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Summary. The purpose of this paper is to prove an integral representation theorem for 
continuous additive functionals (of a Hunt process satisfying hypothesis (E)) as integrals of 
local times (when they exist) with respect to certain measures. The effect of random time 
changes on the local times and on the integral representation is investigated. 

Preliminaries 

See [4] for all definitions and nota t ion employed below. Let  X = (/2, Xt ,  Or, Px) 
be a Hunt process with state space E. Tha t  is, E is a locally compact  separable 
metric space with E ---- E (J (A} where A is the point  adjoined to E in the  one- 
point  compactification if  E is no t  compact,  otherwise A is an isolated point. Let  

and ~ be the Borel sets of  E and E respectively. /2 is the sample space of  
paths  co which are maps  ~o : [0, co] --> E tha t  are r ight  continuous and have left 
hand  limits such tha t  co (co) = A and if co (t) = A then co (s) ---- A for all s ~ t. 
We write Xt (co) = X (t, co) = co (t). The shift operators Ot: /2 -->/2 are defined 
by  Xs (Otco) = Xs+t(w). Let  j 0  be the smallest a-algebra with respect to which 
the maps Xt :/2 -+ E are measurable for all t ~ 0 and j 0  the smallest a-algebra 
with respect to which Xs: /2 -+ E are measurable for 0 ~ s --~ t. For  each x in 
E, Px is a probabil i ty measure on j 0  such tha t  Px [X(0) ~ x] = 1 and x -~ 
-+ Px[A] is ~ measurable for each A in j 0 .  For  each finite measure/~ on (E, ~ )  
we define a measure P~ on j 0  by  P~ (A) = f Px (A)d/~(x). We define the a-algebra 
J t  ( J )  as the intersection of  the P~-completions of  the a-algebra A ~ (J0)  taken 
over all finite measures/~ on (J~, ~ ) .  A stopping time is a function T :  ~ --~ [0, oo] 
such tha t  {T < t} e J t  for each t > 0. For  each stopping t ime T let J T  be the 
a-algebra of  sets A in J such tha t  A n {T  < t} ~ g t  for all t > 0. We define 
OTco by  Xt(OTco) ---- Xt+ T(~o)(co). We assume X is a strong Markov process: For  
each stopping t ime T and each bounded real r andom variable F on (/2, J )  we have 

Ex{F(OT~o); A}----Ex{Ex(T)(F); A}  

for all x in E and A e i T -  We denote Ex(F; A) -~ ]FdPx .  Finally,  X is quasi- 
left continuous: I f  { Tn} is an increasing sequence of stopping times with limit T, 
then X ( T n )  -~ X ( T )  almost  surely on {T < oo}. (An expression is said to be 
t rue almost  surely if  it is t rue almost  everywhere Px for each x; almost surely 
is abbrevia ted a.s.) This completes the definition of  a H u n t  process. The reader 
is referred to [4] for the properties of  H u n t  processes and terms not  defined here. 

The li/etime, ~, of a H u n t  process is defined by  ~ (co) ~ inf( t  > 0: Xt (co) = A }. 
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Given a set B e ~ we define the hitting time, T B ,  of B as 

TB (~o) = inf{t > 0: Xt (o9) ~ B}.  

TB can be shown to be a stopping time. I f  D is an arbi t rary  set in J~, then a point  
x is said to be irregular for D if  there exists a set B e ~ such tha t  D c B and 
Px[TB > 0] = 1. A set G is [inely open if each x in G is irregular for G c = J~ - -  G. 
The finely open sets form a topology on E called the [ine topology. 

I f  a H u n t  process X satisfies H u n t ' s  hypothesis (F) then  there exists a measure 
oa  E and point  kernets U ~ (x, y) defined on E X E for 2 ~ 0 such tha t  

o O  

Ex ~ e -~t ] (X (t)) dt -= y U ~ (x, y) [ (y) d~ (y), 
o 

for all bounded measurable f. 
Under  hypothesis  (F), given a measure # on E and a bounded  measurable 

funct ion / on E, we define the ,~-potential, ~" Uz/, o / /w i t h  respect to tt as 

U~ [ (x) = ~ U~ (x, y) ] (y) d# (y). 

I f  / ~- 1 we write V~l = U~. V~ is ~-excessive and lower semi-continuous. 

Continuous Additive Functionals 

Let  X be a H u n t  process. A family A = {A (t), t ~ 0} of  real valued random 
variables is a continuous additive [unctional, CAF, of X if 

(i) The following s ta tements  hold almost  surely : A (0) ~ 0; t -+ A (t) is con- 
t inuous and non-decreasing; A (s) = lim A (t) whenever s ~ ~. 

(ii) A (t) is J r -measurable  for each t. 

(iii) For  each t and s, 

A(t  + 8, co) = A(t, r + A(s, Oto)), a.s. 

