cot. 11.3]). We remark that in [3] the case is considered where the 
increments (X,) are merely stationary. 

We shall now define a useful notion for studying transience and recurrence 
of a GRW. 

Let 2 be a Haar measure on A. Let U~(x)=U~+x for xeA. Following [7] 
we define the range R~=Rn(U) of (S,) w.r.t. U, by 

R~= R~(U~)= 2 ~O1u~(sk) ). 

It is observed in [12, 7] that R, is a subadditive function: 

Rn+m~'~ (k@= l Ue(Sk) ) + 2 (kO= l ue(Sn+k) ) 

=Rn+ 2 ~O U~(S,+k-S~))=Rn+ Rmo T ~. 

The subadditive ergodic theorem then yields 

Theorem 1 [12, 7]. Let (S~) be a GRW. Then for all e > 0  

R,(U~)-. S P[S,q~ U~(x), n=  1, 2, . . . ]  d2(x)= : C(U~) a.s. 
n u~ 

If (S,) is transient, C(U) is called the capacity of U. In case A = Z ,  C({e}) 
=P[S~#e, n = l ,  2 . . . .  ], and Theorem 1 has been proved for random walks by 
Kesten, Spitzer and Whitman ([11, p. 35-40]). 

Theorem 2. A GRW(S.) is recurrent iff for all e > 0  

R~(U) ~0 a.s. 
n 



Generalized Random Walks 461 

Proof. Suppose (S,) is recurrent. Let e>0, x~U~ and let a=e-Hxl l .  Then 
U a = Ua(e)c U~(x). Hence 

P[S~r U~(x), n = l ,  2 . . . .  ]<P[SnCUa, n = l ,  2, ...] =0. 

So C(U~)=0. If on the other hand C(U~)=0 for all e>0, then 0 
= C(U~) > 2(U~) P IS, 6 U2~ , n = 1, 2,. . ,] .  Hence (Sn) is recurrent. [] 

In [13] there is a neat proof of an interesting result by means of the 
recurrence criterion furnished by Theorem 2. 

Theorem 3 [2, 10, 13]. Let (S,) be a generalized random walk on N, with 
E [Xll < oe. Then (S,) is recurrent iff EX 1 =0. 

Proof ([13]). If EX 1 =~0, then the transience of (S,) follows easily from the 
ergodic theorem. 

Suppose EXz =0. Let 2 be Lebesque measure. By the ergodic theorem there 
exists for any c5>0 an no--no(~ ) such that ]Sk[<k6 for k>n  o a.e. 
Hence for all n 

R,(U~)<R,o(U~)+2((-n6 , na))<2eno+2n3 a.e. 

1 
Therefore l imsup-R , (U~)<b a.e. As 6 > 0  can be arbitrarily small, 

n ~ o o  n 

1 
- R,(U~)---,O a.e. By Theorem 2, (S,) is recurrent. [] 
n 

Theorem 3 raises the question whether there exist transient GRW's on IR 2 
with EXI=0 .  There is an example in [5], where the increments are even 
independent, but var X 1 = oo. In [13] there is a rather complicated construc- 
tion (due to Berbee) of a transient one step GRW in ~2 with EXI =0. In the 
next section we present an example of such a GRW, based on a familiar geometri- 
cal object: the Peano curve. 

w 2. The Peano Curve as a Generic Point for a Generalized Random Walk 

In the sequel we only consider one step GRW's (i.e., [IX1] [ - 1 )  in 77 z, so we 
may shrink our probability space to f 2 = J  ~, where d is a four element set, say 
J = {0, 1, 2, 3}, and take X 1 defined by 

Xz (co) = (cos (2re ~k ) ,  sin (2re ~ - ) )  if co = coa co 2 .... (1) 

If P is the shift-invariant ergodic probability measure determining the GRW, 
then we denote (S.)= (S,P). 

