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An a lmost  sure invariance principle is p roved  for s ta t ionary  Gauss ian  
sequences whose covariances r(n) satisfy r(n)= O(n-1-~) for some e > 0. 

1. Introduction 

Let {x~, v > 1} be a Gauss ian  sequence centered at expectations.  Suppose that  for 
some 0<~5<1  

E x~ =n+O(n  I ~) n > l  (1.1) 

uniformly in m = 1, 2 . . . . .  We also assume that  for some - 1  < e < 1 

g {x m xm+,} ~ n -  1-~ (1.2) 

uniformly in m > l .  The  ma in  intention here is to establish an a lmost  sure 
invar iance principle when e > 0 in (1.2). 

Theorem1.  Let { x ~ , v > l }  be a Gaussian sequence which is centered at expec- 
tations and satisfies (1.1) and (1.2) with e > O. Then, without loss of generality, there 
exists a standard Brownian motion {X(t), t > 0} such that 

Z x~-X(t)< t�89 a.s. (1.3) 
"~<t 

where 2 = min(e, 6)/500. 

The phrase  "wi thou t  loss of  generali ty . . ."  is to be unders tood  in the sense of 
Strassen [-8]: wi thout  changing its distr ibution we can redefine the sequence 

* > {x~, v >  1}, say as {x~, v =  1}, on a new probabi l i ty  space on which there exists 
s tandard  Brownian  mot ion  {X(t), t > 0} satisfying (1.3) with x~ replaced by x~. 

The  following corol lary is an immedia te  consequence of T h e o r e m  1. (For  
details see the p roof  of Corol la ry  5.1 of  Phil ipp and Stout  [6].) 
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Corollary. Let {x,, v > l }  be a stationary Gaussian sequence centered at expec- 
tations. Suppose 

for some e>0.  Then the conclusion of Theorem 1 holds with s when 

Ex21+2 Y, E x l X n §  
n > l  

In the sense that one can still obtain an error term of the form t ~-~ in (1.3), 
Theorem 1 improves Theorem 5.1 of [6] which amounts to the case of e = 1 in 
(1.2). As was observed in Sect. 1 in [6] an almost sure invariance principle of the 
form (1.3) implies upper and lower class results, the functional law of the iterated 
logarithm, the functional central limit theorem, etc. Consequently the Corollary 
includes a recent upper and lower class result of Lai and Stout [4] (correspond- 
ing to the case ~ =�89 and the functional law of the iterated logarithm of Deo [2]. 
Condition (1.2) with e > 0 is an a certain sense best possible. For Deo [2] gives 
an example when _ l < e < 0  of a stationary Gaussian sequence for which the 
finite dimensional distributions of the random elements of C [0, 1] generated by 
polygonal interpolation of its properly normalized partial sum process converge 
to those of a Gaussian process which is not Brownian motion. 

In fact, (1.3) does not remain valid in general when a=0.  This was shown by 
Robert  P. Kaufman using the following argument. For every nonincreasing 
sequence of real numbers {a,} converging to zero and satisfying ~ a n = ~ there 

n > l  

is an even function O: IR--~IR+ which is convex and decreasing on (0, 00) and 
also has the property that �89 a2,__< O(n)__< a n, n > 1. For  an explicit construction of 
such a function take 

0 ( x ) = : u P  ( l - X )  an 

for xe[0 ,  ~).  Then by a theorem of Polya (p = O/0(0) is a characteristic function. 
Therefore, a stationary Gaussian process {x~,vs2g} exists whose covariance 
function is just (p restricted to the integers. Moreover, because ~o is even and 

(p(n) = oo it is easy to see that 
n > l  

n v = l  j = l  k = l  

as n ~ oo. However, in this situation, 

n ~ y, x~ } , N ( 0 ,  t), 
V = I  

thus indicating that (1.3) is impossible. In particular, if 

n - l ~ a n ~ n  -1, 
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one has a stationary Gaussian sequence {xv, v> 1} such that 

n l ~ E { x l x n + l } ~ n - 1  

and 

n l o g n ~ E  x~ ~ n l o g  n. 
\ v =  1 / 

In the next theorem we relax the conditions of Theorem 1 and obtain (1.3) 
with a weaker error term. 