MnYEg [8] has proved tha t  every CAB A satisfies the strong Markov property: 

A ( T  + S , o ) ) = A ( T , o ) + A ( S ,  OTm), a.s. 

for each stopping t ime T and each non-negative r andom variable S on (Q, J ) .  
I f  [ is a non-negative nearly Borel measurable function on E we define the 

k-potential (for 2 >= 0) of  [ with respect to a CAF A by  

o o  

U~ f (x) = Ex S e-Xt l (Xt) dA (t). 
o 

I f  ] ~ 1, we write U~A 1 = U~. U~A[ is 2-excessive. 
Given a measurable function [ on E and a stopping t ime T, let 

P ~  / (x) = Ex [e - ~  / (xT)]. 

I f  A is a CAF with ~ -= U~ < r for some ~ ~ 0 then lim P ~ , ~  = 0 for each 
~b - - >  o o  

increasing sequence Tn with ~ ---- lira Tn. See [4, p. 417]. 
The impor tan t  uniqueness theorem of MEYER [8, p. 193] states t h a t  ff A and 

B are CAF's  with U ~ A, U ~ < c o f o r s o m e 2 ~ 0 a n d f f U ~ =  U ~ t h e n A a n d B  
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are equivalent, i.e., Px [A (t) =~ B (t)] = 0 for all x and t. We do not distinguish 
between equivalent CAF's A and B, and we write A = B. 

Preliminary Theorem 

The following theorem, see [6] or [1, p. 139] affords a connection between 
CAF's and measures under hypothesis (F). 

Theorem 1. Let X be a Hunt process that satis/ies hypothesis (F). I / A  is a CAF 
o / X  such that U~ < co/or ), > 0 then there exists a unique mecvsure # on E such 
that UxA/ = U~/ /or each non-negative G-measurable/unction / on E. 

Proo/. q~ is A-excessive and finite. Since A > 0 Hunt 's  hypothesis (G) holds 
[7, p. 170]. Thus by Theorem 18.7 of Hu~T, [7, p. 177], 90 can be written as 
~v = U~ -~ ~v, where tt is a unique measure on E and ~p is a ~-excessive function 
such that  P ~ v  = yJ whenever D is the complement of a compact set in E. As 
usual TD = inf{t > 0 : X t  E D). 

Now let {Gn} be a sequence of open subsets of E such that  the closure Gn of 

Gn is a compact subset of Gn+l and 0 Gn = E and Tn = TD~/z  ~ where 
n = l  

G n. Since Dn is the complement of a compact set we have P ~  = % 
But  0 < to < ~ since U~ > 0 and also P~%~ ~ 0 as n ~ ~ ,  hence ~ = P ~ p  < 
<= P~,  q~ -+ 0 so y~ ---= 0. Hence U~ = U~. 

That U ~ / =  U~/ now follows from a theorem of M ~ Y ~  [8, p. 218]. This 
completes the proof of Theorem 1. 

The Fine Support of a CAF 

Let A be a CAF of a Hunt  process X. Assume U~ < c~ for some fixed 2 ~ 0. 
We say A vanishes on a nearly analytic set D provided 

oo 

U~A ID (x) = Ex ~ e-~t ID (Xt) dA (t) = 0 for all x ,  
0 

where ID is the indicator function of D. The /ine support of A is the smallest 
finely closed set on whose complement A vanishes. GnTOO~ [5] has shown the 
existence of the fine support under the above conditions on A. Furthermore ff 
R = inf{t > 0: A (t) > 0} then the fine support of A is the set 

F = {x: Px[R = 0] = 1}. 

I t  follows from Theorem 1 that  under hypothesis (F) the set F is the fine 
support of the measure # associated with the CAF A mentioned in that  theorem. 
Also, under hypothesis (F) the fine support is a Borel set. 

Definition. A CAF A of a Hunt  process X is said to be strictly increasing if 
t -* A (t) is strictly increasing a.s. on [0, ~). 

The following theorem provides a criterion in terms of the measure in Theorem 1 
for a CAF to be strictly increasing. Theorem 5.4 of [1] is similar to this theorem. 

Theorem 2. Let A be as in Theorem I and let/~ be the measure such that U~/ = U~] 
/or all non-negative d-measurable/. Then A is strictly increasing i/ and only i/ 
is strictly positive on non-empty/inely open Borel sets. 
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Proo/. Suppose A is strictly increasing. Let G be a non-empty finely open 
Borel set. I f  x e G  then Px[Tao > 0]----- 1, so 

0 < Ez f e-At I~ (X~) dA (t) = V~ Ia (x) = f V z (x, y) d# (y) 
0 G 

and hence # (G) > 0. 
Conversely, suppose # is strictly positive on non-empty finely open Borel sets. 

