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1. Indroduction

Weakly wandering sets were introduced in [2] while studying necessary and
sufficient conditions for the existence of a finite invariant and equivalent measure
u for a given measurable non-singular transformation ¢ defined on a measure
space (X, %, m). In the same paper it was shown that every ergodic measure
preserving transformation defined on an infinite measure space (X, %, m) admits
weakly wandering sets of positive measure, see also [4]. In this paper, we consider
the collection of all weakly wandering sequences # == {W} associated with a
given measurable non-singular transformation ¢ and study some of the properties
of such a collection #. While investigating properties of the iterates of a measur-
able non-singular transformation ¢ in [1] we found that weakly wandering
sequences have some interesting properties; see section 3 of [1]. For definitions
of such sequences and other related sequences discussed in this paper we refer
the reader to the text.

In Theorem 1 we list a number of the properties of weakly wandering sequences.
In section 2 we introduce a collection of closely related sequences of integers;
namely, the recurrent sequences % = {R} for the transformation ¢. In Theorem 3
we give some of the properties of such sequences, while in Theorem 2 we give a
characterization for an infinite sequence of integers R == {r;} to be a recurrent
sequence for a transformation @. Namely, B = {r;} is a recurrent sequence for
the transformation ¢ if and only if there exists a measurable set A of finite
measure such that lim m (¢ 4N A) > 0. We then use this condition to give a

1—>00

characterization for an ergodic measure preserving transformation @ defined on
an infinite measure space (X, %, m) to be of positive or zero type. Such trans-
formations are discussed in detail in [3]; see also their connection with the problem
of invariant measures [2]. In section 4 we mention a topology on a space con-
sisting of infinite subsets of integers. We then give a somewhat different description
of the weakly wandering and the recurrent sequences. In this connection we
introduce a number of other sequences of integers that are related to the weakly
wandering and recurrent ones.

2. Basie Notations and Definitions
We shall only consider o-finite and non-atomie measure spaces (X, %, m). A
subset 4 of X is said to be measurable in case 4 € #. Measurable subsets of X
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will be denoted by the letters 4, B, C, ..., and often the word measurable will
not be mentioned explicitly. By a measurable transformation ¢ defined on the
measure space (X, %, m) we shall mean a 1—1 mapping of the space X onto
itself such that 4 € # if and only if ¢ A € #. We say that ¢ is a non-singular
transformation in case m(A4) = 0 if and only if m(pA4) = 0, and ¢ is measure
preserving or equivalently m is an invariant measure for ¢ in case m(4) = m(pA)
= m(p~14) for all measurable sets 4.

A set A €% is said to be a wandering set for the transformation @ in case
PrANgIA=0Ffori=+4;4,7=1,2,..., The set 4 is said to be a weakly wan-
dering set for the transformation ¢ under some sequence W = {w;} of integers
in case ™A N ¢g"A = @ for ¢ +4. In case there exists a measurable set 4 of
positive measure which is weakly wandering under a sequence W = {w;} of
integers, we shall say that W = {w;} is a weakly wandering sequence for the
transformation ¢.

Let ¢ be a measurable non-singular transformation defined on a measure space
(X, #,m). @ is said to be ergodic in case p 4 = 4 implies m(4) = 0 or m(X—A4)
= 0. @ is said to be recurrent in case m (4) > 0 implies for almost all z € 4 gprzecA
for some positive integer n = n(x) > 0. It is possible to verify the following
statements for a measurable non-singular transformation ¢ defined on a measure
space (X, %, m):

(1) @isrecurrent if and only if ¢ is recurrent for every integer k = 1, 2,...

(2) @ is recurrent if and only if there exists no wandering set of positive measure
for ¢.

(3) «p is ergodic» implies «p is recurrents.

(4) «p ergodic and measure preserving with m (X) = co» implies «there exist

weakly wandering sequences for g».

For a proof of the above statements see [5], [4], and [2].

Let @ be an ergodic measure preserving transformation defined on the measure
space (X, %, m) with m(X) = co. The notion of a transformation of positive
type and that of zero type was introduced in [2] as follows:

Definition. i) ¢ is said to be a transformation of positive type if

m(4) >0 implies Limm(pnd N A4)>0.

n—>co
ii) @ is said to be of zero type if
m(A) << oo implies limm(pn 4 NA)=0.

N—>00

In section 4 we need to mention such transformations, and we note that in 3]
ergodic measure preserving transformations of positive type and those of zero
type were constructed on a measure space (X, Z, m) with m (X) = oo.