Theorem2. Let {x~,v>l} be a Gaussian sequence centered at expectations. 
Suppose that for some 0 < 6 < 1 

m + n -  

E xv =n+O(n(logn) -~) n > l  
v _  

uniformly in m = 1, 2 .. . .  , and for some 0 < ~ < 1 

E{xmxm+,} ~ n -  l(log n) -24-~ (1.4) 

also uniformly in m> l. Then without loss of generality we have (1.3) with error 
term replaced by t~(log t)- ~ for 2 =rain(e, 6)/50. 

Remark. Theorem 2 is stronger than Theorem 1 in as much as its conclusion still 
implies the functional law of the iterated logarithm and upper and lower class 
results. 

Let us pursue a reformulation of (1.4) in the situation where {x~, v > l }  is a 
stationary Gaussian sequence with E x 1 = 0. Assume 

IE{xlX.+xI]<a. ,  a..L ~ a.<oo 
n > l  

and 

a 2 = E x 2 + 2  ~ E{x  lx .+l}  >0. 
n>__l 

An easy calculation reveals that 

E( ~ xv) 2 = n a 2 (1 + o(1)) (n~  oo). 
V_<rl 

Then by either Theorem 1 of [-4] or Satz 2 of [5] one readily verifies the upper 
half of the law of the iterated logarithm, i.e. 

l i m s u p ( 2 n l o g l o g n ) - ~ [ ~ x v l < c r  a.s. 
n ~ c o  v ~ n  
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This observation supports my conjecture that under the above hypotheses (1.3) 
holds with an error term o((t loglog t)~). 

The proofs of Theorems 1 and 2 are similar. We prove Theorem 1 in detail 
and then in Sect. 5 sketch the proof of Theorem 2. 

The proof of Theorem 1 is based on a recent theorem of Berkes and Philipp 
[1]. This is in contrast to the proof of Theorem 5.1 of [6] which was implemen- 
ted by martingale approximation and Skorohod embedding. Theorem 1 is 
proved in Sects. 2-4. In Sect. 2 we introduce the blocks, in Sect. 3 we estimate 2 k 
as defined by (3.1) below and in Sect. 4 the proof of Theorem 1 is completed via 
an application of Theorem 1 of [1]. 

2. Introduction of the Blocks 

As is typical in proofs of limit theorems for weakly dependent random variables 
we consider large blocks Hk, k>  1 and small blocks Ik, k > l  of consecutive 
integers. The blocks are ordered as Ht ,  11, H2, I 2 . . . .  and, as sets, constitute a 
partition of the positive integers. Here the natural order of the integers is 
preserved by the order of the blocks. As a means of determining the block 
lengths we introduce 

c~ --56 max {[~- 1], [6- 1]}. (2.1) 

We define the lengths of the blocks and therefore, inductively, the blocks 
themselves by setting 

card H k = U, card I k = U 3. (2.2) 

New random variables Yk and z k are specified by 

Yk = • X~, Zk---- Z X~. (2.3) 
veHk VaIk 

The idea of the proof of Theorem I can now be described. Since the small 
blocks I k are much shorter than the corresponding large blocks Hk, the random 
variables {Zk, k>= i} can be discarded without affecting the final result (this is the 
upshot of Lemma 2 below). Still the I k are long enough to separate the random 
variables Yk until these variables become nearly pairwise independent as k ~  0o. 
In Sect.4 Theorem l of [-i] is then applied to Xk=Yk(Ey~)-}. In the present 
section we give some preliminary estimates which are all motivated by relation 
(4.5), which in turn ]cads immediately to the desired result (1.3). 

Lemma 1. We have uniformly in 1 <=j < k < 

E { y j y k } < j ~ k  -2~  

and 

E {zj zk} <j~- 3 k -  30. 
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Proof From (1.1) and (2.1)-(2.3) we obtain 

E {y; Yk} ~ card H; card Hk(card I k_ 1)- 1 -~ 

~j~ U(k-  1)- (~- 3)(1 +~) ~j= k-  20 

uniformly in 1 < j  < k < oo. The estimate of E {zj zk} 
way. [] 

Lemma 2. As M - ~  m 

z j ~ M  ~ a.s. 
j<M 

Proof By (1.1), (2.1)-(2.3) and Lemma 1, 

E( ~ z;)2< ~ Ez~+ 2 s  IE{zjG}I 
j<_M j<=M l <_j<k<=M 

Z j~-3+ E J ~-3k-3~ 
j<=M l <j<k<=M 

~ M  ~-2. 

