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1. Introduection

K. EssEEN’s inequality [4] which is well known in probability theory is an
extremely important instrument for the investigation of various asymptotic
properties in the uniform metric. The same is true for the inequality of A. BErry
[2] which applies to the same situation and was presented some years before.
EssEEN’s inequality is easier to apply (and therefore used more frequently) and is,
in addition, applicable to a broader class of cases. At the same time experimental
work with EsspeN’s inequality (especially in the problem of absolute estimation
of the remainder in A. M. Lyaruxov’s theorem) showed that BERRY’s inequality is
sharper than EsSEEN's.

This leads to the attempt to construct an analogue of the inequalities of BErrY
and EssEEN which on one hand is more economical than BERRY's inequality, and
on the other hand does not yield to EssgEN’s inequality as to scope and ease of
applicability. The present paper deals with the solution of this problem.

In how far the new inequality is really sharper than BERRY's inequality can be
judged from the results of its application (in connection with a new method)
to the above mentioned classical problem of estimation of the remainder in
Lyapuxov’s theorem.

Let &1, ..., &, be independent random variables with mean zero and finite
absolute third moments fi, ..., fs. By o3, ..., 02 we denote the variances and

n 7
by 02 = > ¢} and ¢ = (Z ﬂk> /o3 Ljapunov’s quantities.
k=1 k=1

We form the normed sum { = (£; + - -+ &,)/0 and let F(x) denote the
distribution function of { and @ (x) the distribution function of the standard
normal law. According to LyapuNov’s theorem there exists a minimal numerical
constant C such that

sup | F(z) — D(x)| = Ce.

The true value of C has not been found so far, but there is reasonto expect that

110+3

%L = 0.40974.

C=0%=

The best two-sided estimate of C so far has been the following: ¢ = C* (K. EssEeN
[4]), C < 4.8 (G. BErasTROM[1]). In the particular case of identically distributed
terms £z the upper estimate of € has been improved: ¢ < 2.031 (K. Takawo [6]) -
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An improved version of the inequality of BERRY-ESSEEN permitted to lower
the upper estimate of C (see [7]). In fact we could show in the general case that
(' < 1.322, and in the above mentioned particular case that ¢' < 1.301.

We can now lower these estimates even more on account of sharper estimates
of the characteristic functions. We formulate here the latest result; the proofs are
based on methods from [7] and will be published elsewhere,

Theorem 1. In the general case we can state that
C < 0.9051,

and in the case of identically distributed terms
¢ <0.82.

2. The Basic Theorem
Let L(x) and H (z) be functions of bounded variation defined on the entire real
axis and such that they simultaneously are either right continuous or left con-
tinuous, and I(¢), A(t) their Fourier-Stieltjes transforms. We put

A =sup|L(x) — H(z)|.

Our aim is to construct upper estimates of 4 in terms of / and A.

We will use the following functions and qualities: p(x) is the density of an
absolutely continuous symmetric distribution (which we can choose arbitrarily)
with a characteristic function w (¢) which is absolutely integrable over the entire
real axis;

m(t) = 1(t) — k().

For positive values of z and y we put

Yy EN mt) |,
Vo = [p@dn, Qo) =1 [|o(5) " |
|lu| <z —o0
a is the unique positive zero of the function 2V (z) — z.
Let &1, &5 be two sets of the real line. We complete the set & = &; U S,

by the points — oo and oo and form the quantity
B(S1, @) = inf(a” — a') 1)

where the greatest lower bound is taken with respect to all possible pairs of points
a’ < a' from the completed set &.

When constructing the inequality we are aiming at we will use additional con-
ditions on the functions I and H. These conditions will be selected from the
following three.

Condition A;. We denote by ; the set of all points of discontinuity of the
function H (z) and by 9B its complement. Then H (z) has a derivative in all points

of By, and
gr = sup| H'(x)| < oo.
B

Condition A;. We denote by U the set of all points of discontinuity of the
function L (x) and by Bs its complement. Then L (z) has a derivative in all points
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of Bs, and
gr=sup| L' (x)| < oo.
Ba

Condition Az. The function L(x) is monotone. In this case we formally put
g1, = 0 and take for Uz the empty set.