In what follows we study mainly ergodic measure preserving transformations
@ defined on a measure space (X, #, m) with m(X) = oo. A number of the new
concepts connected with a transformation ¢ can be introduced without requiring
the transformation ¢ be ergodic, measure preserving, or 1 —1. Moreover, many
of the subsequent properties can be shown to be true under a more general setting.
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Howevere, in order to emphasize the significant steps and make the arguments
simpler we restrict ourselves to transformations of the above type.

Since different subsets of the integers are used throughout this paper ex-
tensively, we establish some further notation.

We shall denote by I = {n]n =0, +1, -2, ...} the set of all integers. The
letters R, S, V, W, ... will be used to indicate infinite subsets of the integers,
and we shall often refer to them as sequences R = {r;|i = 1, 2, ...}. In particular,
in what follows, all sequences R = {r;} mentioned are assumed to have the prop-
erty that r; +7; for ¢ +4; 4,9 =1,2,.... For any integer k£ +0 we let N; =
{nk|n =1,2,..}, and we denote by {k} the subset of I consisting of the single
element k € I. Let V and W be two subsets of 7. We shall have occasion to use
the following additional subsets of I:

We={nel|n¢W}
V+W={mel|ln=v+w for veV and weW}
—W={nel|ln=—w for weW}.
W—W={nel|ln=w—w for wweW}.

3. Weakly Wandering and Recurrent Sequences

For a measurable and non-singular transformation ¢ defined on a measure
space (X, 4, m) we denote by # = {W} the collection of all weakly wandering
sequences W = {wz|z ==1,2,...} for the transformation ¢. We introduce next
the following:

Definition. We say that a sequence R = {r;|¢=1,2,...} of integers is a
recurrent sequence for the transformation ¢ in case B N W has only a finite number
of elements for any W € #°. We denote by Z = {R} the collection of all recurrent
sequences £ = {r; Iz = 1,2, ...} for the transformation ¢.

Theorem 1. Let ¢ be an ergodic measure preserving transformation defined on the
measure space (X, %, m) with m(X) = oo, and let #" = {W} be the collection of all
weakly wandering sequences W = {w;|i = 1,2, ...} for the transformation ¢. Then

iy We#w dimplies — Wew .
Wew, VcW implies Vew.
Wew implies W+ {k}ew foranyinteger k=0, +1,42,....

ii)
)

iv) We#" implies there exists an integer k + 0 such that W U (W + {k})e # .
)
)

m

v) We# implies (W — W)t N Ny is an infinite subset of I for any integer k + 0.
vi) W={ws|i=1,2,..}e# implies limijw;=0.
i—o0
Proof. i) Follows from the fact that
PP ANg”Ad =0 ifandonlyif ¢ =ANn¢e A=0 for ¢+75.
ii) and iii) are obvious.

To show iv) let A be a weakly wandering set under the sequence W = {w;}
with m(4) > 0. Since ¢ is ergodic, there exists an integer k + 0 such that
m(p7*A N A)>0. Let B= ¢~%A4 N A. By possibly considering a subset of B
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we may assume without loss of generality that 0 < m(B) < co. Let ¢ = B — ¢* B.
Since m(X) = oo and ¢ is ergodie, it follows that m(C) > 0. Now Cc Bc 4;
therefore,

(5) PrOngC=90 for i+7j.

Furthermore, € c 4 and ¢*C c 4 imply

(6) g ON gt C =0 for i=+y;

and CcB, p¢Cce¥B and CnNe*B=0 imply

(7 OCngtl=90.

Combining (5), (6), and (7) we obtain

g0 N0 =0 for w;+wj; w;,w;eWU(W—l— {k}), and <¢,j=1,2,...
This shows that W U (W + {k}) € # for some k + 0.

To show v) we note that if 4 is a set of positive measure weakly wandering
under the sequence W = {w;} and pe W — W with p * 0, then

(8) ePANA=¢.

If (W— W)N Ni has only a finite number of elements, assuming that
k > 0, then by (8) there exists an integer ¢ > 0 such that

9) grAnd=0 for n=q,q+1,9+2,....

(9) implies that 4 is a wandering set of positive measure for the transformation
g¥¢ for some k > 0; together with (3) we obtain a contradiction to (1). A similar
argument for & < O establishes v).

We next show vi). For any measurable set 4 with 0 << m(4) < oo let

n
Anz.U(piA for n=0,1,2,...

