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1. Introduction 

K. E s s ~ ' s  inequality [4] which is well known in probabili ty theory is an 
extremely important  instrument for the investigation of various asymptotic 
properties Jn the uniform metric. The same is true for the inequality of A. B E ~ r  
[2] which applies to the same situation and was presented some years before. 
EssEv~X's inequality is easier to apply (and therefore used more frequently) and is, 
in addition, applicable to a broader class of cases. At the same time experimental 
work with E s s E ~ ' s  inequality (especially in the problem of absolute estimation 
of the remainder in A. M. LJnPv~ov 's  theorem) showed tha t  BERRY'S inequality is 
sharper than  E s s E ~ ' s .  

This leads to the a t tempt  to construct an analogue of the inequalities of B ~ R r  
and Ess~Ex which on one hand is more economical than B~l~XY'S inequality, and 
on the other hand does not yield to Ess]~E~'s inequality as to scope and ease of 
applicability. The present paper deals with the solution of this problem. 

In  how far the new inequality is really sharper than BERRY'S inequality can be 
judged from the results of its application (in connection with a new method) 
to the above mentioned classical problem of estimation of the remainder in 
LJArv~ov ' s  theorem. 

Let  ~1 . . . . .  ~n be independent random variables with mean zero and finite 
absolute third moments ill, -.-, fin. By ~ . . . . .  a2 n we denote the variances and 

by  ~2 = ~. e~ and s ~ ~ /~3 Ljapunov 's  quantities. 
]~=1 

We form the normed sum ~" = (~1-~-"'" + ~en)/~ and let F(x)  denote the 
distribution function of ~ and ~ (x) the distribution function of the standard 
normal law. According to LJAPVNOV'S theorem there exists a minimal numerical 
constant C such tha t  

sup I - =< c 
z 

The true value of C has not been found so far, but  there is reasonto expect tha t  

C = 6 ' *  - -  ~/10 -5  3 __ 0 . 4 0 9 7 4 .  
6 V2z 

The best two-sided estimate of C so far has been the following : C > C* (K. E s s ~  
[4]), C < 4.8 (G. BnnGST~SM [1]). In  the particular case of identically distributed 
terms ~k the upper estimate of C has been improved: C < 2.031 (K. TAKANO [ 6 ] )  �9 
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An improved version of the inequality of B~RY-EssnEN permitted to lower 
the upper estimate of C (see [7]). In  fact we could show in the general case tha t  
C < 1.322, and in the above mentioned particular case that  C < 1.301. 

We can now lower these estimates even more on account of sharper estimates 
of the characteristic functions. We formulate here the latest result; the proofs are 
based on methods from [7] and will be published elsewhere. 

Theorem 1. I n  the general case we can state that 

C < 0.9051, 

and in the case o/ identically distributed terms 

C < 0.82. 

2. The Basic Theorem 

Let L (x) and H (x) be functions of bounded variation defined on the entire real 
axis and such tha t  they simultaneously are either right continuous or left con- 
tinuous, and l(t), h (t) their Fourier-Stieltjes transforms. We put  

= s u p I L ( x )  - H ( x ) ] .  

Our aim is to construct upper estimates of A in terms of 1 and h. 
We will use the following functions and qualities: p (x) is the density of an 

absolutely continuous symmetric distribution (which we can choose arbitrarily) 
with a characteristic function co (t) which is absolutely integrable over the entire 
real axis ; 

m (t)  = l ( t )  - h (t). 

For positive values of x and y we put  

V(x)=xfp(u)du, Q(y)-- 
lui<x - ~  

is the unique positive zero of the function 2 V (x) --  x. 
Let  | 62 be two sets of the real line. We complete the set 6 = 61 w 62 

by  the points - -  co and oo and form the quanti ty 

fi( |  62) = inf(a" - -  a ')  (1) 

where the greatest lower bound is taken with respect to all possible pairs of points 
a '  < a"  from the completed set 6 .  

When constructing the inequahty we are aiming at we will use additional con- 
ditions on the functions L and H. These conditions will be selected from the 
following three. 

Condition A1. We denote by  ~1 the set of all points of discontinuity of the 
function H (x) and by ~31 its complement. Then H (x) has a derivative in all points 
of ~31, and 

qH---- sup[H ' (z ) [  < co. 

Condition A2. We denote by 9~2 the set of all points of discontinuity of the 
function L (x) and by  i32 its complement. Then L (x) has a derivative in all points 
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of ~2, and 

qL --~ sup lL' (x) I < oo. 
~2 

Condition h3. The function L(x) is monotone. In this case we formally put  
qL = 0 and take for 9/a the empty set. 

