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Introduction 

As is well-known a measure preserving transformation T on a finite measure 
space (D, ~, #) is called mixing if 

(1) lim # (f2) /~ (E (3 T-n F) = ~a (E) # (F) 
n - +  -[- co 

for all E, F ~ ~3. One might think that a good analogue to (1) in the case of a 
a-finite measure space is 

~(Ec~ T-~F) ~(E)#(F) 
(2) l i m  , u ( H ~  T - n K )  - -  t~(H)/~(K) 

n - ~  § co 

for all E, F, H, K, ~ ~ with finite and positive measure. I~owever no transfor- 
mation satisfying (2) for all such E, F, H, K exists [10, Th. 2], though it is perfectly 
legitimate to require the validity of (2) for all sets of finite and positive measure 
belonging to, say, a ring which is metrically dense in ~, in the sense that  for 
every E ~ ~3 with finite measure and every e > 0 there is an F in the ring with 
/z (E @ F) < e (E -b F = (E -- F) k) (F -- E)). K. KRICKEBERG [28], motivated 
by an example devised by E. tIOPF, chose as such a ring the class of all "bounded" 
almost boundaryless sets, assuming of course that  the space has a topology. 

I t  turned out that  the most interesting manifestations of this concept of 
mixing occur in the case of the shift transformation of Markov chains admitting 
an infinite stationary measure. In  the case of recurrent chains for instance mixing 
is equivalent to the strong ratio limit property. There is more to it; when the 
measure is infinite there is room for variation. KRICKEBEnG [28] introduced a 
concept of quasi-mixing by allowing the right-hand side of (2) to assume the 
form cf (E, F)/cf (H, K), with some conditions on ~v. 

The main object of the present paper is to discuss mixing and quasi-mixing 
Markov chains. Only sections w 1 and w are devoted to the abstract situation. 
We note however that  we found it expedient, for reasons that will be explained 
below, to restrict the scope of KnICK~BEnG'S definition of quasi-mixing and accept 
only ~'s of the form ~ (E, F) ~ #l (E) ~u2 (F) where #1,/~2 are measures. 

In w 1 we prove that, with this new definition, quasi-mixing in a space of finite 
measure coincides with mixing in the classical sense. This is not true ff we permit 
more general ~' s. We also give a necessary condition for ergodicity which shows 

* The present work was done while the author was holding a stipend of the Alexander 
von Humboldt foundation of W. Germany. A preliminary report was published in [32]. 
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tha t  there is an abundance of non-ergodic mixing transformations. In  w 2 we 
specialize to Markov chains and show tha t  the necessary and sufficient condition 
for quasi-mixing is essentially the strong ratio limit property of the transition 
probabihtics (supported by  another natural  condition). We close the section with 
a discussion of these conditions. w 3 is devoted to what is perhaps the main 
theorem: Under a certain condition, satisfied in particular by  all R-recurrent 
quasi-mixing chains, each of the measures #1, #8 is either absolutely continuous 
or singular relative to/~. The same is true of chains with independent increments, 
which are discussed in w 4. In  w 5 we t reat  continuous-state-space processes with 
independent increments on locally compact groups, in the frame of S T o ~ ' s  paper 
[37]. Some discussion of rates of convergence, convergence norms etc. follows in 
w 6, and w 7 contains pathological examples of quasi-mixing transformations on 
the unit interval and the real line. A number of open problems are planted in 
the text. 

The author  is indebted to K. KRICKEBEI~G for many  fruitful conversations and kindling 
questions as well as a lot  of suggestions concerning the  present paper. The "pur i ty"  of the  
m e a s u r e s / x l ,  ~2 relative to # (see w 3 below) was conjectured by  him. 

w 1. Mixing and Quasi-mixing Transformations 

Let /2 be a completely regular topological space, ~ the a-field of its Borel 
sets, i. e. the a-field generated by its open sets, and # a a-finite tight measure on 
~3, which means tha t  every E ~ ~ can be written as a union of countably many  
compact sets and a g-negligible set. Let  T be a ~-measurable measure preserving 
transformation mapping all of D into itseff and assume T is almost everywhere 
continuous, i.c. its discontinuity points form a g-negligible set. I f  vl, ~2 . . . . .  re 
are any measures on ~ we denote by ~(vl ,  v8 . . . .  , re) the field (not a-field) of 
all sets in ~ whose boundary is vt-negligible for every i = 1, 2, . . . ,  k. 

1.1. Definition. T is said to be quasi-mixing if there are two a-finite tight 
measures #1,/~2 on ~,  an increasing sequence of sets He,  k = 1, 2 , . . .  in ~ (#, #1, #z) 
and a sequence of positive numbers {~n} such tha t  

(i) # (~2 - -  U He)  = 0 ,  #1 (f2 - -  ~,J He) = 0 ,  #2 (~2 - -  [ .J He)  = 0 ,  
e k k 

(ii) 0 < /b~ (He)  < + oo ,  0 < ~1 (He) < + oo ,  0 < ~t8 (He) < + oo 

for every k, 

(iii) /~l (E) > 0,/~2 (E) > 0 whenever E is in ~ (#, #1, #2) and/~ (E) > 0, and 
finally, 

(iv) for any two sets E, F E ~ (/x, #1, #8) contained in some He the following 
is true 

(3) l im~n~(E  ~ T - ~  F) : ~I  (E) ~8 (F) . 
n--> ,~ oo 

I f  {Qn}, #1, #2 can be chosen so tha t  #1 -~ #2 = #, T is termed mixing.  
For the sequence {~n} we shall use the expression " T  is governed by {~n}". 

The role of the sequence {He} is to introduce a notion of"boundedness" for subsets 
of ~ .  Using the tightness of #, #1, #2, the complete regularity of the space and 
conditions (i) and (ii) one can show tha t  the class ~ (#, #1, #2) is metrically dense 
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in ~3 in the following sense: For every A e ~3 and every ~ > 0 there is 
B ~ ( # , / ~ l , # 2 )  such that  # (A + B ) < e , # I ( A  + B ) < e a n d f t 2 ( A  + B ) < e .  
In [28] the class ~ (#) of#-almost boundaryless sets was used in place of ~ (/~, #1, #2) 
but  the corresponding definition is far too strict and must be relaxed as above 
for otherwise the criterion of [28, p. 435] fails and the main examples in [28] 
satisfy only our weaker definition. In fact, if 2 is quasi-mixing and (3) holds for 
all #-almost boundaryless sets contained in some Hk then/~1 and/~2 are absolutely 
continuous relative to #, since #, #1, #2 are tight and every/,-negligible compact 
set is #-almost boundaryless. With the present definition the criterion of quasi- 
mixing referred to above remains true after a trivial modification and will be 
invoked on a number of occasions in the present paper. 

Isomorphisms in the sense of [28] preserve mixing. Measure-preserving 
homeomorphisms preserve quasi-mixing. We note that  (iii) is equivalent with the 
following: #1 (E) > 0, #2 (E) > 0 whenever E is open and #(E)  > 0. One can 
further prove that  (3) holds for every pair E, F such that  E is #l-almost boundary- 
less, F is/x2-almost boundaryless and E c H~, F c H~ for some k. 

1.2. Theorem. I / T  is a quasi-mixing trans[ormation on a space o/[inite measure, 
then T is mixing in the classical sense. 

Pro@ In [28] it is shown that  {~n} must be bounded and then inferred (with 
the aid of the metric density of ~ (#, ttl ,  #2) in ~3) that  

(4) l im/t  (E (~ T-n  F) __ ~#l (E) tt2(F)~(~ t t (~z)"~" 
n--+ 4- oo  

for all E, F e 2 .  
We shall first show that  T is ergodic. Suppose there is an invariant set E e ~3 

with 0 < # (E) < # (/2). Then 

0 = lira en~(E  c~ T-n(f2 -- E)) =/~I(E)/~e(f2 -- E ) ,  
n--> + c o  

hence either #1 (E) = 0 or/~e (Q -- E) ---- 0. I f  the first is true we have (since T 
is measure preserving and E is invariant) # ( E ) =  # ( E  (3 T - h E ) - ~ 0  by (4), 
which is a contradiction. Similarly ff #2 (Q -- E) = 0. 

Now the ergodicity of T implies the Ces&ro convergence of/~ (E (3 T -nF)  to 
/~ (E) # (F)/# (SQ), hence by (4) 

#1 (E)/~2 (F) /~ (E)/~ (F) 
#1(~'~) #2(~r~) /s (~r - -  # ( ~ )  

In a space of infinite measure a mixing transformation may fail to be ergodic: 

1.3. Theorem. I /  T is invertible and quasi-mixing and i I 

then T is not ergodic. 

Pro@ By (3) 

lira ~n/t (H1 (3 T -n H1) = jul (H1)/*2 (H1) �9 
n--->-c oo 

19" 
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This implies two things. First, since 1/O n --> 0 

(5) l i m / ~ ( H l n  T-ni l1)  -~ 0 with #(H1 n T-n i l1)  > 0 eventually. 
n - - > - k  oo 

Second, 
/~(H1 n T - ' H 1 )  < ~#1(H1)/~(H1).  1/0. 

eventually, hence by our hypothesis 
c o  

(6) ~ I ~ (H1 n T -n H1) < + oo. 

Suppose now T is ergodic. The space f2 has no atoms, because if A were an 
+ c o  

atom, we would have by the ergodicity of T [2 -~ ~J  T n A  (almost), where the 
n ~  - - c o  

T n A  are pairwise almost disjoint atoms in ~ with # ( T n A ) - - - - # ( A ) >  0 for 
every n. This however is impossible in view of (5). Thus ~2 is non-atomic and T 
must be conservative (eft [11, p. 85]). But  then almost every point of H1 is in- 
finitely recurrent [11, p. 11], and this means 

oo 

H1 = ~J  (H1 f~ T -n HI) (almost) for every i, 
n = i  

oo 

#(H1) ~ ~/~(H1 n T-n i l1)  for every i. 
n = i  

By (6) # (H1) ---- 0, which is a contradiction. 

P r o b l e m  1. What  can one prove in the direction of sufficiency of 

n = i  

for ergodieity ? Does mixing plus conservativity imply ergodicity ? 
In  this connection see the remark following Th. 2.1 below. 
l~'or each positive integer r we denote by T(r) the transformation T(r) (Xl . . . .  , Xr) 

= ( T x l ,  . . . ,  Txr) acting on the topological product space ~2r = D •  • 
(r-fold). The product measure #(r)[ !8(r), where !~(r) = ~ Q !~ ~) . . -  G ~ (r-fold), 
can be extended to a tight measure on the a-field !~* of all Borel subsets of 
~ r  [33]. I t  is easy to see that  if T(r) is ergodic, then so is every T(s) with s ~ r. 
KAKUTANI and PARer [17] define the ergodic index of T as the greatest positive 
integer r such that  T(r) is ergodic; if T(r) is ergodic for every r then the ergodic 
index is by definition q- oo and ff T is not ergodic then the ergodic index is 0. 
As mentioned in [28], if T is quasi-mixing and governed by {0n) then so is T(r) 
for every r and the latter is governed by {O~}. This and Th. 1.3 imply 

1.4. Corollary. 1/ T is invertible and quasl-mixing, governed by {On), and i/ 

oo 1 

n = l  On 

then the ergodic index o/ T is < r. 
In connection with the proof of Th. 1.3 we refer the reader to Proposition 7.4. 
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1.5. Lemma. I /  T is a quasi.mixing trans/ormation governed by {~n} and A a 
Borel set w i th /~(A)  > 0 and such that A and T - ~ A  are members o/ ~(/~, /~1, /~) 
contained in some H~ then 

lim e~+~ /~(T-~ A) #~(A) 
O~ -- #I(A) --  #z(T-1A) > O. 