In the following the set %3 will play in condition A3 the same role as the sets
of points of discontinuity did in the conditions 4;, Ao.

Theorem 2. Suppose that A1 and one condition Aj;, j = 2,3, are fulfilled.
Accordingly we form from the sets Uy, Wy by (1) the quantity f = B (U1, Wy). We
assume that § > 0. Then for all positive x, y, satisfying the requirements

4
r>a, ?/273‘96,

the following inequality
z{gV(z) + Q(y)]

Y2V @) 2] )

holds, where ¢ = qr + qL-

Proof. In general, there need not exist an  for which the absolute value of the
function M (x) = L(x) — H (x) takes its extremum /4. However for arbitrary
0 > 0 there is a point z; such that | M (x,;)[ = A — §. Without restricting the
generality we can assume that

Mz =—4+6.

Let %y and UA; be the sets corresponding to the pair of conditions satisfied. We
denote by U the union of U; and A;, completed by — co and co. We set
a=sup{a’ :a’' €U, o’ <4},
b=inf{a":a" WU, a"’ > xs}.
Suppose that the function L(z) does not decrease. Then it is not hard to verify

that, whichever condition 4s or A3 we choose together with A, the following
inequality

M@s—y+r)=M@)+(y—v)g=—4+0+(y—»)¢ (3)

will be satisfied for any non-negative finite number y < b — 25 and all » with
Iv] = .

Likewise, when using together with 4; one of the conditions A4, and Ag,
where the function L (x) does not increase, we obtain

M@st+y—n=M@)+ (y —v)g=—A+5+(y—r)g (4)

for any non-negative finite y < s — a and all » with |»| < .
Therefore, under the conditions of the theorem at least one of the inequalities
(3) and (4) will be satisfied for all finite y from the interval

0<y<18. (5)
Suppose that the inequality (4) is fulfilled. We choose any 9 from the intervall (5)

and any y > ofy. We multiply both members of (4) by yp(yv) and integrate the
inequality thus obtained with respect to » over the intervall |»| < y. Taking into
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account that p is an even function we obtain

[M@s+y—v)ypyv)dv < (— A+ 5+ yq) [yplyv)dv.

bl=v pl=y
"This inequality, in turn, permits to obtain the following one:

h=| M@ty —nypund|=| [|—| ]| =

Plsy P>y

2|A—8—yq| [p0)dv— A4 [pH)dy.

¥ vy | =ry

Next two cases are possible: 4 =< é + ygq,or 4 > § + yg. We consider the second
case only. We have

1z @A—ypq—0) L0 _ 4,

VY
Hence we find that
gy + ) Viyy) + Avy
<
4= 2V(yy) — vy ’ ©)

Since V (x) < @« for every x > 0, the right-hand member of the inequality (6)
obviously is not smaller than § + yg. Therefore the estimate (6) remains true in
both cases mentioned before. We introduce a new variable 2 = yy. Then the
inequality (6) takes the form (2). Also the conditions 0 <<y < LB, ¥ > afy turn

4
out to be equivalent to x > o, y = Fx

3. Choice of the Density Funection p (x)

In concrete problems the function |m ()| can usually be estimated in a non-
trivial way only in some interval |¢| < y. It is then advantageous to choose for
the density function p(x) a function whose characteristic function w (£) vanishes
outside of the interval || < 1.

We indicate here two classes of such distributions. One of them is a subclass of
the class of Pélya distributions and can be described as follows.

Lemma 1. Bach function w(t), which is defined on the entire real axis and has the
properties

1. o) =w(—t =0,
2. w0 =1; 0)=0, t=1,
3. co(t _;t )2 ;—{w(t’)—}— w (&)} for all non-negative t', ¢,

is @ characteristic function of an absolutely continuous distribution.
A representative of this class is the distribution which was used by BErry,
when he proved his inequality [2]:

1—cosz

pla)y=——Hsz—. (7)

For this distribution o (f) = 1 — |¢] if || £ 1, and e (f) = 0if [¢] > 1.
However the class of distributions described in lemma 1 has the unpleasant
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property that sometimes w (t) is not differentiable at zero. The following lemma
describes a class of distributions of the type we are interested in which contains
representatives for which the function o is infinitely differentiable at zero.