In the following the set ~I3 will play in condition A3 the same role as the sets 
of points of discontinuity did in the conditions A ~, A 2. 

Theorem 2. Suppose that A1 and one condition Aj ,  j -= 2, 3, are /ul/illed. 
Accordingly we ]orm /rom the sets ~1, 91j by (1) the quantity fl = fl(~/1, ~j). We 
assume that fl ~ O. Then/or all positive x, y, satislying the requirements 

4 x>~, y~-~x, 
the/ollowing inequality 

A ~ l ( x , y )  -= x[qV(x) + Q(y)] 
y[2 V (x) - -  x] (2)  

holds, where q = qH § qn. 

Proo/. In  general, there need not exist an x for which the absolute value of the 
function M ( x ) - ~  L ( x ) -  H(x) takes its extremum A. However for arbitrary 
5 > 0 there is a point xo such that  IM(xo)l ~ A --  5. Without restricting the 
generality we can assume that  

M ( x ~ )  ~ - -  A § 5 .  

Let 21 and ~I 1 be the sets corresponding to the pair of conditions satisfied. We 
denote by 2 the union of 9/1 and ~j, completed by -- oo and ~ .  We set 

a = sup (a' : a' e ~ ,  a' ~ x~} ,  

b = inf{a" : a" ~ 9~, a" > x~}. 

Suppose that  the function L (x) does not decrease. Then it is not hard to verify 
that,  whichever condition A2 or A8 we choose together with A1, the following 
inequality 

M (x~ - ~ + ~) -_ M (x~) + (~ - -  ~)q --<__ - -  ~ + 5 § (~ - -  ~)q (3) 

will be satisfied for any non-negative finite number ? ~ b -- x~ and all ~ with 

Likewise, when using together with A1 one of the conditions A2 and A3, 
where the function L (x) does not increase, we obtain 

M(x~ § ? - -  ~) ~ M(x~) § ( ? - -  ~)q ~ -- A § 5 § ( ? - -  ~)q (4) 

for any non-negative finite ? ~ x~ -- a and all v with I ~1 ~ ?" 
Therefore, under the conditions of the theorem at least one of the inequalities 

(3) and (4) will be satisfied for all finite ? from the interval 

0 < y = < ~ f l .  (5) 

Suppose that  the inequality (4) is fulfilled. We choose any ? from the intervall (5) 
and any y ~ ~/?. We multiply both members of (4) by yp(y~) and integrate the 
inequality thus obtained with respect to r over the intervall [ ~1 ~ ?" Taking into 
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account  t h a t  p is an even funct ion we obta in  

] M (xo + y - -  v ) y p ( y v ) d v  g (--  A ~- ~ ~- yq)  ~ y p ( y v ) d v .  

This inequali ty,  in turn,  permits  to obta in  the following one: 

>_-IZ - 0 -  Z 

Next  two cases are possible: A g ~ + y q, or A > ~ ~- y q. We consider the second 
case only. We have  

A > (2A - -  y q - -  (5) V(~y) A .  
- -  y y  

Hence  we find t ha t  
/[ < (qy -4- (~) V(~y) ~- )..yy 

= 2 V(yy) - r y  (6) 

Since V(x)  < x for every  x > 0, the r ight -hand member  of  the inequal i ty  (6) 
obviously is not  smaller t han  ~ ~- yq. Therefore the  es t imate  (6) remains  t rue  in 
bo th  cases ment ioned  before. We introduce a new variable  x = ~y. Then the  
inequal i ty  (6) takes  the  form (2). Also the conditions 0 < y < ~ fl, y > r162 tu rn  

4 
out  to be equivalent  to x > ~, y > ~ x. 

3. Choice of the Density Function p (x) 

I n  concrete problems the funct ion I m (t)] can usually be es t imated  in a non- 
tr ivial  way  only in some interval  ] t/ < y. I t  is then  advan tageous  to choose for 
the densi ty  funct ion p (x) a funct ion whose characterist ic  funct ion w (t) vanishes 
outside of  the in terval  ] t I < 1. 

We indicate here two classes of  such distributions.  One of t h e m  is a subclass of  
the  class of  P61ya distr ibutions and can be described as follows. 