Hence, by Ceby~ev's inequality, 

P{I ~ zal>M~}4~ M'2~ : 
j<M 

The lemma is thus a consequence of the Borel-Cantelli lemma. 
Next define 

h M = ~ card(H k vo Ik). 
k<M 

One easily checks that 

MS+ : ~ hM4:M=+ 1. 

The next lemma shows that we can break into the blocks. 

Lemma 3. As M--~ oo 

max ~=h~,+ ~M ~(~+~) a.s. 
hM<n<=hM+l 

119 

is handled in the same 

[] 

(2.4) 

(2.5) 

Proof From (2.4), we have (hM+ 1 - h M ) ~ M  ~. Hence, we obtain the lemma upon 
applying Corollary B1 of Serfling [7], Markov's inequality, and the Borel- 
Cantelli lemma. For 

/ r+n ',2 
E / ~ x~)<const ,  n 2 r>=O,n>=l 

\ v = r +  1 / 

so that also, by the corollary just mentioned, 

E max x v <const. n 2 r>0,  n>  1. [] 
l <m<-n v = r + l  
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3. T h e  C o n d i t i o n a l  C h a r a c t e r i s t i c  F u n c t i o n  

Normalize the random variables Yk by putting 

_ 2 �89 Xk--yk(EYk) k>a. 

L e t  a>=0 be a large integer to be chosen suitably later. We shall apply 
Theorem 1 of [1] to the sequence {Xa+k, k ~ l } .  In order to fulfill this aim we 
will require an estimate of 

2k(u ) d=ef E [E {exp(i u Xa+k) [Xa+ k_ 1, ..., Xa+ 1} - exp( - �89  u2)[. (3.1) 

Let fk=fk(Xa+l . . . .  ,Xa+k) be the joint density of X~+ 1, Xa+ 2, . . . ,Xa+ k for every 
k > 1, and let g(x)--(2 re)- ~ exp ( - � 89  x 2) be the standard normal density. Then 

'~k(u) : ~ fk l l~exp(iuxo+O(fk/fk 1--g(x~+k)dxa+kldx~+k-~...dx~+l 
p k-~ N. 

-<_ j" I L - g ( x o + O L _  ,I dxa+k . . .  d x a + l .  
Rk 

< 5 I s  g(X,+k)fk- 11 dx~+k ... dx,+, 
{x~+ t+...+x~+1,=<k 2} 

2 >k2}+p{x2+l+. . .+X~+k_ +P{Xa2+l q_ ... +Xa+ k 2 1 >�89 k2} 

+p{X2+a>�89 (say). 

Since the estimates of the three probabilities are almost trivial we examine 
the integral first. The density of each fk is given in terms of the inverse of the 
covariance matrix 

& = ~ { (xo+  ~, . . . ,  xo+o~(xo+ ,,. . . ,  x o + o } .  

The lemmas we are now going to establish enable us to utilize this knowledge so 
far as to provide an estimate for f k -  g(x~+a)s over the range of integration in I. 

L e m m a  4. A s  k - +  oo 

det A k - det A k_ 1 ~ (a + k)- a 9 (3.2) 

and, if a is sufficiently large, 

� 8 9  (3.3) 

for all k > l. In (3.2) the constant implied by ~ depends only on the constants 
implied by 0 and by ~ in (1.1) and (1.2) respectively. 

Proof We expand det A k by the k th column of A k to obtain 

k - 1  

de tAk=de t  Ak_ ~ + ~ (• det(Akb, k ) (3.4) 
j=a 

where, for any square matrix A, we denote by AI~,~ the matrix obtained from A 
by deleting its r th row and s th column. By Lemma 1, (1.1) and Hadamard's  
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lemma, which states that the square of a determinant does not exceed the 
product of the squares of the lengths of its row vectors, we find that 

det(Akb, k) < [ I  1+0  (ir)-~r2~ i -4~ 
r = a +  1 i - -  1 ,+k-1 (3.5) 

t) + ~ (Jr)~r2~i  -4~ =<I~(1+0(r-39))�89 
i = r + l  / /  r = l  

uniformly in 1 < j < k <  oe. Again, by Lemma 1 and (1.1), we have 

E {Xa+ j Xa+ k} ~ (a +j)-  ~ (a  + k)- ~ (a  +j)~(a + k)- 20 
,~(a+k) -20. 

Thus by (3.4) 

det A k - det A k_ ~ ~ (a + k)-  19. 

- -  2 This proves (3.2). Repeated application of (3.2) yields (3.3) since detA 1 - E X a +  1 
=1. [] 

Let a k =A~ ~ and denote the element of a k belonging to row i and column j 
by ak(i,j ). 