In  fact 

.o~+1 .on+l#(A ~ T-hA)  On+I#(T-IAC~ T-(n+I)A) /~I(T-1A)~2(A) #I(T-1A) 
o~n --  o n / ~ ( A C ~ T - n A ) -  ~n~(AC~T-nA) -> /~I(A)~(A) - -  /~I(A) 

and similarly 

~n+l On+l#(A ~ T-(n+I)A) #I(A)#2(A) /~(A) 
On -- Onp(A c~ T-n(T-1A)) --> ~I(A) /~2(T-1A) - -#u(T-1A)  " 

Thus ff our space contains a subset A satisfying the condition of the theorem 
then 

lim en+l 
~n n- ->  + r  

exists. 
One can construct numerous mixing and quasi-mixing transformations by 

varying HoPF's original idea [16, pp. 66--67]. We do not pause to give such 
examples since a representation theorem of KaICXEBERG [28, w 2] shows tha t  
these transformations are "isomorphic" in a precise sense with Markov chains 
and enables us to construct them as "images" of the latter. 

w 2. Markov Chains 

Let (p~) be the matr ix  of transition probabilities of a discrete parameter  
Markov chain with countable state space I .  We assume 

J 

for every i and denote the n-step transition probabilities by ~!.n) We make the 
fo l lo~ng two basic assumptions, which will remain in /oree  throughout the paper, 
unless expressly stated otherwise: 

Assumption I. The chain is irreducible and aperiodic. 

Assumption II.  The chain admits a non-trivial (finite or infinite) stationary 
measure. 

The first assumption means tha t  for any i, ] ~ I there is no (i, ]) such tha t  
pq0 > 0 for all n > no (i, ]). With the second assumption we postulate the exis- 
tence of numbers ~i, i e I with 0 < ),~ < + c~ for every i E I and 

i 

for every j ~ I .  A/gebraically {~i} is a left eigenvector of the matr ix  (P/j) cor- 
responding to the eigenvalue 1. Such vectors will be called positive stationary 
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vectors of the chain and will be referred to below as finite or infinite according as 

o r  

i i 

A stat ionary distribution is a positive stat ionary vector {2l} with 

~k~  = 1. 
i 

We are of course mainly interested in the case 

~ , =  + ~ .  
i 

In  the sequel we shah choose one of the vectors {~} which will be called the 
stationary vector of the chain and will be at  the basis of our considerations. 

The measure-theoretic sample space of the Markov chain in question is con- 
structed as follows. Let ~ be the set of all bilateral sequences of states 

. . . .  • 2 1 5 2 1 5 2 1 5  

Elements o f ~  will usually be denoted by x, with Xn designating the n-th coordinate 
(n = 0, ~: 1, : j :2 , . . . ) .  Let  !~ be the a-field generated by  the elementary rect- 
angles, i.e. the sets which have the form 

(7) E = { x :  x r = i r ,  X r + l = i r + l , . . . , x s = i s } ,  s ~ = r  

and denote by  # the measure whose values on elementary rectangles such as E 
are given by 

(8)  [~ ( E )  = ~ i r  P i r i r+l  Pir+lir+~ " " "Pi~- l i~  " 

On the a-finite measure space (~, ~,  ~u) we introduce the "shift" transformation 
T which maps each point x = (X n )n  of ~ onto T x  -= (Xn+l )n .  Finally we topo- 
logize f2 with the product of the discrete topologies on the individual components. 
This topology derives from a metric which makes ~ into a Polish space, i.e. a 
complete separable metric space. ~ is then the a-field of Borel sets and every 
a-finite measure on ~ is tight. The transformation T is a homeomorphism of 
onto itseff and at  the same time an invcrtible measure preserving transformation 
of (~, ~,/~). 

An elementary rectangle such as E in (7) is clopen in the product topology, i. e. 
it has a void boundary. For each i a I we define ~ i  = {x: x0 = i}. Then 

i 

where the ~ / ' s  are disjoint and # (Qi) = ~t. 
The transformation T -1 "is" the shift of the reverse Markov chain, having 

transition probabilities 
~j 

(9) qij = ~ Pj~. 

l~ote tha t  the reverse chain depends on {~} and has the latter as a positive 
stationary vector. 

A chain is called reversible ff there are positive numbers (t~} such tha t  

t/Pij = tj Pji 
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for all i, ?" e I .  {ti} is then a positive s ta t ionary  vector  for the chain and if we 
choose ~ = ti (which we shall always do whenever we are dealing with a reversible 
chain) then the reverse chain is identical with the original one. 

I n  applying Definition 1.1 to Markov chains we shall restrict somewhat  its 
scope and confine ourselves to one part icular  sequence {H~}: For  each m = 0, 
• l,  • 2 . . . .  and each i e I we define Gin, ~ = {x : Xm = i} and then sui tably ex- 
press each H~ as a finite union of  such sets. To avoid making things look clumsier 
t han  they  are we say tha t  a subset of  .Q is bounded if it is contained in a finite 
union of  e]ementary rectangles. (3) is then expected to hold for all bounded 
members  of ~ (tt, #1,/z2). The chain will be called mixing or quasi-mixing if its 
shift t ransformat ion T is such. As shown in [28], in order to establish quasi- 
mixing it is sufficient to verify (3) for all rectangles of the form 

{x: xnl = i l ,  x~ = i2 . . . . .  xn,~ = i~}, nl  < n2 < "'" < nk.  

2.1. Theorem. The chain is  m i x i n g  i / a n d  only i /  

(10) lira Pg+'~' ~; 
n - +  ~- c o  

/or a n y  states i, ~, Ic, h and a n y  integer m.  I f  this is  so and i / i o ,  ]o are a n y  states then 
the shi f t  is governed by @n = 1 f*)('~) I.t%020 " 

Proof .  (Cf. [28, end of  w 33.) I f  #1 = ~u~ = # and 

E = {x: x~ = i~, x~+l = i~+1, . . . ,  x~ = i ,},  

F = { x :  x~ = i~ ,  x ~ + l  = j ~ + l ,  : . . ,  x~ = j~} 

then (3) can be wri t ten (note tha t  ~ ~ - n  > s eventually) 
~(v+n)-s . . . .  q~ . __ 

lim @n ~ i r  P i r i r + ~  " ' "  1 J i s - l i s l J i s ] ~  l"]v jv+~ r j t - ~ 2 t  - -  ~ i r  P i r i r + ~  " * " Pi~ , i ,  " ~]vP]v iv+,  " " P s  
n---> -~ oo 

i.e. 
t im e,~ p{~jf ( ' -  ')) = &, .  

n - - >  ,~- r  

The theorem follows. 
A Markov chain constructed by  KRENGEL [26, example 3.1] shows tha t  mixing 

does no t  imply  the  val id i ty  of  (3) for all (i.e. bounded as well as unbounded)  
members  of  ~ (/~, #1, #2) with finite measure. 

I t  is interesting to compare Th. 2.1 with a condition for ergodicity. I t  is known 
[17] t ha t  T is ergodic if and only ff the chain is recurrent,  i.e. 

~ ~(..~)= ~- c~ 
z Z ~  * 

n = l  

I f  T is mixing this can be writ ten 

n = l  @n 

Thus we see tha t  the necessary condition of  Th. 1.3 is here sufficient as well. 
Recall t ha t  an irreducible aperiodic chain is posit ive-recurrent if and only if 

it admits  a s ta t ionary  distribution. 
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2.2. Corollary (E. HO]'F). Every irreducible aperiodic Markov chain admitting 
a stationary distribution is mixing in the classical sense. 

I n  the nul l-recurrent  case all one can say in general is t h a t  

l im P~J + p}~) + " "  + p~)~' ~J 
tZ--> + oo 

If (lO) holds, then we speak of a strong (or individual) ratio limit. Sufficient 
conditions for the validity of (lO) in the null-recurrent case are given in [30] and 
[25]. It should be noted however that (I0) is also satisfied by many transient 
chains which happen to admit a positive stationary vector. 

Clearly (i0) implies that the radius of convergence of the power series 

is 1 for any  i, j. D. VERE-Jo~Es [38] has proved  t h a t  for any  irreducible and 
aperiodic Markov  chain the  radius of convergence R of the power  series 

is independent  of  i, j and t h a t  we either have  
co 

n = l  

for all i, j or 
co 

n = l  

for all i, ]. I n  the  former  case he called the chain R-recurrent and in the la t ter  
R.transient. We ahvays have  1 ~ R < + c~ and it  is known t h a t  

l im ~ - -  1 
v r ~ l  R 

with ~/~(-~.n) < 1/R for every  n [24, Th. 10]. The  number  7 = 1/R is known as the  
convergence norm of the chain. 

VE~E-Jo~Es fur ther  p roved  t h a t  i f  the  chain is R-recurrent ,  then  there exist 
posi t ive numbers  T (i), ~ (i) (i e I )  such t h a t  

(11) 7~(i) = ~,pi jz( j )  for every  i e I ,  
i 

(12) y7~(~) = ~ ~( i )P i j  for every  j e I .  
i 

The vectors  {z(i)), {7~(i)} are the  unique (to within a constant  factor) non- 
negat ive  solutions of (11) and (12) respect ively and  if we write 

co= (~i T:(i):~(i))-i 

then  

(13) l im p!~)R n = co~(i):r(j) for all i, j .  
n- ->+  oo 
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He called an R-recurrent chain R-positive or R-null  according as co > 0 or = 0. 
I f  the chain is R-positive we clearly have by  (13) 

(14) l im P~7+'~) __ ym T(i)~(j) 
p~) ~ (~) ~ (h) 

n--> -{-co 

for any states i, ],/c, h and any integer m. In  the R-null case we have [38, Th. 3] 

l im p~j R ~- p~) R 2 ~- "'" -~ p~) R n ~(i)~(]) 
p ~  R + p(~i) R ~ ~- "" ~ p~2 R n - -  T(~)~(h) 

but this does not imply (14). I t  implies however tha t  if the limit in the left-hand 
side of (14) exists it must  be equal to the right-hand side. 

2.3. Definition (P~uITT [34]). An irreducible aperiodic Markov chain is said to 
have the Strong Ratio L imi t  Property (abbreviated SRLP) if there are positive 
numbers y, v(i), z( i )  (i e I)  such tha t  (14) is true for all states i, ], ]~, h and all 
integers m. 

The sufficient conditions given by O~EY [30] for the SRLP in the case of null- 
recurrent chains were generalized by  PRVITT [34] to cover the R-null case. How- 
ever, no universal criteria seem to be known for R-transient chains. We note 
tha t  (14) implies tha t  y is the convergence norm of the chain, both in the R- 
recurrent and R-transient case. 

P r o b l e m  2. Are there R-transient chains for which all individual ratio limits 
appearing in the left-hand side of (14) exist but  do not have the form of the 
right-hand side ? 

Choose any state in I and denote it by  0. In  the sequel it will play a special 
notational role. Recall tha t  Q~ ---- {x: x0 --~ i}. 

2.4. Theorem. The chain is quasi-mixing i / a n d  only i / i t  has the S R L P  and the 
numbers y, T(i), 7e(i) (i E I )  appearing in (14) satis]y equations (11) and (12). I / t h i s  
is so, and i / E  is the elementary rectangle in (7) then we can set 

(15) /~i (E) = y - s  # (E) v (is) = y - s  ,~i, pi, i,+~ . . .  Pi,-~i~ T (is), 

~(i,) 
( 1 6 )  [.t2 (E) ~-- ~r ~ (E) ~ = ~r 7~ (it) Pi~i~+~"" Pi~-~i~ 

and 
T(o) ~(o) 

Conversely y,  T (i), 7c (i) (i e I)  are de/ined in terms o/{Qn},/~1, #2 as/ollows: 

y -= l im Qn 
n - + +  oo ~0n+l 

T ( i ) -  ~l(n~) 

(i) = tt2 (t2~). 