=0
and
By=A, — Ay for n=12,....
We then have
A>¢9p1Bio¢p2Bso--,

and

BinB;j=0 for i+j; ¢j=12,....
Let

C = m(p—n .Bn .
n=1

Since ¢ is 1 —1 and ¢nC c B, for n =1, 2, ... it follows that C is a wandering
set. Since @ is recurrent and measure preserving, we eonclude

ﬁq;-an):m(O) =0.

n=1

(10) limm (By) = limm (¢~ By) = m(

n—>o0 h—>c0

It follows also from the definitions of the sets 4, and B, that

an) m () =m<L”J Bk> = Sm(By).
E=1

k=1
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Combining (10) and (11) we obtain
(12) lim (1/n)m(4,)=0.
n—oo

Now suppose 4 is a set of positive measure and weakly wandering under the se-
quence W = {w;}. We note that any subset of the set 4 is again a weakly wandering
set under the same sequence W, 4 is also weakly wandering under the sequence
— W,and if W= U U V where U and V both satisfy the conclusion of vi) then so
does W. Thus, without loss of generality we may assume the following: 4 is a weakly
wandering set under the sequence W, 0 << m(d4) << oo, and W = {w;} is an
increasing sequence of positive integers. We then have

Lo Ci)q)’“A =1ty C)(p””cA\ =1 im (" 4) = im(A).

Wi \g=1 M \g ) =i i
Using (12) and the fact m(4) > 0 we conclude vi), and this completes the proof
of the theorem.

Theorem 2. Let ¢ be an ergodic measure preserving transformation defined on
the measure space (X, B, m). A sequence R = {r;|i =1,2,...} of integers is a
recurrent sequence for the transformation @ if and only if there exists a set A of
finite measure such that Bmm (g" A N A4)>0.

>
Proof. Assume R = {r;} is not a recurrent sequence for the transformation ¢.
This means that there exists a weakly wandering sequence W such that W N B= 8§
has an infinite number of elements. By #i) of Theorem 1 we have that R contains
a weakly wandering subsequence S = {s;}. By Theorem 3 of [1] it follows that
the sequence § ={s;} satisfies

p8

(13)

I

[f(¢*x)| converges almost everywhere for all fe L1(X).
i=1

Let 4 be any set of finite measure, and let f4 be the characteristic function of
the set 4. From (13) follows

(14) limf,(¢*x) =0 for almostall zeX.

t—>oco

Applying the Bounded Convergence Theorem to (14) we obtain

(15) limm(g* AN A)=0.
i—>00
Since R = {r;} contains S = {s;}, from (15) we conclude
(16) limm(g"ANA)=0 forany set 4 of finite measure.
i—>00

To prove the converse, assume (16) is true, and let A and B be two measurable
sets both of finite measure. Then

(17) limm[g" (4 U B) N (AU B)] = limm (g™ B A A)

Applying (16) to the set 4 U B and using (17) we obtain
(18) limm (¢" BN A4)=0 for any pair of sets 4 and B of finite measure.

Guir 00
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We conclude the proof of the Theorem by proving the following Lemma ; we note
the similariry of this Lemma and the method of its proof to that of Lemma 4 of [2].

Lemma. Lef ¢ be a measurable non-singular transformation defined on the
measure space (X, %, m), and let R = {r;} be a sequence of integers satisfying (18).
Then there exists o weakly wandering subsequence 8 = {s;} of the sequence R = {r;}.

Proof. Let A be a measurable set with 0 < m(4) = a < oo, and let
{ei[t = 1,2, ...} be a sequence of positive real numbers such that

[==)
Z£¢=8<a.

f=1

Let sg = 0. Since the set A satisfies (16) we can choose an integer s; € R such that
m(@e*ANA4)<e.

Suppose now the integers s1, s2, ..., sx—1, all different, have been chosen from

the sequence R = {r;}. We next choose si € R such that sy is different from the
previously chosen s, sg, ..., Sg—1, and

k-1
(19) m (A N (ps"_siA) < &g .
i=0
F—1
This is possible since (18) is true for the sets B ={_Jg %4 and A both of finite

i=1
measure. Thus, we are able to choose inductively a sequence § = {s;} from the
sequence R = {r;} such that (19) is satisfied for £ =1, 2, ... . It then follows

that the set
oo k—1
W=4-—-J g4
k=1 i=0

is weakly wandering under the sequence 8 = {s;|¢ = 1,2, ...}. We also have
m(W)ga—«Zaiza—s>0.
i=1