Lemma 2. Let the function v (x) be defined on the entire real line with the property
that

1. v(x) =v(— ),
2, y(x)=0 for z=1,
3. fvz(x)dwz

Then the convolution o (t) = (v*v)(t) is the characteristic function of an absolutely
continuous distribution with density

9= femaroa]

M
o) =@xv) ()= v —y) v dy

Proof. We have

where m = max(— %, { — %) and M = min(}, ¢ + ). Since the function w(f)
is even (being a convolution of even functions), we can confine ourselves to the
case t > 0. Then obviously

= [yt —y) vy dy. (8)

=%
In virtue of condition 1 and 3 of the lemma we have @ (0) = 1, i.e. w is normalized.
It remains to show that w (¢) is @ Fourier transform of a non-negative function p (z).
Taking into account that w is real we have

:%fcos tx)w = %/’COS(M) (ren) ()

1
z

oo 2
:-21—7[{ fcos(t:c)v(t)dt} :%fcos(tm)v(t)dtz.

0

(==

Condition 2 of the lemma guarantees that w(f) = 0 for ¢ = 1, as required.
Remark. If the conditions 1—3 of the lemma are completed by the condition

4, v(z1) Z v(xe) for xe =21 =0,

then it can be seen from the representation (8) that w (¢) will also be a non-in-
creasing function on the half-line ¢ = 0.

We supplement lemma 2 by two examples of distributions from the class
described in it. The first was given by EssEEN in [3]:

ox\ 4
3 st
a) px) =5~ o

4
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This density corresponds to the function

1—622(1—[t]) if [t =1,
o) =121 — |¢])3 if I<t| =1,
0 if 1] >1.
.z 2
1673 Sty
b) p) = "o |~
7(2,2—4n2)
This density corresponds to the function
1 1 . .
g(l—|t|)(2+cos(2nt))+—27$1n(275[t]) if [t| <1,

o)==
lt] > 1.

4. The Problem of Minimization of I (x, y)

Having construeted the inequality (2) our next problem naturally is to select
x and y from the domain of its admissible values so as to give (perhaps in an
asymptotic sense) the minimum of the function I which is defined by (2). In the
general situation, when only little is known about the properties of the functions
p(x), w(t) and m(t), it is of course impossible to obtain a complete solution of this
analytical problem. However, we can essentially restrict the class of possible
choices by setting up a representation of the surface z = I(z, y) in various, a
priori admissible cases. We need the following notations:

By)=yQ @, Py =Ry -9 w%j m(t)

W)y=[2V () — ] [V(z) + 222 p(x)]/(d22p(2))},
U@)=xzW@)/[2V(z) — ];

M = {(x, 9): z > &, y > 0} is the domain of the function I (z, y); "= {(z, y): x>
>a,y>0,y= %—x} is the set where the inequality (2) holds; g = (%o, ¥o) is a

point, where I (z, y) attains its absolute minimum in N (if such a point exists).
In the following we will exclude the case m(f) = 0, Q(1) = co and the case
g = 0, f = co which do not interest us much.
We write I (z, y) in the form

g P r5E ) ©

x

x Vi{x)
Ty =4 @ve

where 1 << & < 2. Therefore, we have in the domain I:

% qo Q)
T@9)> 5y05 =5 (39 + 4"

(10)

The following fact can easily be deduced from these relations: as y — oo and
z = 0(1),
liminf I'(x,y) = i,
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where in the case of a finite y the inequality is strict; as x — oo and y — oo,
bmint {(z,9) ~ g} 2 4,
and moreover, if « and y vary in such a way that = o (y), then
imI(z,y)=pu.