Proo/. The sufficiency of conditions (14), (11), (12) was established by KRICKE- 
B ~ G  in [28] for his broader concept of quasi-mixing. Cf. the proof of Th. 2.1 
above. To prove their necessity assume the shift is quasi-mixing. I f  A is any 
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bounded almost  boundaryless set of  positive #-measure,  then by  Th. 1.5 

Jim en #~ (A) ,ue(T-1A) 
n-->+~ On+l --  # i ( T - 1 A ) -  ff2(A) > 0.  

We define 

y ---- lim Qn T (i) - -  ffi(~2*) ~ (i) ---- #2 (f2~) (i e I)  
Qn+l ' ~i n--> + oo 

and show tha t  

for every i, j .  I n  fact  

- -  2i 
Finally 

p~F .') 

lim On ~(.n) = z(i) ~(])  ,t-Z~ 
n--+-[- oo 

~n @n+l qn+m-1 qn+m p ~  +m) 

which for n -+ -~ oo converges to ?mz(i )~( j ) /~(k)Te(h) .  This establishes (14). 
To prove (11) we note t ha t  

J 
hence 

This implies 

7~(i) = y 

J 

2~ -- ,li 
i 

Y 
-- 2i Z #l(~Qic~ T-1~gj)ff2(f2o) 

#2(t2o) 

-- 2,~(0) Z ~  lira 0n#(Qt  ~ T-1DJ N T -n Do) 
] in-++ oo 

7 ~ limQn ~ . . . . .  (n-1)~ 
_ _  "~ ~3/"]o 

I h m  ~" pt, Qn-lp~.no-1)l 
- -  ~ ( o )  �9 [._~+~ ~n- i  j 

y 1 

~(0) J J 

(12) can be established similarly. This concludes the proof. 
We note  t ha t  if a chain has the S R L P  then so does the reverse chain (9), with 

the same ? and with T* (i) = 7~ (i)/2i, ~* (i) = 2/T (i). I t  follows tha t  if the given 
chain is quasi-mixing, then so is the reverse one. I t  is known (see [30] and [34]) 
t ha t  a reversible and R-recurrent  chain has the S R L P  and is therefore quasi- 
mixing. I t  follows from the preceding remark tha t  in this case 

(17) = (i) = 2~ z (i). 

We shall now exhibit  R-transient  chains which have the S R L P  but  fail to 
satisfy one of  the equations (12). Let  /n,  n ~ 1, 2, . . . ,  be a sequence of non- 
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negative numbers  with 
~o 

n = l  

and define a Markov chain on the non-negat ive integers as follows 

P o i = l - - / i ,  P o o = / i ,  

1 - -  I1 - -  12 . . . . .  l i + i  l { + l  
P i , i + l ~ -  l - - / i - - 1 2  . . . . .  l i  , P i O :  l - - / i - - 1 2  . . . . .  l i "  

The probabil i ty 1(0~ ) of  first re turn  to 0 at  the n- th  step (starting at 0) is equal 
to /n (cf. [2, p. 42]). As usual we set Un = p(ono ), n = 1, 2, . . . ,  uo =- 1, /o -~ O. 

I t  is well-known tha t  

(18) un  ----- liUn-i -[- l f lUn-2 -F "'" -~- /nUO. 

2.5. Proposition. I1 i n  this  mode l  

lim u.+l 
~ n  

n--> d- vo 

exists ,  then the mode l  has  the S R L P  w i t h  

- - y  

i 

p - X / ~  ~ - ~  
(19) c(i) = ~=1 

i-~l~ 
~=i 

i 

(20) ~(i) - p 

Proo / .  Let  us set ~i : 1 - - / i  - - / 2  . . . . .  /i+l, ~-1 = l, 0i = :r I f  i 
is any  state other than  0 we obviously have, in the notat ion of  [2, I w 9] 

~(~) Oi 0~+1"" "O~+n-2 (1 - -  O~+n-1) - -  ~+~ ~ (1 a~+~-ll = 
01" i0  ~ ~ - 1  c t i + n - 2  / 

~i+,-z - ~i+~-i h+~ o/9~ +') 
0(~ -I O(i-i O(i-i 

n-- I �9 , n -- I (i§ ~) 

 io (n) = t-  
= 1 0 ~ - 1  ~ = 1 "-  

-- [ _ ~ ~(~)~(~+~-i~)] by  (18) 1 p(oio+n) i [ E_, o t ' o o  t ' o o  | 
~ i - 1  ~ = 1 J 

i 

which implies 

(21) lim /9~" = lira 1 U~+n _ _  U n + i - ~  1 (,o z - -  ~ - -  y i _  ~Yi-~ . 
n-->+oo /900 n-->+co o~i-i [ un un J c~i-i = 

Note  tha t  *'i0~(n) => piOP(ono -1)  hence 

lim ~ > P i o y - 1  > O. 
n--> + ~ /900 

hence 
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Now let ] be + 0 and i arbitrary. 

= ) + Z - ' ) .  

When n > 

(22) p~) ~(n-:) ~(i)  ~(~-i) ~ . .  = /~iO O/"Oj = /~iO 3--1 " 

Clearly (21) and (22) ~re trivially true when i = 0 or ] = O. Hence given any four 
states i, ],/c, h 

•gCn+m) (n+m--]) 

When n -~ ~- oo this converges to 

I '  ] 
~ - 1  

= y m  

io(•+m_t) �9 0~]-I 
oo P%~ 
p~-~ p~-h) 

' [ / /  ] 

which completes the proof of the proposition. 
We can easily verify that  

for every i. Similarly, for every j # O, 

i 
However the equation 

is satisfied ff and only ff 

i.e. if and only if 

= =(i)p o 
i 

: ~ O~i_ 1- (1  - -  Oi) : / i+1 

yJ 
5(h-1 

yh 

oo  

i = l  

But this is easily seen to be necessary and sufficient for R-recurrence. Thus 

2.6. Proposition. I / a  chain o] the present model has the S R L P  then (11) and (12) 
hold i /and only if the chain is R-recurrent. 

For concrete examples consider any Markov chain having the SI%LP, let In 
be the probability of first return to 0 at the n-th step, starting at 0, and use these 
numbers in the above construction. The model is not wholly satisfactory since 
only one of the equalities fails in the R-transient case and (what is worse) it 
admits a positive stationary vector ff and only ff it is recurrent (see [5, p. 544]). 
This leaves us with the following task: 

P r o b l e m  3. Construct a chain having the SRLP and admitting a positive 
stationary vector, but  such that  (11) and/or (12) do not hold. 
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I t  is of  course readily seen tha t  the S R L P  implies 

(23) yr ( i )  >--_ ~ p ~ j r ( j )  for every i ,  
J 

(24) y 7r (j) => ~ ~r (i) p~;- for every j ,  
i 

and we cannot  resist the t empta t ion  to ment ion in parenthesis the following 

2.7. Proposition. The inequalities (23) with ~ (i) ~ 0 (i E I) imply 

inf  ~ (i) = 0 
i 

when O < y < l and 
inlf [~(i) -- i~ PilZ(J)] = O 

when y = 1. (Assumptions I and I I  are not needed here.) 

Pro@ The ease 0 < y < 1 is trivial since i teration of  (23) yields 

ynT(i)  > ~p!~)~( j )  > p!~]) 1 f r ( ? )  = i n f r ( j ) .  
J J 

Let  now y = 1 and set 

e = inif[z(i) -- ~ P i ,  T(J) ] �9 

We prove tha t  for any  n 

>--Z " P# 0) + e. 
J J 

I n  fact  

= ~ T ( h ) p ~  +1) @ e .  
h 

An induct ion a rgument  now leads to 

r(i) > ~ ~(.~.)~(j) + ne  

for every n, whence e -=  0. 
For  the dual  inequalities (24) 

(i) I f  there is a jo such tha t  

then 

J 

(with 0 < y =< 1) one can say the following: 

Pi]o = + oo 
i 

infTr(j) = O. 
J 

(ii) I f  there is a positive s ta t ionary  vector  {2@ then 

inf ~(j) 0 
y 
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in the case y < 1 while 

inf = 0 j ~J 

in the case ~ = 1. (i) is trivial and to prove (ii) we apply Prop. 2.7 to the reverse 
chain (9) which satisfies the inequalities 

~(i) > ~ q j ~  ~(i) 
Y - ~ - j  = ~ ~ �9 

2.8. Theorem. I f  a chain is quasi-mixing and transient then fll ([2) = + 0% 
g2 (2)  : + o o .  ( I n  the recurrent case ffl ---- l-*2 = if). 

Proof. I f  y < 1 then (24) implies 

J 

and if {2~} is a stationary vector then (23) implies 

~ ( i )  = + oo. 
i 

In  fact 

and 
i i i i i i 

In  particular if the chain is quasi-mixing then 

ffl (~) = ~ m (9~) = y .  Z~ -c (i) + oo 
i i 

and 

Y i 

I f  y = 1 then /z~ (~2) < + oo if and only if the chain is positive-recurrent. 
In  fact {~(i)} is a positive stationary vector and 

J 

means tha t  the chain admits a stationary distribution. Similarly/zl  (2) < + co 
if and only if the chain is positive-recurrent; for, by what has just been shown, 
p l  (~) < + oo if and only if the reverse chain (9) is positive-recurrent and this 
is obviously true if and only ff the original chain is positive-recurrent. 

w 3. The Main Theorem 

In  the present section we prove tha t  in the case of an R-recurrent quasi- 
mixing Marker  chain each of the measures p l , /z2  is "pure"  (i.e. either singular 
or absolutely continuous) relative to ft. Here is a slightly more general result. 

3.1. Theorem. I f  y and T (i), i ~ I are any positive numbers satisfying equations 
( l l )  then formula (15) determines a measure /Zl on 2 ,  and i/ {T(i)} is the unique 
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(to within a constant/actor) positive solution o/ (11) then the measure ttl  i s  either 
absolutely continuous or singular relative to/t .  I / ,  in addition to the above hypotheses, 

= 1 t hen / t l  ------ clt where c is a positive constant. 

Proo/. Equat ions  (1 l) ensure the val idi ty of  KOL~mGOROV'S compatibi l i ty  con- 
ditions for the set funct ion #1 which can thus be extended to a measure on 2 .  
Decompose this measure #1 into absolutely continuous and singular parts  relative 
to #,  

(25) # I (A)  ~- f / ( x ) t t ( d x )  ~- O(A) (A ~ 2 ) .  
A 

I n  the space ~ we define a net  { ~ n }  as follows. For  each fixed n ~ 0 ~ n  consists 
of  all rectangles of  the form 

E i _  . . . i o . . . i ,  ' = { x :  X - n  ~ -  i - n  . . . . .  x o  ~ -  i o  . . . .  , x n  = i n } .  

I t  is clear t h a t  
o o  

n = 0  

generates !~, hence by  a well-known theorem of DE Zh VALL~E-PoussIN [35, 
pp. 152--156] the derivative of  ~ul with respect to tt on the above net  i s / .  More 
specifically, if for each x = ( . . . .  X-l ,  x0, xl . . . .  ) we define 

[#,(Ez_,...x0...x,) if #(Ex_...~o...x, ) > O 
1~(~) 

then 
1 (x) = l i m  1~ (x) a . e .  

~t---~-  c ~  

(cf. [6, Chap. VI I ,  w 8, especially p. 346 or pp. 611--612]).  
Now from (15) we obviously have In (x) ~- y - n v  (Xn) a.e., therefore 

(26) /(x) = l im ~ -nz (xn )  a.e. 
n--> -{- o o  

and we assume t h a t / ( x )  is this limit or 0 according as the limit exists or not.  
F rom (26) 

l ( T x )  = 7 1 ( x )  ~ . e .  