Theorem 3. Let ¢ be an ergodic measure preserving transformation defined on the
measure space (X, B, m) with m(X) = oo, and let # = {R} be the collection of all
recurrent sequences R = {r;|i = 1,2, ...} for the transformation ¢. Then

i) ReZ impliecs — Re.
iy ReZ, ScR implies Sci.
i) Re# implies R+ {k}cZ for any integer k=0,41,+2,....
iv) ReZ, Scd implies RUSeX.
V) R={ri}e# implies lim(ijr;)=0.
Vel

Proof. i), ii), iii), and iv) follow directly from the definitions and the properties
of the collection #" established in Theorem 1. We show v). Let 4 be a set of finite
meagure. Applying the Individual Ergodic Theorem to the characteristic function
of the set 4 and applying the Bounded Convergence Theorem we obtain

I I % _
(20) lim — > migFdnA)=0.

n—>00 k=1
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Let R = {r;} € Z. It follows from Theorem 2 that there exists a set 4 of finite
measure such that
(21) limm (¢4 NA)>0.
i—>00
Without loss of generality, by possibly ignoring a finite number of elements of

the sequence R and reindexing the remainder, we conclude from (21) that there
exists a real number o > 0 such that

(22) m(ptdnNd)za«>0 forall :=1,2,....

We further assume that the sequence R = {r;} is an increasing sequence of
positive integers. Again this causes no loss of generality by i) and the fact that if
R = S U T where § and 7' satisfy the conclusion of v) then so does R. Combining
(20) and (22) we obtain

i

n
0 = lim %Z m(gEANA)=lim L > m(gkAnA)
7—> 00 k=1 j>o0 T p=1
o i
g'miz A NA4) >hm—-ot
ri k=1 $—> 00

Since « > 0 we conclude v), and this completes the proof of the Theorem.

4. Some Extensions and Other Related Sequences

In this section we describe the collections £ = {R} and # = {W} of all
recurrent and weakly wandering sequences respectively for an ergodic measure
preserving transformation ¢ in a different setting.

By an ultrafilter o of subsets ¥ of the integers I we mean a non-empty col-
lection of non-empty subsets F of I with the following two properties:

1) E]_EO(, Eonc implies ElﬂEzerx.
ii)) £cl implies either Eea or Efeq.
We shall say that an ultrafilter o is free in case (T} £ = 0. We note that an ultra-

Eea
filter o is free if and only if « contains no finite subsets of I.

We next let o/ = {«} be the collection of all free ultrafilters as defined above.
We consider the topology defined in .2/ by the basic open sets of the form @ (E)
determined by the infinite subsets & c I as follows; For any infinite subset £ c 1
we define the open set ¢(H) determined by E to be 0(E) = {a € A |Eca}. It
is easy to see that O(E) c O(F) if and only if £ N F¢ has a finite number of ele-
ments in 7, and

(23) OE) N O(F) =0

if and only if £ N F has only a finite number of elements in I.

For any open set € c &/ we denote by €* = (%)0, the interior of the closure
of the set €. €* is called the regularization of the open set €, and € is said to
be a regularly open set in case €* = ¥. We also let ¥# = ()¢, the complement
of the closure of the set €. ¥ ¥ is called the exterior of the set %.
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Theorem 4. Lef ¢ be an ergodic measure preserving tmnsformation defined on

the measure space (X, B, m) with m(X) = co. Let O(#) =|_J O(W) be the open
Wew”
set in <7 determined by the collection W = {W} of all weakly wandering sequences

W = {ws} for ¢, and let O(R) =) O(R) be the open set in of determined by the
Re#
collection & = {R} of all recurrent sequences R = {r;} for @; then
iy O(A) = ("//f)#, t.e. O(Z%) is the exterior of O(#
i) O(R)* = O(#)*, 1.e. the exterior of O(R) is the regularization of O(¥).
iii) O(B)Y* = O(R), i.e. O(ZF) is a regularly open set.
1v) O(R) =0 if and only if @ is a transformation of positive fype.
O(w)* = U 0 A///*
WHey™*

where W% = {W*} is the collection of all sequences W* = {w¥} satisfying
Hm m(¢g** 4 N A) == 0 for any measurable set A with m(4) << oo.

Proof. i) and ii) follow from (23) and the definitions of # and #".

iii) is obtained from the following:

For any open sets €, & c o/ we have

(24) CcEHT,
and
(25) €cg implies DH¥cEF.

Putting (24) and (25) together we obtain
(27 if @2=%% then (%)% =29.