Lemma 5. A s  k ~ co 

ak(i,J) - ak- 1 (i,j) ~ k- 19 (3.6) 

uniformly in 1 < i, j < k, 

ak(i, k) ~ k- 19 (3.7) 

uniformly in 1 ~ i < k, and 

ak(k, k ) -  1 ~ k -  19 (3.8) 

Proof The proof is much like that of Lemma 4. First we note that as k ~ oe 

det (A k li, j) - det (Ak- 11i, j) ~ k- 19 (3.9) 

uniformly in 1 < i, j < k. For, expanding det(A k I~, j) by the (k - 1) th column of A k Ii, j 
one has 

i - 1  

det(Ak li,j) = det (Ak-1 li, j) + ~ (+)  E {Xa+ r X~+ k} det ((Ak I~, j)l~, k- 1) 
r = l  

k - 1  

+ ~ (+)E{S,+~S~+k}det((Akl~,j) l~-l ,k-O. 
r = i +  1 

And, as in (3.5), Hadamard's lemma renders 

det((Ak I~, j)l~, k- 1)~ 1 

uniformly in 1 < i, j, r < k < oo. Hence (3.9) follows from Lemma 1. 
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Relat ion (3.6) is now evident from (3.9), L e m m a 4  and the formula 

a k (i,j) = ( - 1) i+ j det(A k ]j,i)/det A k. 

The proof  of (3.7) is dealt with in the same fashion. Indeed, by L e m m a  1, as 
k--,  oo 

k - 1  

det(Ak]k,i) = ~ ( + ) E {Xa+ j X  .+k} det((Ak]k,~)[j,k-1) 
j = l  

~ k - 1 9  

uniformly in 1 < i < k, since det((A k Ik, i)];, k- 1) ~ 1 uniformly in 1 ~ i, j < k < oo. 
Finally (3.8) is derived from L e m m a  4 since ak(k, k ) = d e t  A k_ 1/det A k. [] 

Lemma 6. As k--* oo 

[ ~ k  -9  

Proof We write 

1 k 1 1 
fk(G+ 1, ' " ,  G+k) =(2  ~)- ~ (det Ak)- ~ exp(--~Pk) 

and 

g(x~+k)fk_ I(X~+ 1 . . . . .  X~+k)=(2rC)-~k(detAk_ 0 - ~  exp(--�89 ~ + X~+a)) 

where, for each k > 1, 

k 

Pk = ~ X~+lX,+:ak(i,J)" 
i , j = l  

We conclude from L e m m a  5 that  over the range of integrat ion in I 

2 _ p k 4 k -  15 Pk_ 1 +x .+k  

Thus, by L e m m a  4, over this range we have 

(L-g(xo+k)L_ 1) = (2 7r)- ~k(det Ak)- 4 exp(--�89 

�9 { 1 - -  (det Aa) ~ (det A k_l)- ~ exp (�89 -- Pk-1 -- X~+ k))} 

~ L . k  - i s  

Since fk is a density the p roof  of the lemma is completed from this last 
estimate. [ ]  

Lemma 7. As k--* oo 

where 2 k is defined by (3.1). 

Proo f  In view of  L e m m a  6 it suffices to estimate II, III, and IV. For  the estimate 
of II we simply take 
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II=< ~ P{X~+j>k} =kP{]N(O, 1)l _>k ~} 
j<=k 

~k-15 

The estimates of III and IV are much the same. [] 
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4. Conclusion of the Proof of Theorem 1 

We now apply Theorem 1 of 1-1] to the sequence {X~§ k>= 1} where 

~ = a ( X ~ +  1 . . . . .  X~+k), dk=l, Tk=k 2 , 

and gk (U)= exp ( -  �89 u2). Then, there exists a probability space on which is defined 
a sequence of random variables, {x ~ v=>l}, having the same distribution as 
{x~, v=> 1}, and a sequence {Yk, k=> 1} of independent N(0, 1) random variables 
such that 

o ~[>~) <~k P{i( E''2ya+k]]-�89 E Xv - -  
veHa + k 

where 

rl,  tr + r r  1 log T k +P{JN(0, 1)1 = Tk/4} (4.1) 

~k-~ .  