L e m m a  1. Each ]unction o9 (t), which is defined on the entire real axis and has the 
properties 

1. ~ (t) = co (--  t) ~ O, 

2. c o ( O ) = l ;  ~ ( t ) = O ,  t > l ,  

( t '  + 2 t  ' ' )  1 { w ( t ' ) §  ~0(t")} /or all non-negative t', t", 3. co > ~ 

is a characteristic ]unction o/ an absolutely continuous distribution. 
A representa t ive  of  this class is the  dis tr ibut ion which was used b y  B w ~ u  

when he proved  his inequal i ty  [2] : 
1 - cos x 

p (x) - -  zx2 (7) 

For  this dis t r ibut ion o9 (t) = 1 - -  I tl i f  I tl ~ l0 and ~o (t) = 0 if  I t ] > 1. 
However  the class of distr ibutions described in l emma 1 has the unpleasan t  
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p r o p e r t y  t h a t  somet imes  co (t) is not  dJfferentiable a t  zero. The  following l emma 
describes a class of d i s t r ibu t ions  of  the  t y p e  we are in te res ted  in  which conta ins  
represen ta t ives  for which the  funct ion co is inf ini te ly  diffcrent iable a t  zero. 

L e m m a  2. Let the ]unction v (x) be defined on the entire real line with the property 
that 

1. 

2. 

(x) = ,  ( -  x), 
, (x)=0 for x>�89 

o o  

3. f u2(x)dx --= 1. 
- - o o  

Then the convolution co(t) = (~*v)(t) is the characteristic ]unction o / a n  absolutely 
continuous distribution with density 

I p(x)  ~- 2 cos (t x) ~ (t) dt . 

Pro@ W e  have  
M 

o9 (t) ---- (~. ~) (t) = ~ ~ (t --  y) ~ (y) dy 
m 

where m -~ m a x  ( - -  �89 t - -  �89 and  M = min  (�89 t + �89 Since the  funct ion co (t) 
is even (being a convolu t ion  of  even functions),  we can confine ourselves to  the  
case t > 0. Then obvious ly  

co (t) = f ~ (t --  y) ~ (y) dy.  (8) 
t - �89 

I n  v i r tue  of condi t ion  1 and  3 of the  l emma  we have  co (0) ~ l ,  i .c.  co is normal ized.  
I t  remains  to show t h a t  co (t) is a Four i e r  t r ans fo rm of a non-nega t ive  funct ion  p (x). 

Tak ing  into  account  t h a t  co is real  we have  

OO o o  

p ( x ) = - ~  cos ( t x )co ( t )d t=  cos( tx ) (~ ,~) ( t )d t  
- - 0 0  - -  o o  

1 cos (t x) ~ (t) dt = cos (t x) v (t) dt z 
- -  2 ~  

- - o o  0 

Condi t ion 2 of  the  l emma  guarantees  t h a t  co (t) -~ 0 for t ~ l ,  as required.  

R e m a r k .  I f  the  condi t ions 1 - -3  of  the  l emma  are  comple ted  b y  the  condi t ion  

4. v ( x x ) ~ v ( x 2 )  for x 2 ~ x l ~ 0 ,  

then  i t  can be seen from the  represen ta t ion  (8) t h a t  co (t) will also be a non-in-  
creasing funct ion on the  half-l ine t ~ 0. 

W e  supp lement  l emma  2 b y  two examples  of  d i s t r ibu t ions  f rom the  class 
descr ibed in it.  The first was given b y  ESSEXN in [3] : 

3 sm ~ -  
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This densi ty  corresponds to the  funct ion 

[ 1 - -  6 t 2 ( 1 - -  It I 

a)(t) = / 2 0 ( 1  - -  ]t])a 
if  

1 16 a3 s m ~  
b) p(x) - -  3 x . " 

4~ 2) ) 

This densi ty  corresponds to the  funct ion 

ff It]_--<}, 
if  � 8 9  

I t l > l .  

{o 1 ( 1 - - 1 t l ) ( 2 - ~ c o s ( 2 7 ~ t ) ) + ~ s i n ( 2 ~ [ t ] )  ff It] < 1 ,  
o ) ( t )  = = 

if Itl > 1 .  