Fur ther  / is integrable on each SQ~ since 

f / ( x ) t t (dx  ) ~ lim ] /n(X)t t (dx ) : lim~tl(Q~) -~ #~(f2t). 
tO~ n - ~ + ~  ..QL n--> § oo 

At  this point  we employ a technique of  [1]. F rom (26) it follows tha t  given 
any  ]c the function / is measurable relative to the a-field generated by  xk, x~+l . . . . .  
Hence by  the Markov proper ty  if nl ~ n2 ~ "" ~ nr we have for the conditional 
expectat ions : 

E ( t l x . ,  = i~ . . . . .  x,,, = it) ~- E ( / [  x,~. = Jr) 

Therefore 

(27) yu E (In z0  = i0 . . . . .  x .  = i . )  = E ( / I  x0 = i~)  
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since 
E ( y n / [ x o  = io, . . . , x n  -~ in) : E ( y n  / I x n  = in) 

----- E ( / o  Tn  I (Tnx )o  ~-- in) =- E ( / [ X o  = in) .  

I n  par t icular  (27) implies 

7 E ( l l x o =  i, x l =  ]) = E ( l l x o =  ]), 

hence ff we define a(i)  : E ( / I x 0  = i) we get 

y a ( i )  = y E ( l [xo  = i) 

= 7 ~ E (11 x0 = i ,  xl  = j) pij = ~ ~ (ll  ~0 = j) pij = ~ p,s ~ ( i ) ,  
J i J 

which shows t h a t  (a( i )}  is a non-negat ive  solution of (11). There are now two 
possibilities : 

Case ( i ) .  (~ (go) ~- 0 for some i0. 
Then a ( i )  = 0 for all j, since 

y~ ( i )  = ~ P i ~ ( ~ ' )  implies y n ~ ( i 0 ) =  ~ ( ~ ' ) ~ ( i )  
i J 

for all n and by  the irreducibil i ty of the chain for any  j there is n with ~(n) > 0. lJioj 
I n  this case ] mus t  be 0 a.e.  and  hence tel is singular relat ive to te. 

Case ( i i ) .  a(i)  > 0 for all i. 

I n  this ease there is an ~ > 0 such t h a t  T(i) = ga ( i )  for every  i, i.e. 

~(i) = ~ E ( / [ x o  = i ) .  

This and (27) now imply  t h a t  given any  s tates  is,  i l  . . . .  , in 

y - n ~ ( i n )  : y - n ~ E ( / I X o  : in) : g E ( / [ x o  -~- is . . . . .  Xn = in) 

which can be wri t ten  

y - n  T(xn) = E ( ~  ][ xo, x l  . . . .  , Xn) .  

Thus  we see t h a t  ~]-nT(Xn) iS a uni formly  integrable mar t ingale  on each tQi 
(normalized into a probabi l i ty  space) converging to  g](x)  a.e.  [27, Chap. IV,  
Th. 3.6]. Compar ing with (26) we see t h a t  cr -~ 1 and  the uniform integrabi l i ty  
together  with (25) imply  

t e l ( ~ , ~ )  ~-- f / (X) te (dx) : l im f 7 -n 'c (xn)  te (dx) = / Z l ( Q / )  
D~ n--*+r O~ 

i .e .  
te~ (n~) = ~ ! (x) te (dx) 

whence 
0 (Ql) = o ,  0 (~) = ~ 0 ( ~ )  = o .  

i 

Final ly  ff 7 = 1, then  the cons tant  v(i)  = 1 is a solution of (11), therefore 
x(i) ~ c. B y  (15) #1 = cte. 

The first corollary below is actual ly  a consequence of (26). 

3.2. Corollary. Reta in ing  hypothesis (11) only, let {2~} be another positive sta- 
t ionary vector/or  the chain, denote by te' the invariant  measure induced by {~} on 
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t ! t 

and de/ine #i by (15), writing hi in place o/hi.  Then/11 is singular relative to #' 
i /and  only i//~i is singular relative to #. 

Pro@ Let ~0 be the a-subfield of ~3 generated by x0, xi,  x2, ... �9 The re- 
strictions of # and #'  to ~3 ~ are absolutely continuous relative to each other 
because they are proportional on each tgi. Now #1 is singular relative to # ff and 
only ff 

lira y-n T (xn) = 0 
n---> ~t- oo 

/l-almost everywhere and the latter is true if and only ff 

lira y-n ~ (xn) = 0 
n--> • eo  

/t'-almost everywhere, since the exceptional set belongs to ~0. 

3.3. Corollary. I /  y and 7~ (i), i ~ I are positive numbers satis/ying equations (12) 
and i/ {~(i)} is the unique (to within a constant /actor) positive solution o/ this 
equation, then the measure/~2 determined by (16) is either absolutely continuous or 
singular relative to ,a. I / i n  addition ~ ~ 1, then #2 =- c#. 

Pro@ All we have to do is to apply Th. 3.1 to the reverse chain (9). I f  we 
set ~*(i) -----z(i)/~i then it follows from our hypothesis and (9) that  {T*(i)} is 
the unique (to within a constant factor) solution of 

y'c*(i) = ~q~j~*(]) ( i e I ) .  
J 

Let (~, ~3, #*) be the sample space of the new chain and define #~ by (15), 
writing ~*(i) in place of ~(i) and q's in place of p's. By Th. 3.1 #~ is either ab- 
solutely continuous or singular relative to #% Now ff S is the transformation of 

which maps (Xn) onto (X-n), then #2 = / ~ l  o S, # = #* o S. We conclude that  
/~2 is either absolutely continuous or singular relative to/~. 

We note that  the analogue of (26) for #2 is 

d~2 ~(x_~) a e d/~ (x) -~ l im~-n  ~x-~ " " 

3.4. Corollary. iT/ a chain is quasi-mixing and i/ {~(i)} ({~(i)}) is the unique 
positive solution o/ (11) ((12)), then the measure #i (/~2) is either absolutely continuous 
or singular relative to #. I /both {~ (i)} and {~ (i)} are unique and i / ~  = 1, then 
we have mixing. The conclusions are true in particular i/ the chain is R-recurrent. 

P r o b l e m  4. Is #l  (/~2) "pure" even ff {T(i)} ({x(i)}) is not the unique positive 
solution of (11) ((12)) ? 

P r o b l e m  5. Is it true that  ff ~ < 1 then #i,/~2 are singular relative to/~ ? 

This seems unlikely. There are however two classes of Markov chains for which 
it holds: R-positive chains (Th. 3.5) and chains with independent increments 
( w  w 

P r o b l e m  6. I f  the answer to problem 5 is negative, find a necessary and 
sufficient condition for singularity. 

P r o b l e m  7. Again, if the answer to problem 5 is negative, can/~i be absolutely 
continuous while/~2 is singular relative to/~ ? 

2 0  Z.  W a h r s c h e i n l i c h k e i t s t h e o r i e  v e r w .  G e b . ,  B d .  8 
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This is impossible in the  ease of reversible chains (Th. 3.6). 

3.5. Theorem.  I / a  chain is R-positive and if 7 ~ 1 (i.e. R ~ 1) then #1 and 
kt2 are singular relative to #.  

Proo]. Consider the  restrict ions of # , / t l ,  #~ to  the finite measure  space ~0 .  I f  

A~=(x:x0=0, x~=0}, 
B n  ~ {x: X - n  ~-  O,  XO = 0} 

then  t t (An)  = # ( B n )  = ,~o P(o~o ) + 0 since the chain is t ransient ,  while 

Ftl (An.) = y -n  },0 p(o~ ) T (0) -~ ~o T (O) p~) R n --+ ~o T (O) CO T (0) 7~ (0) > 0 

and 

/~2 (Bn) = 7-n  ~(O) p~) ---- ~(0) p(o~)R n -+ z(0)  c0 T(0) 7~(0) > 0 

i.e. #1, #2 cannot  be absolutely  continuous relat ive t o / t .  
I f  an  R-recurrent  chain is reversible then  the t rans format ion  S which maps  

each point  (xn) of E2 onto (X-n) satisfies # = # o S and  #u = #1 o S (by (17)). 
Hence: 

3.6. Theorem. I n  the case o / a  reversible R-recurrent chain the measures ttl ,  tt2 
are either both absolutely continuous or both singular relative to #. 

w 4. Chains with Independent  Increments  

Throughout  the present  section we shall consider M a r k e r  chains with inde- 
pendent  increments  (i. e. spat ial ly homogeneous  r a n d o m  walks) on the  integers. 
I n  other  words we assume tha t  the s ta te  space I is the  set of  all integers and t h a t  

P~j = Po, i-~ �9 

We also postulate ,  as always, irreducibil i ty and aperiodicity.  Notice t h a t  a chain 
wi th  independent  increments  admi ts  the  posit ive s ta t ionary  vector  ~ =- 1 (i e I ) .  

Le t  
+co 

g(S) = ~ p 0 ~ S  ~ (0 < S < + ~o). 
i ~  - - o o  

Then  
4.1 ([3], [19]; see [23] for a polished t rea tment ) .  Every irreducible aperiodic 

random walk has the S R L P  with 7 ~ g(so), T(i) ~ #o, 7e(i) = s~ ~, where so is the 
unique positive number with 

0 < g(so) := infg(s)  ~ 1.  

The  case R --  1 was t rea ted  b y  C~uz~G and ERD6S. KEM]~Nu later  reduced 
the general case to this one by  introducing the r andom walk 

pol s~o 
(28) q o ~ -  g(s0) " 

I t  is interesting t h a t  the formula  behind (28) is 

q o ~ -  R ~o)) Po~ 
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which is exact ly  the t rans format ion  employed  b y  VER~-Jo~ns  [38] (see the proof  
of  his Theorem I I )  to reduce an R-recurrent  chain to a recurrent  (i. e. 1-recurrent) 
Ol~e. 

4.2. Theorem. Every irreducible and aperiodic random walk on the intege~' i8 
quasi-mixing. I /  y ~- 1 we have mixing; i/ 7 < 1, both [A 1 and ~2 are singular 
relative to ~t. 

There is no overlapping with Th. 3.5, since a r a n d o m  walk is never  R-posit ive.  
In  fact  i f  i t  is R-recurrent  then  

= y48o = + c o  
i i i 

Before proving this theorem we note a few auxi l iary facts  abou t  the generat ing 
funct ion g. Obviously  g(1) = 1. The domain  of finiteness A of g is ei ther {1} or 
art in terval  in (0, -~ co) containing 1. The end-points  s l ,  s2 of  A m a y  or m a y  
not  belong to A and 

0 ~ 8 1 ~ 1  ~ s 2  ~ + co.  

Consider the  der ivat ive  
-~.oo 

g'(s) = ~ ipois ~-1 
i ~ - o o  

of g. 
Case (i).  I f  A = {1} then  we pu t  

+ c o  

g'0) = Zip0 ,  
i =  --oo 

if  the series is well-defined, i.e. ei ther the  posit ive or negat ive  "s ide"  is finite. 
The only case where g' (1) is undefined is when 

i p 0 ~ = ~ - c o  and  ~ i p 0 ~ = - - c o .  
i > 0  i 4 0  

Case (ii).  I f  81 < 82 then  g' (s) exists and  is equal  to 
§  

i Pot 8 ~-1 
i ~  --oo 

for every  8 c A, with the unders tanding t h a t  if  sl  e A then  g' (sl) is one-sided 
and m a y  he either finite or - -  co while ff 82 e A then  g' (s2) is again one-sided and 
m a y  be finite or @ co. 

The functions g and g' are continuous in A, g is s t r ict ly convex, while g' is 
s tr ict ly increasing. Le t  X be a r a n d o m  variable having the dis tr ibut ion of the  
increments  of  the chain, i.e. Prob  {X = i} = Pol. I f  g' (1) is well-defined, then  it  
is equal  to the "expec ta t ion"  of X, which we denote by  E (X) and allow to be 
- ~  c o  o r  - - o o .  