Set 

nk = hk -- hk- 1 = k~ § k~ - 3 (4.2) 

where h k is defined in (2.4). An elementary argument using Kolmogorov's 
existence theorem shows that without loss of generality (see the paragraph 
following (1.3)) there is a standard Brownian motion {X(0, t ~  0} such that 

P{[Xa§ --n2+k(X(ha+k)--X(ha+k- i))1 >~k} ~'~k 

where c% satisfies (4.1). Therefore the Borel Cantelli lemma gives 

Xk--n~-~(X(hk)--X(hk_ 1))~k -1 a.s. 

or by (1.1) 

Yk - (E y~)~ n; ~(X(hk) -- X(h k_ 1)) ~ k ~ -  1 a.s. (4.3) 

But another application of the Borel-Cantelli lemma shows that 

X(hk)-X(h k_ t)~kn~ a.s. 

Thus, by (1.1), (4.2), and (4.3) 

X(hk)--X(hk- 1)--Yk~ k~'- 1 a . s .  (4.4) 
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Finally, fix t > 0  and let hM<t<hM+ 1. Then with probability 1, 

M 

X(t)- ~ x ~  ~ IX(hj)-X(h~_l)-yj] 
v ~ t  j = a +  1 

M 

Zj  v:h~M+ 1 Xv + j=~'T+ + max 
1 h M < n ~ h M + l  

+ sup IX(t)-X(hM)l. 
hM <t<=hM + l 

Thus from (4.4) and Lemmas 2 and 3 

M 

X ( t ) - ~ x ~  Z j ~ - i  
v~t j=a+l 

+M~'+M(~+~)+ sup [X(t)--X(hM)I a.s. 
hM<t<=h~d'+t 

Furthermore, by a well known property of Brownian motion, 

sup [X(t)-X(hM)[~M ~(~+~) a.s. 
hM<t<=hM+t 

since, by (4.2), hM+ 1 - hM = riM+ 1 ~ MS' 
Therefore 

X(t)- ~ xv<M ~+~) 
v<t  

~ M  (~+1)(~ (s(~+l))-l)~t~-z a.s. 

where )~=(8(~+ 1))- 1 and, by our choice of c~, (8(e+ 1))- 1 >min(e, 3)/500. 

(4.5) 

[] 

5. Sketch of the Proof of Theorem 2 

The proof of Theorem 2 proceeds just like that for Theorem I with the only 
major change being the choice of the lengths of the blocks H k and I k. In the 
setting of Sect. 2 we take, instead of (2.2), 

card H k = [k -~-~ exp(k~- ~)3, 

cardik=[k-~ 4~exp(k+ ~)] where 7-150" 

(5.1) 

Define Yk and z k as in (2.3) and assume the hypotheses of Theorem2. The 
following lemmas are counterparts to the lemmas in Sect. 2. 

Lemma 1'. A s  k - ~  oo 

E{yjYk} ~ c a r d H j . k  s-5- 
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and 

8 e 
E {zj Zk} ~ card  H j .  k -  - 

uniformly in 1 <j < k. 

L e m m a  2'. A s  M - - ,  o9 

~, z j ~ M - ~ e x p ( � 8 9  -~-7) a.s. 
j<=m 

Proof ~ zj is no rma l ly  d is t r ibu ted  with mean  zero and  
j<=M 

2 2 2 
E( ~ zj) [ ~ - - ~ c o n s t . ( M - 3 '  exp(M4-- ,))[~] .  [ ]  

j<=U 

With  h g  defined by (2.4) and  (5.1) we have 

h M N e x p ( M  ~-  7). 

L e m m a  3'. A s  M --* 00 

max l ~, x~ l~M-~exp( �89  ~-~) a.s. 
hM<rl<=hM+i V = h M + l  

Proof The p r o o f  is the same as that  for L e m m a  3 except  now we use h igher  
moments .  [ ]  

Now,  by the reasoning  of  L e m m a  7, 

2 > k( log k) 2} ~ k -  5 p{X2+ 1 + ' "  +Xa+k 

Thus L e m m a s  1', 2', and  3' can be app l ied  in the m a n n e r  of  Sect. 3 to ob ta in  
4_ e_ 

l l 2 k l l ~ k -  8. Final ly ,  p roceed ing  a long the lines of  Sect. 4, we prove  Theo-  
_4 e e 

rein 2 by an app l i ca t ion  of Theo rem 1 of  [11 with 2 k ~ k s, d k = 1, T k = k 1 +~ ,  
and  gk(u)=exp(- �89  u2). [] 
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regarding this theorem. 
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