Let  R = i n f { t > 0 :  A ( t ) > O }  and G = ( x :  P x [ R > O ] =  1}. To show A is 
strictly increasing we need only show G is empty. Note that  G ~ F c where F is 
the fine support of A and hence of/~. We then have ~ (G) = 0. But  G is a finely 
open Borel set being the complement of a finely closed Borel set. Hence G is 
empty. Q. E. D. 

Local Times 

Let X be a Hunt  process. A point x in E is regular/or x with respect to X if 
Px[Tx = 0] --~ 1 where Tx = inf{t > 0: X(t) = x} is the hitting time for x. 

Let  x0 be a point of E such that  Xo is regular for itself. I t  is shown in [2] that  
then there exists a CAF Axo such that  U1AZo = Ex[e-fxo]. A~o is called the local 
time of the process X at xo. Under hypothesis (F) Ax0 can be chosen so that  
U~0 (x) ---- U ~ (x, x0) for i > 0. (There is a certain amount of freedom in con- 
structing local time -- but  two local times at the same point differ by constant 
multiples.) 

The following theorem which we state without proof is useful in what follows. 

Theorem 3. (See [5].) Let X be a Hunt process. 

(i) The/ine support o/the local time Axo at a point xo regular/or itsel/ is the 
set {x0}. 

(ii) 1/Xo is a point regular/or itsel/ and A is a CAF with U~ < c~ /or )~ > 0 
and with/ ine support (x0} then A = b Axo /or some b > 0 where Axo is the local 
time at xo. 

Integral Representation oI CAF's 

Theorem 4. Let X satis/y hypothesis (F). Suppose each point in E is regular/or 
itsel/. I / A  is a CAF o / X  with U~A < r /or ,~ > 0 then there exists a unique measure 
# such that A - ~  ]Axd/~(x), that is, A( t ) -~ fAx( t )d#(x) ,  a.s. 

Proo/. Let  # be the measure in Theorem 1 such that  U~ = U~. Let  B(t) 
= ]Az( t )  d#(x). I t  is not hard to check that  B ~- {B(t), t ~ 0} is a CAF of X. 
Using Fubini's Theorem we have 

o o  

U~(x) ~- Ex ~ e-~t dB (t) 
0 

o o  

-~ ] (Ex ~ e -;'t dAy (t) ) d# (y) 
0 

= ~ u~ (x, y) d~ (y) 
= u~ (x) 
= u~ (x). 

The result now follows from Meyer's uniqueness theorem. 
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Random Time Changes 

Le t  A be a CAF of a H u n t  process X. The inverse v = {~t, t >= 0} of A is 
defined b y  

~t  (gO) = inf{s: A (s, co) > t} 

or rt  (go) = co if {s: A (s, go) > t} is empty .  Each  ~t is a s topping t ime and for 
s, t ~ 0  we have  

~t+8 = ~t + ~ 8 ( G , ) ,  a . s .  

~t is r ight  cont inuous and  str ict ly increasing in t a lmost  surely. 

We define a new process 2~ = {.(2, 2~t, Or, Fx} as follows: Q = n ,  

Xt(go) = X~(,,)(go), ~)t = Or,, Px = Px .  

~2 is then  a strong Markov  process with s ta te  space E.  
All of  the above facts  are well known and can be found in [3, p. 322]. 

J~ is said to be obta ined b y  a random time change (via A) f rom the process X. 
I f  A = {A (t), t => 0} is a str ict ly increasing CAF then  clearly t -~  rt  is con- 

t inuous a.s. 

I n  wha t  follows let A = {A (t), t >-- 0} be a strictly increasing perfect  CAF of 

a H u n t  process X.1 Let  2Y be the  process obta ined f rom X by  a r andom t ime change 
via A. 2 

L e m m a  1. I f  B = {B(t), t __> 0} is a C A F  o / i  then J~ = {B(t), t _--> 0}, where 

(t, go) = B(Tt  (gO), go), is a C A F  o / X .  

Pro@ Now, t --~/} (t) is continuous and non-decreasing a.s.  Also J~ (t) = B (Tt) 

is 57t = J ~  measurable .  I t  remains to check addi t ivi ty ,  name ly  

1}(t + s) = B(t) + B(s, bt), 
~, S. NOW~ 

(t + s, (9) = B (rt+s (go), go) 

-= B('~t(go) @ -Cs(Ort o)), go) 

= B (zt (go), go) + B (zs (Or~ o9), Or, go) 

(by the s t rong Markov  p rope r ty  for CAF's)  

= B(t,  co) + / } ( s ,  OttO), a.s. Q . E . D .  

L e m m a  2. A point x is regular/or it~ei/ with respect to X i / and  only i / x  is regular 
/or itsel] with respect to X .  

Pro@ Le t  Tx = inf{t > 0: Xt  = x} and Tx = inf{t > 0: 2~t = x}. Then 2~x 
= A ( T x ) ,  a.s. So, 

P x [ T x  = 0] ---= 1 r  = 0] = 1 

P z [ T x  = 0] = 1. Q . E . D .  