Let ¢ =0. Then we note that in this case the exclusions which we stipulated
imply § << co. Therefore if ¢ = 0, it is easy to see that the function I (x, y) for
fixed y does not increase in x. It follows that

4
inf I (z,y) =infl (z, 5 =z|. 11
nf 7(z, ) = inf (v 52) (1)

If however, ¢ > 0, then it may be seen from the relations (9) and (10) that the
function I (%, y) will increase unboundedly regardless of the way we approach the
boundaries x = «, y = 0 of M or move along a path for which y = O(1), x — oo.

Exploiting the properties mentioned before we can give the following general
arguments. We remain, of course, within the framework of the conditions of
theorem 2.

1. If § = oo (this is only possible for ¢ > 0) and g = oo, then N = IM; the
point g exists and satisfies the system of equations

ol ol

= =0 i 0. (12)
2. If § = oo (and consequently ¢ > 0) and u <C oo, then N = IN. The point

may or may not exist. In the former case it is a solution of the system (12). In the

latter case inf I (x, ) is found as the limit at x — oo, ¥y — o0, = 0(y) and turns

out to be equal to u.

3. If < o0, yp = oo, then N c M and the point p exists. In the case ¢ = 0 this
point p lies on the straight line y = % z and is determined by the value xy which

satisfies
d

dx

1@%@:0 (13)

In the case ¢ > 0 the point g is either an interior point of N, and is then a solution
of the system (12), or lies on the straight line y = % x and, therefore, satisfies (13).

4. If f << o0, u < o0, then N c M. Here the point p may or may not exist.
If it does we have the same situation as in the case § <C oo, u = oo. If it does not
we have

ian(x,y):limI(x,%x) :%[J’q+,u.
R

T—>00
Lemma 3. a) The system (12) is equivalent to the system
Ply)=qV@), Ry)=qW). (14)
If (z,, y,) is a solution of (14), then

£(y,) q
Ie,v) =y @ve) —ag = 5, V) )
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b) The equation (13) is equivalent to the equation

4%“@@%@+@ﬁp@q:@V@%ﬂwP%@. (16)
If x« is a solution of (16), then
4 \_ 5 ( r (%””))

The proof of the lemma amounts to simple transformations of the equation (12)
and (13) and of I(z,,y,) which we will not indicate here.

Remark 1. When estimating A4 we usually do not deal with the function
| m (£)] itself, but rather with its upper estimate which is non-trivial only in some
finite interval. Thus the typical cases are 1 and 3, i.e. y = oo.

Remark 2. The quantity I (x, y) which appears in the inequality (2) can be
made smaller not only by the choice of # and y for an already given density p (x),
but also by the choice of the density itself. Which density is optimal in this sense,
and whether such a universal density for all functions |m (f)| exists ist not yet
known. Thus all we can do is to try out particular densities and compare, e.g.,
the classes of distributions described above (lemmas 1, 2).

The distribution (7) of A. BERrY deserves our special attention, since it is the
simpliest one and most suitable for application. For this particular density we have
o = 1.69957 ...,

y y
1
Hm=;ﬂmWﬁ,R@=%f£$l%
0 0

V(@) = 2 {wSi@) — (1 — cosa)};

z8i(@)(2V(x) —a)
2(1 — cos x) ’

z2 Si(x)
U(x) = 2(1 — cos_)—’

W(x) =

where Si(x) =
/

sin %

du is the integral sinus function and U (x) appears in the

construction of the extreme value of I in formula (15).
When solving the extremal problem completely the following two facts may
be useful which hold when p(z) is the Berry function:

a) the system (14) has a solution in the stripe « < x < 2%. In fact since
We)=0, W(2xa)=occ; Vi) >0, V(2x) < oo,

the zero level lines of the surfaces 21 = P(y) — ¢V (z) and 23 = R(y) — ¢ W (z)
necessarily intersect in this stripe. Here it may be worth while to remark that in the
concrete examples considered by the author which refer to the case f = oo,
@ = oo, the stripe o < < 27 contained only one solution of the system (14)
which also provided the absolute minimum for the function I (z, y).
b) Solutions of the system (12) cannot give local maxima of I(z, y), for if

(%, y+) is any such solution, then

021 | @, P(y.)