We call (S, P) symmetric if P is a-invariant, where a: ~?~Q is defined by 

(a(co))n = ((a(co) + 1) rood 4), for n = l ,  2, .... 
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Fig. 1 

K2 

Consider the usual approximating polygons K m to the Peano curve [4, p. 400], 
but unscaled: each curve consists of 9 m line segments of length 1, and Kin+ 1 is 
obtained from K m by scaling each segment in K~ by a factor 3, and replacing 
it by a copy of Ka, having the same direction (cf. Fig. 1). Obviously K~+ 1 
starts with K~ for all m. We shall define an co~ such that the f inite walk 
(S,(co~ passes through the consecutive vertices of Km for all m. Recall 
that 

So(co)=(0, 0), s.(co)= Z x (co)= X (T co) 
k=l k=l 

for all coe~, X 1 as in (1). So our goal will be achieved, if we put 

coo coo ... coo = 0 1 0 3 2 3 0 1 0-=: V, (2) 
and 

co9k- S 0  co9k- 7 0  ... coO k = 0-J (0) aJ(1) ... aJ(0) ---- aJ(V), (3) 

where " o J=cok, for k = l , 2 ,  .... 
We say that a word (i.e., a finite string of elements from J) B = b  I b z ... bp 

occurs in a word C = c  lc  2...  cq, if b lb  2...  bp=Ck+lCk+ z . . .  Ck+ p for some k. We 
denote by freq (B; C) the number of occurrences of B in C, divided by the 
length q of C. 

For  a word B = b  lb  2. . .bp,  let 

[B] = {coef]: col =b l  . . . .  , cop=bp} 

denote a cylinder. For each k > 1 we define a probability measure Pk on f2 by 

pk([B])=freq(B; o o o col ~ COk) (4) 

for any cylinder [B]. The special structure of coo (in the terminology of Oxtoby 
[91, co o is a transitive point; see also the next section) brings forth that 

P([B]) = lim Pk([B]) (5) 
k~oo 

exists for all cylinders [B], and that P is a shift-invariant, ergodic probability 
measure. Let (S,e), with increments (X,), be the generalized random walk 
determined by P. We first show that E X  1 ~-0. This will follow if X~ takes all 
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values with equal probability, i.e., if P([j])=�88 for all jed. (A little more work 
yields that P is symmetric). To see this, note that (3) implies 

Pgm§ '([J])= ~ Pg~([il) ~ij (6) 
i~J 

for jeY, where ~ij=freq(j;  ai(V)). Letting m--+ oo in (6) yields P([.])= P([.]) FI 
where the matrix H=(rhj  ) is double Markov, hence P(I,.])=(�88 �88 �88 �88 We now 
show that (S () is transient. Let coeSuppP. Then P(i,olc%... C0k])>0 for all 
k > l .  By (4) and (5) this implies that colco2...co k occurs in co~176 ~ for 
large enough N=N(k). The walk (Sn(~O)),k=0 is therefore a subwalk of the walk 
(S,(c~176 o- But from the construction of the Peano curve it is obvious that no 
lattice point is visited more than twice by (S,(co~ So this holds for all 
coeSupp P. Hence (S, e) is transient. 

w 3. A General Construction 

It is not the space filling property of the Peano curve which makes the as- 
sociated GRW transient, but rather the fact that it visite no lattice point more 
than twice. To eludicate this we now consider a more general class of exam- 
ples, which contains instances both of transience and of recurrence. 

Let d*=  ~ ) J "  be the set of finite words over J={0 ,  1,2,3}. A map 
n=0 

0: J* ~ J *  such that for all V, Wed* O(VW)= O(V)O(W) is called a substitution. 
The mth iterate 0" of a substitution 0 is defined by Om(W)=Om-l(oW) for 
Wed*, m = 1, 2, .... Suppose 0 is the first symbol of 0(0), and that rm, the length 
of 0~(0), tends to infinity as m ~ oo. Then 0 determines an infinite sequence co ~ 
by requiring for m = 1, 2, ... 