1 See [3, p. 173] for the definition of a perfect CAF. 
Also assume hypothesis (L) [4, p. 420]; (L) is a mild restriction on X. 2~ is then a 

Hunt process. Note hypothesis (F) implies (L). 
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B y  L e m m a  2 the  t r ans fo rmed  process X has local t imes  a t  poin ts  where X has  
local t imes.  The nex t  theorem identif ies the  local t imes  of  the  t r ans fo rmed  process 
in  t e rms  of  the  local t imes  of the  original  process. 

Theorem 5. Let xo be regular/or itsel/ with respect to X.  I /Axe  is the local time 

o / Z  at x0, then the local time Axe o/~[ at xo exists and is given by ~4xo (t) = Axe (~t) 
a.s.,/or t ~ O. (Hypothes i s  (L) is assumed.)  a 

Proof.  L e t / ~  : {B(t), t ~ 0} where /~( t )  : Axo(~t ). B y  L e m m a  1 , /~  is a CAF 

of  2~. Now, let  R : inf  {t > 0 : /~ ( t )  > 0}. The fine suppor t  ~5 of  /~ is t hen  

: {x: /hx[/~ : 0] : 1} b u t / ~  ---- A(R) ,a . s . ,whereR  : inf{t  > 0: Ax0(t) > 0}. 

Thus,  

Px[ /~  = 0] ---- 1 <=> Px[A(R)  = 0] = 1 

P x [ R  : 0] : 1. 

Bu t  {xo} : {x: Px[R = 0] : 1} is the  fine suppor t  of  A~o, so {x0} is the  fine 

suppor t  o f /~ .  Hence  b y  Theorem 3, /~ = b A~0 for a cons tan t  b ~ 0. I n  view of 
the  uniqueness  of local t ime  up  to  cons tan t  mul t ip les  we can assume b = 1. W i t h  
th is  modif icat ion,  Theorem 5 is proved.  

I f  X satisfies hypothes is  (F)  in the  above  considerat ions  the  t r ans fo rmed  

process X need no t  sa t i s fy  (F). However ,  we have  an  analogue of Theorem 4 

for X.  

Theorem 6. Let X be a Hunt process that satis/ies hypothesis (F) and such that 
each point is regular/or itself with respect to X. Let A be a strictly increasing CAF 

o / X  such that U~A < c~ /or ~ > 04. Let B be a CAF o/the process X obtained Item 
X by random time change via A. I /  U~ ~ c~ for ~ ~ 0 then there exists a unique 

measure v on E such that B = ~ ~4xdv(x), where Ax is the local time o] X at x. 

Proo/. Le t  B(t) : B(A(t)) .  I t  is easy to see B : {B(t), t ~ O} is a CAF of  
X such t h a t  U~ ~ c~ for ~ ~ 0 and  hence b y  Theorem 4 there  is a measure  v 
on E such t h a t  B = ]Axd~,(x). Then b y  Theorem 5, 

B(t) = B(~t) = ~Ax(~t)dv(x) = ]Az( t )dv(x) ,  a.s.  

i e ,  = S 

Bibliography 
1. BLU~IENTHAL, 1%. ~ . ,  and 1%. K. GETOOR: Additive functionals of Markov processes in 

duality. Trans. Amer. math. See. 112 131--163 (1964). 
2. --  --  Local times for Marker processes. Z. Wahrscheinliehkeitstheorie verw. Geb. 3, 

50--74 (1964). 
3. Du E.B. :  Marker Processes, vol. 1. Berlin-Heidelberg-New York: Springer 1965. 
4. GEToo~, 1%. K. : Additive functionals and excessive functions. Ann. math. Statistics 36, 

409--422 (1965). 

3 This theorem generalizes a result of ITO and McKv, AN. See Diffusion Processes and 
their sample paths. Springer, Berlin-Heidelberg-New York 1965, p. 174. 

4 Under hypothesis (F) every CAF is equivalent to a perfect CAF. 



Local Times and Random Time Changes 331 

GETOOR, R . K . :  Continuous additive functionals of a Markov process with applications 
to processes with independent increments. J.  math. Analysis Appl. 13, 132--153 (1966). 

6. G~IEGO, R. J.  : Local t ime as a derivative of occupation times. Dissertation 1965, Uni- 
versity of Illinois. 

7. Hg~% G. A.: Markov processes and potentials, I II .  Illinois J .  Math. 2, 151--213 (1958). 
8. MEYn~, P. A. : Fonctionelles multiplicatives et additives de Markov. Arm. Inst. Fourier 

12, 125--230 (1962). 
Department of Mathematics and Statistics 
University of New Mexico 
Albuquerque, New Mexico 87106, USA 