L T BTE ]y O

24 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 8
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5. Asymptotic Estimates of A

We now consider a sequence of pairs of functions (L*, H*) for which A% — 0;
this situation is, indeed, typical for probability theory. Everything referring to the
sequence of functions and their corresponding characteristics will be marked with
an asteric. The question naturally arises how fast A* tends to zero. Although the
estimate of A* in terms of the minimum of the function I formally gives us some
answer to this question, the complexity of the solution of the extremal problem
makes us look for simpler methods.

Here we merely analyze the case where §* turns out to be infinite for all pairs
of sequences of functions L*, H* in terms of which it is given. Apart from the less
interesting cases mentioned in the preceding paragraph this means that ¢* > 0.
For this reason we write the inequality (2) in the following form:

(V@) + @*ya*)/g*] (18)

A= DY) ="y — 4

This representation of I* makes it appear natural to impose the additional
assumption

2 (g >0 (19)

for every fixed y > 0, since we want the right side member of (18) tend to zero;
in fact otherwise we could in general not exploit the inequality for an estimate of
the speed of convergence of A* to 0.

If the condition (19) is satisfied, we can find a constant 4 > 0 and a sequence
T* — oo such that

@ (THgR) S A + o, (20)

where 6% — 0. The inequality sign here allows us to include the cases where we can
choose 4 so0 as to have §* = 0.
From (18) and (19) we obtain the inequality

z[V(x) + 4] x

T*4* = 2V (x) — = - 2V (x) —x

We minimize the first term by choosing z. It is not difficult to verify that the value
2o which yields an absolute minimum of the function B; is a solution of the
equation

Wx)—Viz)=4. (21)
We now formulate the following statement.

Theorem 3. If the sequence of pairs of functions (L*, H*) ts such that §* = oo
and the condition (19) is satisfied, then by choosing T* —> oo and A > 0 in accordance
with (20) we have

T*A* < U (w) + Ba(zo) 6%,

where xg s a solution of the equation (21).

We illustrate the proposed method by sharpening the central limit theorem.
We use the same notations as in the introduction.
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Theorem 4. In the general case of independent terms & we have
sup | F(z) — D (x)| < 0.81967 ¢ 4 0.05894 413 + O(£583),
T

and in the case of identically distributed terms &
sup | F(z) — @ (x)| < 0.81967 ¢ — 0.99951 £2 + O (e3);
&

the constants are given here up to one unit of the last digit.

The proof of this theorem as well as the proof of theorem 1 will be published in
a separate paper.

To conclude we give another example which in our opinion has some inde-
pendent interest. In his paper [6] P. B. PATNATK pointed out that the distribution
function F, (, a) of the non-central y2(a) can be approximated for very large or
very small values of the parameter of non-centrality by the distribution function
F3(Cz, 0) of the normalized central C 42 (0) if

n+a
n+2a

(n + a)?
n+ 2 °

and s=

C =

The general method which we have proposed permits to construct a relatively
simple estimate of the deviation A of F,, from Fy, i.e.

A =sap| Fy(x,a) — Fs(Cx,0)|.
T

In fact, since the characteristic functions of the absolutely continuous distributions
F,, Fs are equal to

fultsa) = (L — 2ty nioxp | 125,
f5(t0, 0) = (1 — 20y,

respectively, it is obvious that we are dealing with the case 2 (f = oo, y << o0)
of our classification, and therefore can take the value

" :%flfn(t,a) — fs(t/C, O)lﬁlt_t_
0

ag an upper estimate of 4. Although an estimate of this integral may be cumber-
some it does not present any analytical difficulty.

As a result we obtain the following absolute estimates which are true for any
a > 0 and n > 0:

A< 3 (1 n) a?

8n\2’ 4) (nta)’
and denoting by D2 = 2(n - 2a) the dispersion of the distribution F,,, F,

2 ./2 9\ 16 1y Dk
1 1 D2 k
o1+ ?)GXP[*?(TJ;T)} ’
where £ is an arbitrary positive number. Therefore for large D we have
A<3 V%D—l 1 O(D-3log D).

24%*
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In particular it follows that uniformly for all

2
4 < mn—llz 4+ O(n—32logn).
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