From (27) and properties 1) and ii) for 0 (%) we conclude iii). To show iv) we note
that from Theorem 2 follows that the collection #Z = {R} of all recurrent se-
quences R = {r;} for ¢ is not empty if and only if for some sequence R = {r;}
of integers the following condition is satisfied:
(28) There exists a set A with m(4) < oo such that limm (¢4 N 4) > 0.
i—>co
Also recalling the definition of a transformation @ of positive type we have
(29) m(4) >0 implies Tmm(pnANnA4d)>0.
n—> 0
It is easy to conclude that the transformation g satisfies (29) if and only if there
exists a sequence R = {r;} for ¢ satisfying (28). This proves iv).
v) follows from the definition of @(¥")* and the fact that if a sequence V
= {v;} of integers satisfies the condition
limm(¢g”ANA)>0 for some set 4 with m(4) < oo,
i— o0
then it is possible to obtain a subsequence R = {r;} of the sequence V = {v;}
which satisfies (28). This completes the proof of the Theorem.
We note that the sets O(%), O(¥), O(#')* associated with a given ergodic
measure preserving transformation ¢ defined on an infinite measure space (X, %, m)
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are invariants for the transformation ¢ under spatial isomorphism. In particular
condition iv) of Theorem 4 gives a characterization of ergodic measure preserving
transformations of positive and zero type. Stating the above condition in a dif-
ferent way we obtain the following

Corollary. An ergodic measure preserving transformation @ defined on an infinite
measure space (X, %, m) is of zero type if and only if the set O(#") in o associated
with the transformation @ has the property O (W )* = of.

In order to have an idea of the relative sizes of the sets 0(#") and O(#")*,
we introduce the following collections ¥", = {¥V7}, n =1, 2, ..., 6, of subsets
of the integers I:

Foreachn =1,2, ..., 6let ¥, = {V"} bea collection of sequences V" = {u;}
of integers satisfying conditions » = 1, 2, ..., 6 respectively as listed below;

Condition 1. 0 << m(A4) < oo implies @™z € A for at most a finite number of
+’s and for almost all xe X.

Condition 2. f4 = characteristic function of a set A with m(4) < oo implies

(=]

ZfA (" x) << oo a.e.

i=1
Condition 3. f4 = characteristic function of a set 4 with m(4) < oo implies
falg"z) =0 a.e.

Condition 4. fe L1(X) implies f(¢*x) >0 a.e.

Condition 5. f € L1(X) implies > |f(¢™x)| converges a.e.

=1

Condition 6. There exists a set 4 with m(4) > 0 such that { € L1(X) implies
[ S 1#(g")|dm is finite,
4i=1

We next associate with a given measurable non-singular transformation ¢ de-
fined on a measure space (X, %, m) the following subsets 0 (¥",,) of o for n = 1,
2, ..., 6 respectively:

For each n=1,2,...,6 let 0(¥"n) = O(V") where ¥, = {V7}
Veey n

is the collection of subsets V7 of the integers I as defined above. We now state
the following

Theorem 5.
OW) O ) O 5) O 1) =0(¥3) =0(¥3) = O(F1) cOW)*.

Proof. The proof of O(#") c O(¥s) is contained in Section 3 of [1]. Namely,
in the proof of Theorem 3 of [1], in showing that every weakly wandering se-
quence W = {w;} satisfies Condition 5, we showed a stronger result; in fact,
any set of positive measure which is weakly wandering under the sequence
W = {w;} can serve as the set 4 in the above condition 6.

We next prove only 0(¥"4) > O(¥"s), the remaining relations follow from the
definitions.

23 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 8



324 A. Hasiax and Y. Ito: Weakly Wandering and Related Sequences

Suppose Condition 4 is not satisfied by a sequence V = {v;} of integers. Then
for some fe L1(X), f = 0 a.e. and some real number o > 0 there exists a set B
with m(B) > 0 such that

(30) Hmf(g"z) Za>0 forall zeB.

>0
For any real number o’ with 0 <o’ <o we let
Ay = {x|f(x) Z o' > 0}.

Then f € L1(X) implies m(4y) < o0, and (30) implies that for all z € B, ¢”x € Ay
for infinitely many . Furthermore, (30) implies f = 0 a.e.; or saying all this in
different words, there exists a real number o' with 0 << o' < ¢, such that 0 <
< m(Ay) < oo. This shows that the sequence V = {;} does not satisfy Con-
dition 3 which in turn proves 0(¥74) > O(¥s).
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