•o... m_ 0m(0). (v) 

A substitution 0 is called primitive if for some m > 0  all jeJ occur at least once 
in all om(i), ieJ. It is known (i'8]) that for primitive 0 

P0([B]) = lira freq (B; 091~ 0920 ... co~) (8) 
k ~ c o  

exists for any cylinder I-B], that Po is a shift-invariant and ergodic probability 
measure, and that for all jeJ 

P0(I,B]) = lim freq (B; 0re(j)). (9) 
m ~ o o  

We now specialize. Let V be any word in J* starting with 0. Then V de- 
termines a substitution 0 by requiring for jeJ 

o(j)  = ( lo)  

Unless Va{0}* or Ve{0, 2}*, 0 is primitive. For the primitive case, let co V be 
the sequence given by (7), pV the ergodic probability measure given by (8), and 
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(S v) the associated GRW. From (10) it follows that Om(j)=aJOm(O) for all m>0 ,  
so (9) implies that pV is ~r-invariant, i.e., (S v) is symmetric. In particular its 
increments have zero mean. Even if V is such that  0 is not primitive, then V 
still determines a G R W  (sV), but (S v) is restricted to the x-axis, and (9) only 
holds for j = 0  (in case VE{0}*) or j=0, 2 (in case Ve{0, 2}*). We remark that  
pV has no atoms, unless ("v is periodic. (It follows from [6, p. 266] that this is 
the case - for primitive 0 - iff the period is 4, and the repeating word is a 
permutat ion of J). 

Definition. Let ("cO be fixed. The infinite walk (Sn((")) is called resolvable if it 
never retraces itself in the same direction, i.e., if S,((")=S,,((") and Sn+l((" ) 
= S,, + 1 ((") imply that  n = n'. 

Proposition. Let V be a word of length at least 2 from J*. The GRW (S v) is 
transient iff the walk (S,(("v)) is resolvable. 

Proof. First suppose (S,(("v)) is resolvable. Then (S,(("v)) visits no lattice point 
more than four times. Hence (cf. the end of Sect. 2), for all (" ~ Supp pV, the 
walk (S,((")) has the same property, so (S v) is transient. 

Suppose (S,(("v)) is not resolvable. Then for some k > l ,  the finite walk 
S (("v~,k retraces itself, where we put r for the length of V. We may take k n \  ] ] n ~  0 

= 1 ;  for k > l  consider V'---ok(o), and note that ("v,=("v pV,=pV. We then 
have R~((" v) < r - 1 ,  and by symmetry, R~(~r j 09 v) < r - 1  for all jeJ.  Now consid- 
er the walk ttSnt(("V~r2n,=0' Since ("tv ("2v ... cor2v= 0(("v)... 0(("v), this walk is made 
up of r walks, each congruent to the walk (S,(("v))~= o. At least two of these r 
walks pass through exactly the same points in order, as at least one segment in 
(S,(("v))~=o is traced in the same direction. Therefore 
Rr2((" v) < (r - 1) R~((" v) <__ (r - 1) 2. Induct ion yields that  for m -- 1, 2,. . .  

R~,~((" r ) < (r - 1) m. 

This easily implies that -1R~(~ov)~0 as n ~ o o .  Now let coeSuppP v be arbi- 

trary. Then ("1 ("2 ... ( "~  occurs in ("v (by (8) and (9)). But ("v is a con- 
catenation of words 0re(j), jeJ,  of length r m. Consequently co x ("2 ... ( "~  occurs 
in some word Ore(i) Ore(j), with i, jeJ .  Therefore Rm((")<-Rr~(~i(("v)) 

+R~m(~J(("v))=2Rr,~(("v), and it follows that -1 R,((")-~0 for all ( "~SuppP r. By 
/'l 

Theorem 2, (S~) is recurrent. []  

We end with some remarks. As the proofs of our assertions are often 
technical, we omit or merely sketch them. 

Remark 1. The following criteria allow one to decide resolvability of (S,(("v)) in 
most cases. 

Circle criterion: If IIS~(("v)ll 2 <r ,  then (S,(("v)) is not resolvable. 