4.3. Lemma.  I / the  minimum So o/g  is 4= 1 and i/ g' (1) is/inite: then 

[soil'(1) 
- - < 1 .  

g(s0) 

Pro@ Assume 80 < 1. Then [80, 1] c A. Le t  us set  % -= g' (1) for convenience. 
Since g' is s t r ict ly increasing and since s0 is the m i n i m u m  of g we mus t  have  

'20* 
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g' (s) > 0 for every  s e (So, 1] ; in par t icular  ~ = g' (1) > 0. Now define the  functions 

sg'(s) s~. 
~(s) --  g(s) ' ~f(s)-- g(s) ' so <=s <~ l .  

Firs t  we show (see also [19]) t h a t  ~ is s t r ict ly increasing. I n  fact  

(29) q~' (s) g(s)Dg"(s) § g'(s)] - sg'(s) 2 
= g(s)2 

where 

sg"(s) Jr g'(s) = s ~ i(i --  1) poisi-2 -~ ~ ipotS i-1 
i i 

= 5i po s   po si-1 
i i i 

~- ~ i 2 poi 8 i-1 �9 
i 

Thus  the numera to r  in (29) is equal to 

( ~ Poi S~) ( ~ i2 poi st-1) --  s ( ~ i pot s~-l) 2 

which is positive, since b y  the  Schwarz inequal i ty  

Since ~ is s tr ict ly increasing, ~(s) < q)(1) i.e. 

(30) 8 g' (s) g(s~)- ~ ~ for every  s e [So, 1) 

hence g(s). ~ --  sg' (s) > 0 for every  s E [so, 1). This now implies 
8,l-1 

~ ' ( s ) = ~ [ g ( s ) ~ - - s g ' ( s ) ] > 0  for every  s~ [So ,1 )  

which means  t h a t  ~o is s t r ict ly increasing in [so, 1]; in par t icular  

~(so) < ~(1) 
i . e .  

8 ~ 
- - < 1 .  g(so) 

The case so > 1 can be t rea ted  similarly; a l ternat ive ly  we can consider the  
reverse r andom walk with qo, = Po,-i  ( ~  Pio). 

Proo/o/  Theorem 4.2. Quasi-mixing follows f rom Theorem 2.4, since equat ions 
(11) and (12) all collapse to 

( so )  = 
i ~  - -oO 

which is t rue!  
I f  7 = 1 then  b y  4.1 so = 1, z(i)  ----- z ( i )  = 1 for every  i and  (15), (16) show 

t h a t  ]A1 = ~t2 = ~t. 
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I f  ), < 1 then  So =~ 1. B y  (26) and  4.1 ff d # l l d #  denotes  the  Radon-~Nikodym 
der iva t ive  of #1 wi th  respect  to  #, t hen  for a lmos t  eve ry  x = (xn) in 

(31) d~l s~" ( s~-I- in d~ (x) -~ f i m y - n ~ ( x n )  = lira g(so)" = l im ~g(~o)] " 
n--->-k o o  ~ - -+  + c ~  n - - >  + ~ 

B y  the  s t rong law of  large numbers  xn /n  converges to  E ( X )  = g'(1)  for a lmos t  
every  x. (This is also t rue  in the  cases E (X) = + c~ and  E (X) = - -  c~, b y  an  
e l emen ta ry  t runca t ion  a rgument . )  I f  g'  (1) is finite, the  l emma  and  (31) show t h a t  
d # l / d #  = 0 a.e.  I f  g ' (1)  is infini te we dis t inguish  two cases:  I n  the  case so < 1 
g '(1)  can only  be + c~, since g' is s t r i c t ly  increasing.  Thus  xn/n---> + c~ a.e.  
and  since so < 1 we have  b y  (31) d # l / d #  = 0 a.e .  I n  the  case 80 > 1 g '(1)  can 
only  be - -  c~, hence xn /n  --~ - -  oo a. e ,  d#l/dl~ = 0 a.e.  

W e  conclude t h a t  in all cases d#l/dtz  ~- 0 a .e .  hence/Zl  is s ingular  re la t ive  to  #. 
S ingu la r i ty  of  #2 now follows i f  we consider  the  reverse  r a n d o m  walk.  This com- 
pletes  the  proof.  

Note  t h a t  ne i ther  R-recurrence  nor  uniqueness  of  solut ions for (11) and  (12) 
were needed.  I n  fac t  this  theorem covers R- t r ans i en t  r a n d o m  walks as well. I n  
th is  connect ion  the  following theorem is no t  wi thou t  in teres t .  Recal l  t h a t  g' (so) 
is undef ined only  when so ---- 1 and  

i = + , , o ,  i = - 

i > 0  i < 0  

4.4. Theorem. I]  g' (so) is well-defined then the random walk is R-null-recurrent 
or R- transient  according as g' (so) = 0 or ~= O. 

Proo]. The r a n d o m  walk  is R- recur ren t  i f  and  only i f  
o o  

2p(o >R~ = 
n = l  

i .  e .  

p(0~ ) ~=1 g(s~ - -  -k oo.  

Now consider  the  r a n d o m  walk  whose t r ans i t ion  probabi l i t i es  are given b y  (28). 
I t  is easy  to  see t h a t  

p'o ' 
g(so) ~ 

therefore  

is equ iva len t  to  

~ = 1  g(s~  - -  § 

o o  

5q(0 ) = 
n = l  

I n  o ther  words  the  original  r a n d o m  wa lk i s  R- recur ren t  f f a n d  only  ff the  new one 
is r ecur ren t  and  this  is the  case ff and  only  ff the  expec ta t ion  E (Y) of  the  inc remen t  
Y of  the  new chain is 0 (see [36, T 1, p. 33] ; the  cases E (Y) = -~ c~ or - -  c~ are 
t rans ient ) .  Now 

+oo + c o  
E ( Y )  = ~ iqo~ = ~ i po~so _ sog'(8o) 

. . . . . . . .  g(so) g(8o) 
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The proposit ion follows if we recall a remark  made earlier to the effect t ha t  no 
random walk is R-positive. 

I t  is interesting to note t h a t  by  (30), which was proved under  the assumptions 
"so < 1, g' (1) finite" we have 

0 ~ E ( Y )  < E ( X ) .  

This is also t rue when g' (1) is infinite. I f  so > 1 then 

E ( X )  < E ( Y )  ~ O. 

I n  the case So = 1 the two r andom walks coincide. Thus Y is in general closer to  
being centred. 

I n  connection with Th. 4.4 we refer the reader to [4] for criteria of  recurrence 
( ~  1-recurrence) in the case So ---- 1, 

~ i p 0 ~  = + oo ,  Z i p 0 ,  = - oo .  
,>0 i<0 

4.5. Corollary. I] so is an interior point of A ( in  particular if X has finitely 
many  possible values) then the random walk is R-recurrent and g ' ( 1 ) =  E ( X )  is 
well-defined. Further y -~ 1 or < 1 according as E (X) = 0 or ~ O, i.e. the random 
walk is mixing i / a n d  only i / t he  increment X is centred. 

I n  fact  so is the min imum of g, hence g' (so) ~-- 0. I f  X has finitely m a n y  possible 
values then xJ ~-- (0, + oo). Compare [36, p. 51]. I f  X has infinitely m a n y  possible 
values, then the random walk can be mixing, even though X m a y  not  be centred. 

E x a m p l e s .  (a)  The symmetr ic  r andom walk in three dimensions is 1-tran- 
sient. 

(b) An R-transient  r andom walk with R > 1 : 

1 1 s-~ + 1 s i 
g(s) ~ e ia21+~ ~(2) 

i 
where 

~ ( 2 )  = ~ -  
k=l 

and c is a normalizing constant .  Here A = [1, 2), the min imum occurs at  so = �89 
and g'(�89 > 0. 

(c) L e t  

(__~1~ �9 ~_)_. i~1 ~ 3 1 1 ) g ( ~ )  = c a -*  + s~ . 
i 

Here ~ ~- (�89 1], the min imum occurs at  1 and g'(1) < 0. Thus y ~-- 1 (i.e. we 
have mixing) bu t  g' (1) ~ 0 (i. e. the increment  is not  centred). This is a 1-transient 
chain. 

(d )  

g ( s ) - -  3~(3) ~ + T "s si " 
i=i i= 
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Here A ---- {1} and E ( X )  -= g'(1) exists, is finite and > O. 

$(3) denotes 

This chain is 1-transient. 

w 5. Continuous State Space 

In the present section we shah discuss a Markov process with discrete time 
parameter and independent increments on a locally compact Abelian group G. 
We denote its transition probabilities by p($, A) (2eG,  A ~ ~; here ~ is the 
a-field of Borel subsets of G, i.e. the a-field generated by  the open sets of G). 

The strong ratio limit theorem 4.1 of C~uNG-E~D6S and K ~ E N Y  was gener- 
alized by 0R~STEIN [31] and C. STOXE [37]. We present here part  of STO~'E's 
general result. Following STONE we assume that  

(i) G is compactly generated, i.e. there is a compact subset F of G such that  
the smallest group containing F is G [15, p. 35, (5.12)]. This implies that  G is 
a-compact. 

(fi) p(0, .) is a Radon measure on ~. 

(fii) The closed semi-group generated by the support of p(0, .) is G itself. 

The hypothesis of independent increments means 

p(~, A) = p(0, A -- 2) 

where A -- ~ = {y -- 2: y cA}.  The Haar  measure 2 on G is stationary for the 
process. 

Denote by | the collection of all continuous homomorphisms of G into R 
(the real line) and define 

g(s)= fe~(~)p(O, d2), s e ~ .  
G 

Let ~g* be the class of all relatively compact 2-ahnost boundaryless subsets of G 
and 9~ the class of all A e 9I* with 2(A) > 0. Then 

5.1 (STo~E [37]). Under hypotheses (i), (ii), (iii) there is a unique so ~ ~ such that 
0 <g(so) = i n f g ( s )  __< 1 andi /  Az9,1, B=~I then 

se~ 
Se- ~o(~) ).(dz) 

p(~+m)(~, A) A 
lim ~(~)(v, B) - -  g (So)" e ~~ ~f~-.~o(~) ~ ( d i )  

n--> + oo 
B 

uni]ormly with respect to 2 and ~7 in compact sets. 
We shall employ this result to establish quasi-mixing. As before let 

. . . .  • 2 1 5 2 1 5 2 1 5  

be our sample space, topologized with the product topology, and denote by ~Ji 
the semi-ring of all rectangles of the form 

(32) E =  { x e ~ :  x r c A r ,  Xr+l~Ar+l . . . . .  xk=~Ak}, 1c >=r 
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with At  ~ 5, i = r, r ~ 1, . . . ,  k. The set function 

# ( E )  ~-- f 2(dxr) f p ( X r ,  dxr+l )  f " "  ~ p ( x k - 1 ,  dxk )  
Ar Ar+i Ar+2 A~: 

can be uniquely extended to a a-finite measure on the product  a-field ~30 (compare 
with [29, p. 78]) which is invar iant  under  the shift t ransformat ion T. I n  the 
present  context  (see w 1) we wish to extend/~ to the a-field ~3 of  all Borel subsets 
of  D relative to the product  topology. N is in general larger than  !~0 and it will 
be shown in another  note [33] t ha t  there is a unique t ight  measure on ~ (to be 
denoted again by  #) extending #1 N. 

I f  there is a countable basis of  neighborhoods of 0 in G, then ~30 = ~ and G 
and D are Polish spaces. Hence every a-finite measure on f2 is tight. 

A subset of  D will be called bounded if it is contained in a finite union of  rect- 
angles such as E in (32), having relatively compact  components  A r ,  Ar+l . . . .  , A k .  