4. The Problem of Minimization of I (x, y )  

H a v i n g  constructed the  inequal i ty  (2) our nex t  p rob lem na tura l ly  is to select 
x and y f rom the domain  of its admissible values so as to give (perhaps in an 
a sympto t i c  sense) the m i n i m u m  of the funct ion I which is defined by  (2). I n  the 
general si tuation, when only little is known abou t  the  propert ies  of the functions 
p (x), co (t) and  m (t), i t  is of  course impossible to obta in  a complete  solution of this 
analyt ical  problem. However ,  we can essentially restr ict  the  class of  possible 
choices b y  set t ing up a representa t ion of the surface z = I (x ,  y) in various,  a 
priori  admissible cases. We need the following notat ions:  

oo  

R ( y ) = y Q ' ( y ) ,  P ( y ) =  R ( y ) - - Q ( y ) ,  # :  dt; 
- - o o  

W (x) ---- [2 V (x) --  x] [V(x) ~- 2x2p(x)] / (4x2p(x)) ,  

U (x) = x W (x) / [2  V (x) - x ] ;  

~)~ = {(x, y): x > ~, y > 0} is the domain  of the funct ion I (x ,  y); 0 l =  ((x, y): x >  
4 

~, y > 0, y --> ~ x} is the  set  where the  inequal i ty  (2) holds; ~ = (x0, Y0) is a 

point,  where I (x, y) at ta ins  its absolute  m i n i m u m  in 01 (ff such a point  exists). 
In  the  following we will exclude the  case m(t) - O, Q(1) - -  co and the case 

q = 0, fl ---- oo which do not  interest  us much.  
We write I (x, y) in the form 

x V(x) Q(y) x [ x + Q(y) ~[1 x -  V(x) ) 
I ( x , y ) = q y  [2V(x ) - x ]  }- y 2 V ( x ) - x = ( q y  - T ) I  ~ - 0 2 ~ x }  - -x  ' (9) 

where I ~ v ~ ~ 2. Therefore,  we have  in the  domain  ~J~: 

x qc~ 
I ( x , y ) >  2V(x) ( ~ y  ~- Q(Y)'/ (10) 

- -  x ~ - - /  " 

The following fact  can easily be deduced f rom these relat ions:  as y --> oo and 
x = 0 ( 1 ) ,  

l im inf  I (x, y) >_--/t, 
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where in the  case of  a finite # the  inequa l i ty  is s t r ic t ;  as x -+ r and  y --~ oo, 

l ira inf  I (x, y) - -  q >= # ,  

and  moreover ,  i f  x and  y v a r y  in such a w a y  t h a t  x = o (y), t hen  

lira I (x, y) = / t .  

Le t  q----0. Then  we note  t h a t  in th is  case the  exclusions which we s t ipu la t ed  
i m p l y  fi ~ r Therefore  ff q ---- 0, i t  is easy to  see t h a t  the  funct ion I(x,  y) for 
f ixed y does no t  increase in x. I t  follows t h a t  

inf I (x, y) ---- inf I (x, ~ x) . (11) 
x > c r  

I f  however,  q > 0, then  i t  m a y  be seen f rom the  re la t ions  (9) and  (10) t h a t  the  
funct ion I (x, y) will increase u n b o u n d e d l y  regardless  of  the  way  we approach  the  
boundar ies  x = g, y = 0 of ~ or move  along a p a t h  for which y ---- 0(1) ,  x -+ oo. 

Exp lo i t ing  the  proper t ies  men t ioned  before we can give the  following general  
a rguments .  W e  remain,  of  course, wi th in  the  f r amework  of  the  condi t ions  of  
theorem 2. 

1. I f  fl =- oo (this is only  possible  for q > 0) and  # --~ r then  ~ = ~ ;  the  
po in t  @ exists  and  satisfies the  sys tem of  equat ions  

a i  Ol 
ax - -  0 ,  ~-y = 0.  (12) 

2. I f  fl = oo (and consequent ly  q > 0) and  # < r t hen  ~t = ~ .  The po in t  @ 
m a y  or m a y  no t  exist .  I n  the  former  case i t  is a solut ion of the  sys tem (12). I n  the  
l a t t e r  case i n f I ( x ,  y) is found  as the  l imi t  a t  x --~ r y --> c~, x = o(y) and  tu rns  
out  to be equal  to  #. 

3. I f f l  < oo, # = r t hen  ~ c ~ and  the  po in t  @ exists.  I n  the  case q = 0 this  
4 

po in t  @ lies on the  s t ra igh t  line y = -~ x and  is de te rmined  b y  the  value  x0 which 

satisfies 

d~-I x , ~ x  = 0. (13) 

I n  the  case q > 0 the  po in t  @ is e i ther  an  in ter ior  po in t  of 3 ,  and  is t hen  a solut ion 
4 

of  the  sys tem (12), or lies on the  s t ra igh t  l ine y = ~ x and,  therefore,  satisfies (13). 