Torus criterion: Let c5 be such that  co~("2...~,,~=Vo(V)~r2(V)cr3(V). If 
- -  @ r  (S~(("))n= 0 is resolvable on the torus obtained by identifying opposite sides of 

the square with vertices at (0, 0), S~(c5), and $2~(~5), then (S,(("v)) is resolvable. 
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Remark 2. There exist null recurrent and positive recurrent GRW's (SV). For 
an example of the latter, consider V= 02. It is remarkable that although pV is 
non-atomic, the GRW is restricted to the points (0, q), where qe{0, _+1, +2}.  
(This follows since co v is a concatenation of words 02 and 20.) Also, since the 
word 02020 cannot occur, the GRW returns to the origin within six steps, so 
(S v) is positively recurrent. 

For examples of null recurrent GRW's consider V=0P1230 q where 0 p 
= 0. . .  0 (p times), and p, q > 3. By the Proposition, (S v) is recurrent. Let r = p  
+ q +  3 be the length of V, and let Y be the first return time to the origin. Let 
f2V=SuppP v. Then {0m(Qv), T-IO~(y2v), . . . ,  T - rm- lOm(Qv) }  is a partition of 
f2 v for all m (cf. [6, p. 225]), so these sets have probability r -m. Considering 
(S,(c~ o for m = 1, 2, . . . ,  one sees that 

[Y=4rm] = U ,T-JOm(g2v)\ [ Y=4rj] 
j= (p-  1)r j 

for m>0,  and that Y cannot have any other value. Let F,,=Pv[y=4r"] .  Then 
P0 =2/r, and 

pm={(rm+l)--rmpm_ 1 ... rmpo}r -(re+l), 

from which we obtain P ~ = r - 2  r + r - - ~  1 --.r ~' So 

E Y = ~ 4 r m Pm = o% and (S v) is null recurrent. 
m=0 

References 
1. Aaronson, J., Keane, M.: The visits to zero of some deterministic random walks. J. London 

Math. Soc. 44, 535-553 (1982) 
2, Atkinson, G.: Recurrence of co-cycles and random walks. J. London Math. Soc. (2) 13, 486- 

488 (1976) 
3. Berbee, H.C.P.: Recurrence and transience for random walks with stationary increments. Z. 

Wahrscheinlichkeitstheoric verw. Gebiete 56, 531-536 (1981) 
4. Blumenthal, L.M., Menger, K:: Studies in geometry. San Francisco: Freeman 1970 
5. Chung, K.L., Fuchs, W.H.J.: On the distribution of values of sums of random variables. 

Memoirs Amer. Math. Soc. No. 6. Amer. Math. Soc. Publ., 1951 
6. Dekking, F.M.: The spectrum of dynamical systems arising from substitutions of constant 

length. Z. Wahrscheinlichkeitstheorie verw. Gebiete 4l, 221-239 (1978) 
7. Derriennic, Y.: Quelques applications du th6or6me ergodique sous-additif. Journ6es sur les 

marches al6atoires. Nancy '79. Ast6risque 74, 183-201. Paris: Soc. Math. France 1980 
8. Michel, P.: Stricte ergodicit6 d'ensembles minimaux de substitutions. C.R. Acad. Sci. Paris 

S6r. A 2"78, 811-813 (1975) 
9. Oxtoby, J.C.: Ergodic sets. Bull. Amer. Math. Soc. 58, 116-136 (1952) 

10. Schmidt, K.: Lectures on cocycles of ergodic transformation groups. Lect. in Math. 1. Delhi- 
Bombay-Calcutta-Madras: Mac Millan 1977 

11. Spitzer, F.: Principles of random walk. Princeton, New Jersey: Van Nostrand 1964 
12. Spitzer, F.: Discussion of a paper by J.F.C. Kingman. Ann. Probab. 1, 904-905 (1973) 
13. Vander Vecht, D.: Recurrence and transience for random walks with stationary and ergodic 

increments. Report 118. Vrije Universiteit. Amsterdam, 1980 
14. Westman, J.J.: Sums of dependent random variables. J. Math. Anal. Appl. 77, 120-131 (1980) 

Received March 18, 1982 