With  this notion of  boundedness we have. 

5.2. Theorem. Under hypotheses (i), (ii), (iii) the random walk is quasi-mixing. 
The values o/ # i ,  tt2 on rectangles such as E in (32) are given by 

(33) /~l(E) : g(#0) -~ ]~(dxr) f p (Xr ,  dxr+i) ~""  f p ( x k - i ,  dxk) e s~ , 
Ar Ar+i At+2 Ale 

(34) /t2 (E) -~ g(so) r fe-S~ f p (Xr ,  dxr+l) I " "  I P (  x k - l '  dXk) 
Ar Ar+i Ar+2 A~. 

with so(~), ~ ~ G as de/ined in 5.1. I /So(~)  ~ O, we have mixing. 
I n  the course of  the proof  we shall need a lemma : 

5.3. Lemma.  Let m be any (~-/inite measure on 5. I[ / ( x i ,  x2 . . . . .  x~) is a non- 
negative/unction on G • G • ".. • G (k-/old) which is measurable relative to the 
product a-/ield ~ Q ~ Q . . .  G) ~ then 

fm(dxi) SP(x , dx ) I"" I P dx ) t(x , . . . .  , = 
G G G G 

---- ] ] " "  ] / (Yl ,  yi  ~- ye . . . . .  yl -k ye -k "" + y~) m(dyl)  p(O, dy2) "" p(O, dy D . 
GG G 

Proo/. We transform the innermost  integral by  means of  the t ransformat ion 
yg = xk - -  x~-i  (fixed xg-i)  and then proceed setting successively 

yk-1 : Xk-1 - -  X k - - 2 ,  . . . ,  Y2 : x2 -- x i ,  Yl : xi  �9 

5.4. Corollary. I /  m is any a-/inite measure on ~ and i/ A i , A2 . . . . .  A k e ~ then 

Im(dz ) Ip(x , dx ) ] . . .  dx ) = 
Ai A2 Aa A~ 

= I f I ' " [  Im(dy )]P(O, dy ) 
G ~-i [Zy~...y~ J 

where 
Zy~...y~ ~ Ai  ~ [A2 (~ ("" (A~ i ~ (A~ - -  y~) - -  Yk-i)"" ") --  Y2]. 

I n  fact  i f / ( x i ,  x2 . . . . .  x~) in 5.3 is the indicator of A i  • A2 • ""  • A~ in G ~ 
then / (y i ,  Yi ~- y2, . . . ,  Yi q- Y2 -~ "'" -k yk) is the indicator of  

Z~...y~ x G x G x ... x G. 

k - 1 times 
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Note  also the formula 

~ (dx) f p (x, dy) h (y) = .~ ~ (dy) h (y) 
G G G 

which holds for any  non-negat ive measurable funct ion h on G and which implies 
(if we insert indicators) : 

(35) f~(dx) f p (x ,  dy) h(y) ~-- f]L(dy) h(y) (A e ~).  
G A A 

Proo] o/Theorem 5.2. We first show tha t  # : ,  #2 as given by  (33), (34) are well- 
defined, i.e. satisfy the necessary compatibi l i ty  conditions. 

I f  Ak = G in (33), then the innermost  integral is equal to 

f p(x~_:, dx~) e ~~ = f p(O, dt) e ~~ 
G G 

= e ~~ f p (0, dt) e s~ : e s~ g (80) 
G 

(recall t ha t  so (t -~ x~_:) ~- so (t) ~- so (x~_:) since so is a homomorphism).  
I f  Ar = G, then by  (35) with 

h(y)  : f ~o(y, dXr+2) f " "  f lg(xk-1, dxk) e s~ 
Ar+~ Ar+~ A~ 

we have 

g (80)-k f ~ (dxr) f 19 (Xr, dXr+l) f " "  f 19 (Xk-1, dxk) e s~ 
G A,+~ A~+~ Az: 

= g (~o) -~ S ~ (d~§ S"" f P ( /~-: ,  dx~) e~~ 
Ar+l At+2 Ak 

Thus the definition of  tt :  is consistent. 
I n  the case of/~2, ff A~ --~ G then 

p (x~_:, dx~) = 1 
A~ 

and everything is trivial. I f  on the other hand  Ar = G then we use 5.4: 

(36)  /~2 ( E )  : g(80)rff':'G~, f~ fe-s~ dyr+l)"'" p(O, dyk) 
ZYr+:'" Ye ] 

where 

Zur§ --~ Ar (~ [At+: (3 (At+2 (3 (" ") -- Yr+2) -- Yr+:] 
$ 

~-- Ar+l ~ (Ar+2  (5 ( "  ") - -  Yr+2) - -  Yr+l ~ ZyT§ - -  yr+l.  

Since ~ is t ranslat ion invariant  we have 

f e -  s0 (~)~ (d~) ,= f e -  s~ (~)~ (d~) ~ S ~ -s0 (~- ~,§ (d~) = e s0 (~"), f ~ - ~~ (~) ~ (d~). 

Zyr+:...yl: Zyr+~...ylc --Yr+: Zyr+~...y k Zyr+~...y ~ 

Substi tut ing in (36) 

#2(E) = g(so)r (~aes~247 dyr+l)) X 

[Zyr+~'"y~: j 

: g(SO) r+l fe--S~ f p (Xr+l ,  dXr+2) f ' "  " f p ( x k - 1 ,  dxk) 
.Ar+l Ar+2 At+3 Ak 
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by  the definition of g (s) and 5.4 agMn. The compat ib i l i ty  conditions have  thus 
been verified. The theorem on p. 78 of [29] (modified so as to cover ~-finite measures) 
now implies that /~1,  #u can be uniquely  extended to two measures  on the produc t  
a-field ~0- As with/~, one can show (see [33]) t h a t  there  are unique t ight  extensions 
o f / ~ ,  #~ to the a-field ~ of all Borel subsets of D. 

To establish quasi-mixing it  is sufficient to establish (3) for all rectangles E 
whose components  A t ,  Ar+l . . . . .  A~  are in N* [28, w 1]. Such rectangles belong 
to g~(#, #1, #2); see 5.3 and 5.4. 

B y  5.1 if we fix B0 e ~ / a n d  set 

then  for every  A e 9~ 

e-so(z) ,~(dz) 
Bo 

p(n) (0, Bo) 

(37) l im On p(n+m) (~, A ) = g (80) m e ~~ ~ e-S~ X (dz) 
n--->+ c~ A 

uniformly with respect  to  ~ ff ~ is restr ic ted to a compac t  set. This is easily seen 
to be t rue  for every  A e ~*  (if X(A) = 0 write A = B - -  (B --  A) for some 

Let  now E be given by  (32) and 

where all the A ' i s and Bj 's  are in 91". Then  

q n # ( E  n 2 r - ~ f )  = q~#({x:  x~. e a r , . . . ,  xk e A~  , x~+, c B~ . . . . .  x~+n E B~}). 

When  n - + - r  c~ ~ Jr n is even tua l ly  greater  t han  k, hence 

e n ~ ( E  n T - n F )  -~ O~n $ ~.(dxr) f p(Xr, dXr+l) [ " "  
Ar Ar+l At+2 

�9 .. Ip(x _l, dx ) I " "  I 
A~ B~: Bv+l B~, 

= ~n f ) ~ ( d x r ) f p ( X r ,  dxr+l ) . I ""  
A~ A~+x A~+2 

b y  Corollary 5.4, where Zyr+~...y ~ = Br  (3 (. . .  (B~ --  y~) . . . .  ) is in ~I*. Now by  
(37) 

(38) lim ~n p(v+n-k) (xk, B~) = g (s0) v-k d ~ (~) ] e-s0(z) )~ (dz) 
n--++ r By 

uniformly in xe �9 A~; in par t icular  there is a cons tant  M and a posit ive integer 
no such t h a t  

q n P ( ~ + n - ~ ) ( x k , B ~ ) ~ M  for all x e e A ~  and all n ~ n o  

(the r ight -hand side of (38) is bounded on Ak as a funct ion of x~). Since Zy~+~...y, c Br  
for any  Y~+I . . . .  , y~, we have  

(39) enp(~+n-k)(x~,Zy~+~...y~)<=M f o r a l l  x k e A ~ ,  y r + l ~ G  . . . .  , y~ ,eG 

and all n ~ n o  
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while by (37) 

tim ~.  pr (z~ ,  Zv,+l...y,,) = g (so) ~-~ e s~ ~ e -~~ ). (dz) . 
n--~ + r Zyv+x. . .  yv 

By Lebesgue's dominated convergence theorem 

lira S S  Y~~ r247 (x~, z~+1...~)p(0, dy~+~).., p(0, dye) 

G -v L ZyT+ I . . .  yv 

which we write for simplicity 

l i m F n ( X k )  = F ( x k )  for all X k ~ A k .  
n---~ ~ oo 

By (39), for every x~ e Ak and every n => no 

F~(x~) <= f f . . .  IMp(O, gy~§ ~(0, dye) = M 
~y-- T; 

and Lebesgue's theorem again yields 

lira fp(x~_~, dz~) F~ (~) = SP(~-~, dx~) F(z~). 
n-+ + c~ A~ A~ 

Iterating this argument and bearing in mind that  2 (Ar) is finite we arrive at 

~im ~o~,. (E n ~ - n F )  = f;~(dx~) fp(xr, dx~§ f".  
n-->@ c,o 24r Ar+l Ar+2 

A~ Gv v [ ZYr+I""Y~ J 

By Corollary 5.4 this is equal to 

g (s0)-~ y ;. (dx~) y p (~u dx~§ p (x~_~, dx~)e 'o(~) • 
A,. Ar+i Ar~-~ A~ 

X g(So)Vye-S~  dXr+l) f " "  f p ( x ~ - l ,  dx~,) --- ~ I ( E ) , u 2 ( F ) .  
.By Br+~ l~v+~ Br 

Finally, if So (~) --- 0, then obviously/t~ =/~e  = / ~  and the proof is complete. 
Let us specialize to the case G = R (the real line)..Q is then a Polish space, 

~ = !So and ~ can be identified with R. The genera.ting function g (s) becomes 

g(s) = f esep(O,d~e) ,  s e R .  
R 

As in the discrete case the domain of finiteness of g (s) is an interval A containing 0 
which may be infinite or degenerate. The function g and its derivative g' have 
properties entirely analogous to those of the corresponding generating function 
in w 4, with 0 here playing the role of l there. As before, let so be the minimum 
of g(s) (see 5.1). 

5.5. Lemma. I / S o  * 0 and i /g ' (O)  i8 / in i t e ,  then 
eSog'(o) 
- - < 1 .  

g(so) 

P r o @  Suppose so < 0; then [So, 0] cA. Let  2o = g'(0) and define 
g'(s) e~zo 

~(s)  - -  ~(s) ' ~o(s) - -  g(~.) , so <- s <- O. 
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Then F (s) is s t r ict ly increasing in [so, 0] since 

~'(s)  = g(s)g"(~) - g,(~)2 g(s) 2 

and by  the  Schwarz inequal i ty  

< (Se  p(0,   es p(0, = g(8)g"(s) 

for every  s E [so, 0). We  infer ~(s) < ~(0) for every  s E [so, 0), i .e.  g'(s)/g(s) < 20 
whence g(s)2o - -  g'(s) > 0 for every  s E [so, 0). Bu t  then  

e~ ~o [g (s) 20 - g' (s)] 
~v'(s) - -  g(s)2 > 0 in [so, O) 

which implies t h a t  ~v (s) is s tr ict ly increasing and in par t icular  ~v (so) < ~v (0) = 1, 
i.e. 

ego 2o 

g(8o) < 1. 

The case So ~ 0 can be t rea ted  similarly. 