4. I f  fi < c~, # < oo, then  ~ c ~ .  Here  the  po in t  @ m a y  or m a y  no t  exist .  
I f  i t  does we have  the  same s i tua t ion  as in the  case/~ < r # ~ r I f  i t  does no t  
we h a v e  

i n f I ( x , y ) = l i m I  x, x = 4 - f l q ~ -  # .  

L e m m a  3. a )  The system (12) is equivalent to the system 

P(y) = qv (x ) ,  R(y) = qW(~). (14) 

I /  (x .,  y.) is a 8olution o] (14), then 

R(y.) q U(x~.). (~51 I (x., y,) : y,[2 V (x,) -- x,] -- y, 
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b) The equation (13) is equivalent to the equation 

4x2p(x) Q (~x) ~- 2x~p(x)q-= (2 V ( x ) -  x )P (~x) .  (16) 

I] x, is a solution o/(16), then 

The proof  of  the l emma amount s  to simple t ransformat ions  of  the equat ion (12) 
and  (13) and of I (x , ,  y,) which we will not  indicate here. 

R e m a r k  1. W h e n  es t imat ing A we usual ly  do not  deal with the  funct ion 
] m (t) ] itself, bu t  ra ther  with its upper  es t imate  which is non-tr ivial  only in some 
finite interval .  Thus the typica l  cases are 1 and  3, i.e. # --~ oo. 

R e m a r k  2. The quan t i ty  I(x, y) which appears  in the inequal i ty  (2) can be 
made  smaller not  only b y  the choice of  x and  y for an a l ready given densi ty  p (x), 
bu t  also b y  the choice of the densi ty  itself. Which densi ty  is op t imal  in this sense, 
and whether  such a universal  densi ty  for all functions ]m (t)] exists ist no t  ye t  
known. Thus  all we can do is to t r y  out  par t icular  densities and  compare,  e.g., 
the classes of  distr ibutions described above  ( lemmas 1, 2). 

The dis tr ibut ion (7) of  A. BE~Rr  deserves our special a t tent ion,  since it is the 
simpliest  one and  mos t  suitable for application.  For  this par t icular  densi ty  we have  

~- 1 .69957 . . . ,  
y y 

 =flm(t)Jat, (')l at; 
0 0 

2 
V(x) = ~ {xSi(x) - -  (1 - -  cosx)}; 

W (x) - -  x Si (x)(2 V(x) -- x) xU Si(x) 
2 ( 1 - c o s x )  ; U(x)--  2(1- -cosx)  ' 

where Si (x) ~ f sin u u du is the integral  sinus funct ion and U (x) appears  in the 
0 

construct ion of the ex t reme value of I in formula  (15). 
When  solving the  ex t remal  p rob lem complete ly  the following two facts  m a y  

be useful which hold when p (x) is the Ber ry  funct ion:  

a) the sys tem (14) has a solution in the stripe :r ~ x ~ 2~.  I n  fact  since 

W ( ~ ) = 0 ,  W ( 2 ~ ) = r  V ( ~ ) > 0 ,  V ( 2 ~ ) < ~ o ,  

the zero level lines of the surfaces zl --~ P (y) - -  q V (x) and  z2 ~- R (y) - -  q W (x) 
necessarily intersect  in this stripe. Here  it  m a y  be worth  while to r emark  t ha t  in the 
concrete examples  considered b y  the  au thor  which refer to the case fl z c~, 
# ~ r the  str ipe ~ ~ x < 27~ contained only one solution of the sys tem (14) 
which also provided the absolute m i n i m u m  for the funct ion I (x, y). 

b) Solutions of the sys tem (12) cannot  give local m a x i m a  of  I(x, y), for ff 
(x, ,  y,) is any  such solution, then  

a2 I [  x. P'(y,) 
x=x. _ y.~ ~ 0. ay2 ly=~. = [2V(x,) x,]- 

24 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 8 
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5. Asymptotic Estimates of A 

We now consider a sequence of pairs of functions (L*, H*) for which A * -+ 0; 
this situation is, indeed, typical for probability theory. Everything referring to the 
sequence of functions and their corresponding characteristics will be marked with 
an asteric. The question naturally arises how fast A * tends to zero. Although the 
estimate of A * in terms of the minimum of the function I formally gives us some 
answer to this question, the complexity of the solution of the extremal problem 
makes us look for simpler methods. 