5.6. Theorem. I] so ~ 0 (i. e. g (so) = 1) the random walk is mixing. I] So ~-0 
(i.e. g(so) ~ 1) the random walk is quasi-mixing and the measures #1, tt2 are 
singular relative to I ~. 

Proo]. Suppose So ~: 0. As in the discrete case g'(0) is well-defined (though 
possibly infinite) and  b y  the  strong law of large numbers  

(40) lira X n ~ g'(O) for a lmost  every  x ~ /2 .  
n 

n - ~ + o o  

I n  ~ we introduce a net  (~)~n} as follows: For  each n ~ 0, 1, 2, . . .  ~ n  con- 
sists of  all sets of  the form 

X ~ f f2  : X - n  ~ 2 n  , 2 n  , . . . , X n  E 2 ~  , 2 n  , , , 

~o 

Obviously ~ J  ~ n  generates  ~o = ~ .  
n = 0  

Assume first t h a t  g'(0) = 20 is finite, let 2 -~ (~n) be one of the sample  points  
a t  which (40) holds and  for each n let Yn be the  uniquely  determined set in 932n 
with ~ e Yn. Yn is of the fo rm 

Y~ = {x: x-,~ e A _ , , . . . ,  x,~ e A~} 

where A - n  . . . . .  A n  are dyadic  intervals  of length 1/2 n. 
Since e~~176 < 1, there is a posit ive e such t h a t  

eSo(2o § e) 
(41) g (~o~-~-  < 1. 

B y  (40) ~n/n ~ ~0 -~- ~ when n is sufficiently large, i.e. 

~ < n(20 + e) .  

Since the  length of An is 1/2 n we have  
1 

x n < n ( 2 o + s ) +  2~ f o r a l l  x n ~ A n .  
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But  then 
e s~ ~ enso()~~176 

and formula (33) yields 

re-(Y,,) =< [ ~o(~o+ ~)+(~o/,~2,,) p 
ff (r~) ~ g(~0) ] assuming 

By  (41) 

ff(Y~) > O. 

l i m  ~ l ( Y n )  __ O .  
~(Y,) 

n--+ + oo ' 

I fg ' (0 )  is infinite there are only two possibilities: Ei ther  So < 0 and f (0 )  = + co 
or 80 > 0 and g' (0) = --  co. Assume the first and let s = (~n) be a sample point  
at  which (40) holds. I f  { Yn} is defined as before, then 

1 
X n < ~ n - / ~  fo ra l l  x n ~ A n ,  

e s~ < e s~176 for all Xn ~ An 

and by  formula (33) again 

ffl ( r n )  < g (so) -n e~~176176 (Y~), 

#(Yn) = g(so) if  ,u(Yn) > 0 

and the r ight -hand side converges to 0 since ~n/n --> @ co and so < 0. 
We have thus shown tha t  in all cases the Radon-Nikodym derivative of ffi 

with respect to ff is 0 a.e. 
To handle #2 we can consider the reverse random walk, whose transit ion 

probabilities are given by  

q(x,A) = p( - -x ,  - - A ) .  

The shift t ransformat ion of this r andom walk is isomorphic with the inverse T - i  
of  the shift of  the original r andom walk. To show this it is sufficient to prove 
tha t  Prob {x~ e B I ~ + ~  = ~} = Prob {x~+i e - -  B I x~ ---- --  ~} i.e. for any  Borel 
sets A, B in G 

] ~(d$)q(~, B) = f ,~(d~)p(~, A) 
A B 

and this in tu rn  follows easily f rom the t ranslat ion invariance of ~ since 

f ~(d~)q(~, B) . . . . .  f p(O, d~) f ~(d~) = S p(O, dr) f ~(d~) 
A R A ~ ( v + B )  _R ( A - - n ) m B  

. . . . .  f ~(d~)p(~,A).  
B 

The proof  is complete. 

P r o b l e m  8. I f  the state space is not  a group and hence tools such as 5.4 are 
not  available, how far can one go with a strong ratio limit p roper ty  of  the type  
of 5.1 ? 

We wish to close this section with the remark tha t  though the central limit 
theorem (with its error estimates) is no t  strong enough to imply  quasi-mixing of  
r andom walks, nevertheless it does yield mixing in a special case. I f  the increment  
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of the random walk is centred, non-lattice and has finite third moment  and if for 
the sake of simplicity we assume tha t  its variance is 1 then Theorem 2 in [9, w 42, 
p. 210] implies 

(42) lim V2 ~np(n)(0,  [a, b)) = b --  a 
q~-+-t-  oo 

uniformly in - - K  =< a < b ~ K, and one can infer tha t  for any bounded almost 
boundaryless subsets A, B of the real line with positive Lebesgue measure and 
any integer m 

lira p(n+')(x, A) ).(A) 
p(n)(y, B) -- ).(B) 

uniformly in - - K  _< x --< K, - - K  <_-- y ~< K. This is STO~WE's result for the pro- 
cess in question. From (42) we have the rate of convergence of p(n) (x, A) to 0 
(~ n-1 j2). 

w 6. Some Remarks on the Speed of Mixing and the Convergence Norm y 

As we have seen the simplest examples of quasi-mixing Markov chains at  hand 
are the random walks (chains with independent increments) on the integers. I t  
is known [36, p. 72] tha t  for every such chain there is A > 0 such that  

A 
p(o% ) ~ ~ for all n 

i.e. Qn ~ B l,/n. This means tha t  the ergodie index of a random walk is at most 2. 
I f  the increment has finite variance, GNED]~Z~KO'S local limit theorem yields 
([S, w 43, p. 297], [9, w 49, p. 233]) 

[ 1 ( h a  2 a ~nlv2)] (43) lira V2~np(0~ ) - v e x p  - -  2v Y ~ - k ~ - k  2 = 0  

uni/ormly in k (with a denoting the expectation and v 2 the variance of the in- 
crement). I f  a = 0 then by (43) 

1 
lim ~ p(0~ ) - -  v 

n - - > ~  c o  

which is the discrete analogue of (42). I f  a ~ 0 then 

n m  p(0  ) = 0 

and ff in addition we know tha t  the increment has finite r-th moment  (r => 3) 
then a theorem of ESSEEm (see [9, Th. 1, w 51, p. 241]) implies 

lim n( r-1)/2 p(onk ) = O . 
~e-->-- oo 

The theorems quoted here have been generalized by HECKENDO~FF ([12], [13], 
[14]) to finite dimensional random walks. 

At the other end the centrally biased chains of GILLIS [7] (see also [17]) pro- 
vide examples of mixing chains with much slower rates of convergence 0n-+ @ oo. 
In  fact if in [17, w 3] we restrict e to (--  �89 �89 then we have recurrence and an 
infinite positive stat ionary vector. The chains are then mixing (by reversibility 
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[30] or by the criterion of [25]) and as proved by GILLIS the chain determined 
by each e has the following property: For any 0 > 0 there exists K1 such that 
for all n 

�9 l~n~ ~-O<p(o~O)<Kln~-~+o 
K1 

As shown in [17] this implies that  if]c is any positive integer and e is in the interval 

-- -;~-' 2 ~ + 1  

then the ergodie index of the corresponding chain is k. For e = �89 we have a 
null-recurrent mixing chain with infinite ergodic index. (Trivially every positive- 
-recurrent chain has infinite ergodic index.) 

All of the quasi-mixing non-mixing examples we have encountered have con- 
vergence norm y < 1, which means that  10(0~ ) converges to 0 geometrically and 
implies an extremely fast convergence of ~n to ~- ~ ,  in particular much faster 
than for mixing chains. The question is open, however, of whether there exist a 
mixing chain and a quasi-mixing non-mixing chain such that  the convergence 
Qn -+ -~ ~ is faster for the mixing one. The quasi-mixing chain should obviously 
have y = 1 and the mixing one should be transient since for recurrent chains 

p(0,;)= + 
n = l  

hence p(0~ ) --> 0 slower. This leads us to: 

P r o b l e m  9. Do all quasi-mixing non-mixing Markov chains have ), < 1 ? 
Here are two eqltivalent reformulations of this problem: 

P r o b l e m  10. Does every quasi-mixing chain with y = 1 have a unique (to 
within a constant factor) positive stationary vector ~. 

P r o b l e m  11. Does y = 1 imply that  {v(i)} is constant ? 

To be sure, if y = 1 then (l l)  and (12) reduce to 

v ( i ) =  ~ P i l Z ( j )  and ,'~(j) = ~ z ( i ) p ~ j  
] i 

so that  the answer to Problem 9 is affirmative if and only if the answer to both 
Problems 10 and 11 are affirmative. However Problems 10 and 11 are equivalent, 
for if a quasi-mixing chain with ~ ---- 1 has two distinct positive stationary vec- 
tors, (zr(i)) and say {2i}, then reversing such a chain with respect to {).~.} we 
shall find a new chain violating the implication in Problem 11 and vice versa. 

In  all of the concrete examples we know of, which have the SRLP and whose 
convergence norm is 1, the sequence {v (i)} is constant. This is true of the chains 
with independent increments, of the model discussed in 2.5 and 2.6, or for instance 
the "balanced" chains of [20]. Another class of chains, where y = 1 implies 
~(i) ---- constant, are the "random walks" of [18] on the non-negative integers, 
which are reversible chains: Let Q~(x), i = O, 1, 2, . . .  be the polynomials of [18] 
and yJ the corresponding representing measure on [--1,  1]: 

] 

--1 
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Using the  techniques of [18, w 3] one can show: 
I f  

l im p~+l )  
n-~+ co P(0~) 

exists, t hen  the  chain is quasi-mixing with 

~(n. +m) 
(44) lim ~*~ __ y m  Qi(~]) QJ'(Y) ~J 

n~+r P~) Q~(y) Qh(Y))ih 

where 7 is the least posit ive number  such t h a t  [ - -  y, y] contains the suppor t  of  F. 
(44) is consistent wi th  (17). 

I t  was ment ioned in w 2 t h a t  if a reversible chain is R-recurrent  then  it  is 
quasi-mixing [34]. If  i t  is R- t rans ient  p(o~+l)/p(ono ) m a y  fail to converge. An ex- 
ample  where (2n~1) (2n) (~n+2) (2n+1) . . . . . .  PO0 ' /Po0 and Poo /Poo converge to distract  posit ive hmlts  
is given in [18, p. 77] (see also [34]). As observed b y  PRVITT however  

~(2n+2)  
lira ~0o 

q~(2n) 
n--~+ co 1-00 

exists. I n  fact  we can prove  a htt]e more.  
Le t  (pij) be the t ransi t ion ma t r ix  of  an irreducible and reversible (but not  

necessarily aperiodic) Markov  chain. D. G. K~NDALL has shown ([21], [22]) t h a t  
there are real signed finite measures  #ij' on [ - -1 ,  1] such t h a t  

1 
(45) ~(.~.) ---- S xn #~j(dx) n = O, 1, 2, 

--1 

When  i = ]/~ii  is a posit ive measure.  As before we denote by  R the radius of 
convergence of 

c o  

q)(n) x n 
n = l  

and by  ~ its reciprocal. 

6.1. Theorem. Let i be any state. Then ~ is the least positive number such that 
the symmetric interval [-- ~, ~] contains the support o/[~i~. Further,/or any integer m 

lim ~(2.n) _ _  ~22m. 