Here we merely analyze the case where/3" turns out to be infinite for all pairs 
of sequences of functions L*, H* in terms of which it is given. Apart  from the less 
interesting cases mentioned in the preceding paragraph this means tha t  q* > 0. 
For this reason we write the inequality (2) in the following form: 

A* ~ I*(x,  yq*) = x[V(x) § Q*(yq*)/q*] 
y[2 V (x) - x] (18) 

This representation of I *  makes it appear natural  to impose the additional 
assumption 

1 
q, Q*(yq*) -->0 (19) 

for every fixed y > 0, since we want  the right side member of (18) tend to zero; 
in fact otherwise we could in general not exploit the inequality for an estimate of 
the speed of convergence of zJ * to 0. 

I f  the condition (19) is satisfied, we can find a constant A > 0 and a sequence 
T* -+ co such tha t  

1 
q, Q*(T*q*) <= A + 5*, (20) 

where 5* --> 0. The inequality sign here allows us to include the cases where we can 
choose A so as to have 5* - 0. 

From (18) and (19) we obtain the inequality 

x[V(x) 4-A] x 5* ~-- BI(X) -[- B2(x) 5*. 
T ' A * < =  2 V ( x ) ~ x  § 2 V ( x ) - x  

We minimize the first term by  choosing x. I t  is not difficult to verify that  the value 
x0 which yields an absolute minimum of the function B1 is a solution of the 
equation 

W ( z )  - V (x )  = A . (21) 

We now formulate the following statement.  

Theorem 3. I] the sequence o] pairs o/]unctions (L*, H*) is such that fl* = co 
and the condition (19) is satis/ied, then by choosing T* --+ co and A > 0 in accordance 
with (20) we have 

T ' A *  <~ U(xo) + B2(xo) 5*, 

where xo is a solution of the equation (21). 

We illustrate the proposed method by sharpening the central limit theorem. 
We use the same notations as in the introduction. 
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Theorem 4. In the general case o/independent terms ~ we have 

supIF(x  ) - qS(x) [ < 0.81967 s -~ 0.05894 s413 -~ 0(s513), 
x 

and in the ca.~e o/identically distributed terms $~ 

sup] F(x) -- ~5(x) [ =< 0.81967 e - -  0.99951 e 2 + 0@3); 

the constants are given here up to one unit o] the last digit. 
The proof of this theorem as well as the proof of theorem 1 will be published in 

a separate paper. 
To conclude we give another example which in our opinion has some inde- 

pendent interest. In  his paper [6] P. B. PaTXAIK pointed out tha t  the distribution 
function Fn (x, a) of the non-central z~(a) can he approximated for very large or 
very small values of the parameter  of non-centrality by the distribution function 
Fs(Uz, 0) of the normalized central C Z 2 (0) if 

C - -  n + a  and s - -  (n+a)2 
n ~- 2a n @ 2a " 

The general method which we have proposed permits to construct a relatively 
simple estimate of the deviation A of Fn from •s, i.e. 

ZI ~--- sup ] En (x, a) -- Fs (Cx, O) ]. 
x 

In  fact, since the characteristic functions of the absolutely continuous distributions 
Fn, Fs are equal to 

/ , ( t ,  a) = (1 - -  2it)-~12exp { 
g ira I 

1 - -  2 i t  J ' 

Is ( t /G o) = (1 - 2 i t ~ c ) - 4 2 ,  

respectively, i t  is obvious tha t  we are dealing with the case 2 (fi = 0%/~ < co) 
of our classification, and therefore can take the value 

r  

= In (t, a) - / ~  (t/r 0) I T 
0 

as an upper estimate of A. Although an estimate of this integral may  be cumber- 
some it does not present any analytical difficulty. 

As a result we obtain the following absolute estimates which are true for any 
a > 0 and n > 0: 

ZJ "~  8 zr 2 ' ( n @ a ) ' 

and denoting by  D 2 = 2 (n @ 2a) the dispersion of the distribution Fn, Fs, 

A < ~ 2 ] ~ ( l + 9 k ) ~ ( l + 4 k ) 3 D - l + l ~ 6 ( l q - 1 ) D - 2 e x p {  9232 (l+k)k } +  

+ - -  1 - k ~ -  exp 
= 8 ( l + k )  ' 

where k is an arbi trary positive number. Therefore for large D we have 

A < ~ " O(D-alogD). 

2 4 *  
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I n  p a r t i c u l a r  i t  fo l lows t h a t  u n i f o r m l y  for  all  a 

zJ < 2 n_l/2 + O(n_al21ogn)" 
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