Pro@ I t  is sufficient to demons t ra te  this for the s tate  0, since there is nothing 
special abou t  this state.  Choose any  s ta te  i l  such t h a t  Poi~ > 0. B y  reversibi l i ty 

~(2n) > 0 for every  n > 1. Pi~o > 0 hence ~(2) > Poi~Pi~o > 0 and  hence 1-00 F00 = 
The measure  # ~-/~oo is positive, therefore b y  (46) and the Schwarz inequal i ty  

(see also [34]) 

( a)(en)12 = 2n[~(dx = n+lxn- l [~ (dx  
~00 J 

,) < 2n+2/s  (dx 2n-2 /A  (dx ~ q)(2n+ 2) q) (2n-2)  
~-00 ~00 
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so tha t  the sequence q~(2n§ is increasing and 
t O 0  /z-O0 

p ( 2 n + 2 )  
O0 l i m  ~ ( ~ )  --fi 

n---~ + oo ~ 0 0  

exists. This implies 
�9 " - - ( 2 n )  
hm l/P00 ----/~" 

n- ->+  oo 

On the other  hand  (cf. [24, Th. 10]) 
n ( h i  

lira l/P00 
I t -+ ~ oo 

exists (and is equal to 7 of  course). We conclude fi = 7 ~. 
Now let g be the least positive number  such that, [ - -  ~., ~] contains the support  

of  #.  Then 

�9 ( 2 n )  1/2n 2n _ _  7 = lim (Po0)  - -  lim # (dx)  < lim (~2n~t ([--  ~, ~.]))1/2n = c~. 
n-->+ oo n--> + oo -- n--> + oo 

Conversely, given any  e > 0 denote by  De the union [ - -  ~, - -  ~. + el u [c~ - -  s, ~]. 
By  the definition of ~/~ (De) > 0 for every e > 0. Then 

/ a \l/2n [ \l[2n 
(2n)  1/2n__t f:2 n [g(dx)) > Iffff 2n [A(dx)) > [ ( ~  8 ) 2 n . ( D ~ ) ] l / 2 n  

( P o o  ) - = = - 

= (~ - -  e) [# (D~)] 1/2n . 

Then 
7 ----- lim (P00(2n)) z/2n ~ ~ __ s 

n - - > +  oo 

and since this is t rue for every s > 0 we deduce y ~ ~. 
One might  perhaps th ink tha t  the supports  of  all the measures/~/j  arc con- 

tained in [ - -  7, Y]- This would imply tha t  7 is the norm of the linear t ransforma- 
t ion T defined in [21], in terms of  which the integral representat ion is achieved. 
(Recall t ha t  if the chain is reversible this t ransformation is self-adjoint, so tha t  
no dilation is required for the representation.) This is no t  always true however. 
Consider the r andom walk on the integers with 

p~,~_~ - -  q 2  p ~  = 2 p q  , Pi,  i+l = p2  

where p .  q, p + q = 1, p > 0. Here y < 1 by  4.5. I f  however  we define 

Coo = ( . . . .  0 ,0 ,0 ,  1 , 0 , 0 , 0 , . . . ) ,  

ooz = ( . . . .  0 ,0,  1, 1, 1 , 0 , 0 , . . . ) ,  

002= ( . . . .  O, 1, 1, 1, 1, 1,0, . . . ) ,  

etc. 

then (con} is a sequence of  elements of t,he Hi[bert  space l 2 such tha t  

lim [[Ir~l] _i 
I1 ~on II 

where T denotes KENDALL'S linear t ransformation.  

21 Z. Wahrschein l ichkei t s theor ie  verw.  Geb., Bd.  8 
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w 7. Some Pathological Examples of Transformations 

In  this section we return to the general theme of w 1 to construct a couple of 
"pathological" examples and offer further justification for our policy of accepting 
only products of the form #I(E)#2(F)  in (3). In  [28] the right-hand side of (3) 
is allowed to be any function ~ (E, F) on pairs of sets, which is a a-finite tight 
measure in each variable if the other one is fixed and which has tile following 
property:  I f  # (E) ~ 0, # (F) ~ 0 and E, F are ~u-almost boundaryless, then 

(E, F) > 0. 

7.1 Propositions. There exists a trans/ormation on the unit interval [0, 1] which 
satis/ies Krickeberg's original de/inition o] quasi-mixing but is not mixing in the 
classical sense (not even ergodic) in [0, 1]. 

Let  # stand for the Lebesgue measure in [0, 1]. 

7.2. Lemma. Let K be a nowhere dense subset of [0, 1] with/z  (K) ~ O. I /  T is 
an invertible measure-preserving trans/ormation which is mixing in the classical sense 
on L ---- [0, 1] -- K and equal to the identity trans/ormation on K (i.e. T x  ~ x /o r  
every x E K )  then/or all measurable sets A,  B 

# ( A n L )  ~ ( B ~ L )  . 
lim tz (A ~ T -n B) = t ~ ( A n  B n K) -~ l~ (L) 

n--->-k oo 

where the right-hand side is positive whenever A,  B are/~-almost boundaryless and 
have positive measure. 

In  fact, if A, B are almost boundaryless with #(A) > 0, #(B)  > 0, then 
# ( A - - K ) > 0 ,  # ( B - - K ) > 0 .  For ff we assume # ( A - - K ) - ~ 0  we should 
have #(A ~ - - / ~ ) ~ - 0 ,  A ~ - - g : - - - - 0  since A ~ - - / ~  is open. But  then A ~ c ~ ,  
which implies A0 _-- 0 since K is nowhere dense. This leads to the contradiction 
~(A) = ~(A 0) = 0. 

There remains the more difficult task of constructing such a transformation 
with the additional property of almost everywhere continuity. Let  0 < ~ ~ 1 
and from the interval [0, 1] delete the closed interval A 0,1 of length ~/2, occupying 
middle position in [0, 1]. From the two remaining intervals delete the middle 
closed subintervals A 1,1, A 1,2 of length ~/8 ~ ~/23, then subintervals A2,1, A2,2, 
Ae,3, A~,a of length :r ---- ~/25 etc. Proceeding as in the construction of the 
Cantor set we delete at the n-th step intervals An,l ,  An,2 . . . . .  An,Pn each of 
length ~/22n+l. Let 

L - - ~ . J A n , i  
n , i  

and K : [0, 1] --  L. The set K is nowhere dense, # (K) : 1 - -  g, # (L) ~- ~. 
We shall define the transformation T on L as a "Markov chain" on the intervals 

An,/. More precisely we conceive of {An,i} as the states of a suitably defined 
Markov chain and then use I~I~ICKEBE]aG'S isomorphism theorem [28, w 2] to get 
a transformation on L. The transition probabilities of our chain will be the follow- 
ing : 

For n ~ l  and i ~ - - 2 / ~ - - 1  odd: 

Prob[An,2k-1 --> An-l ,k)  = �89 

Prob [A n,~ ~-1 -> A n,2 ~-1] = �89 
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F o r  n > = l  and  i = 2 k  even:  

Prob[An,2g  --> A n - l , e ]  = �89 

Prob[An,2k  -~A~,2g]  = �89 

F o r  the  s ta te  Ao,z 
1 

Prob  [A o,1 --> A n, ~] - -  22 (~+1) , 

Prob[Ao,1 -->Ao,1] = ~.  

n > l ;  i = 1 , 2  . . . . .  2 ~ ,  

This Markov  chain is i r reducible  and  aper iodic  and  preserves  the  measure  

~(An ,  i) ---- ~/2 2n+1 

which is the  length  of the  in te rva l  An,  t .  Since 

is finite, the  chain is mixing  (2.2). W e  then  " t r a n s l a t e "  the  shif t  t r ans fo rma t ion  
of this  chain  in to  a t r ans fo rma t ion  T on L b y  KRICXE~C,I~G'S method .  To be sure 
this  cons t ruc t ion  yields  an i somorph ism of  the  sample  space (f2, ~ , /~)  of  the  above  
chain  and  a space (E, ~,  v) where E is a union 

U z ~ ' n , I  
n,i 

of rec tangles  in the  p lane  and  v the  two-d imens iona l  Lcbesgue measure ,  bu t  we 
can easi ly  mod i fy  the  cons t ruc t ion  (for ins tance  b y  subdiv id ing  the  in te rva ls  A n, i 
alternately according to  " fu tu re"  and  " p a s t "  t ime ins tan t s  n = 0, 1, - -  1, 2, - -  2 . . . .  ) 
to  get  an i somorph ism S of  ~ onto L which carries over  the  shift  of  Q to the  

r e q u i r e d  t r ans fo rma t ion  T. The l a t t e r  is a lmos t  everywhere  cont inuous  on L. 
I f  we define T x =  x on K the  extens ion T[ [0, 1] is cont inuous  a t  eve ry  po in t  

of  K.  I n  fact ,  note  t h a t  i f  x e d n,2 k-1 then  T x  ~ A n,2 k-1 t~) z~ n - l ,  k and  i f  x ~ A n,2 k 
then  T x  ~ d n , 2 k  ~9 A n - l , k .  This c lear ly  implies  t h a t  i f  Xm --> x,  where Xm ~ L ,  

x ~ K,  then  I Xm - -  T x m  I - ~  0 so t h a t  T x m  -+ T x .  
Note  t h a t  in th is  example  we can choose ~ as small  as we wish. The t rans-  

fo rmat ion  T will t hen  be comple te ly  " c a l m "  on K (with # (K) ---- 1 - -  ~) and  the  
" s t i r r i ng"  will occur only  in  a set of  small  measure.  

A modif ica t ion  of  t he  above  example  yields a s imilar  t r ans fo rma t ion  on 
[0, ~- co). Consider  the  half- l ine 

oo 

[0, H- oo) = U [ v , v  ~- 1]; 
v=O 

in each [~, v -~ 1] cons t ruc t  a set 

as before, wi th  measure /z  (Lv) = ~v = 1/2 v+l and  define a Markov  chain as follows. 
In  each Lv the  t rans i t ions  will be as before, wi th  the  following except ion :  Where  
we had  

Prob  [A0,z -+ Ao,1] z 

21" 
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before, we now have  
Prob  [A~)I --+ A (~+a)] = , 0 , 1  , 

Prob  [A~ ) -+ A(o~ )] : ~. 

We continue as before and  get a "quasi -mix ing"  (in the sense of KI~ICK~B~gO) 
t rans format ion  T on [0, + oo) having @n : 1 for every  n. I n  fact  for all integrable 
sets A, B 

#(A ~ L) I~(B~ L) 
l im # ( A  c~ T - n  B) = # ( A  n B n K)  q- if(L) 

~ - - +  q- oo  

where L = U L v ,  K = [ 0 , - f - o o ) - - L ,  b e ( L ) = l .  
v = 0  

Theorem 1.2 shows t h a t  b y  requiring t h a t  the r ight -hand side of (3) should 
have  the form #1 (E) bez (F) we el iminate the  pa tho logy  of the  first of the above 
examples .  However  the pa tho logy  of the second example  m a y  still creep up:  

7.3. Proposition. There exists a quasi-mixing ( in  the sense o] Definition 1.1) 
trans/ormation on a space o / in l in i te  measure, such that ~n = 1/or  every n. 

Given a space X with  # (X) - -  q- c~, choose a subset  L of finite measure,  let 
T be mixing on L (in the  classical sense) and such t h a t  on the complement  K 
of L it  satisfies 

l im # (A n T -n  B) = 0 
n-- ->q-  o o  

whenever  be(A) < q- 0% be(B) < ~- 0% A o K ,  B c K .  The following concrete 
construct ion will render  K nowhere dense and  T quasi-mixing and a lmost  every- 
where continuous. 

Le t  R be the real line, 

R =  0 [ ~ , v q -  1]. 

F ix  0 < cr < 1 and in each [v, ~ + 1] make  the  construct ion of the first example .  
Denote  by  A ("). the corresponding intervals.  Then  let d ~ ,  

2 n 

Ud("). 
~-->1~1 i = 1  

+ r  

L=UL., K= R-UA  . 
v =  - -  o o  a l l  v,n,i 

Our space X will be L U K.  Clearly be(L) ---- 3~. On K we define T x  = x ~ 1. 
On L T is de termined b y  means  of a Markov  chain as follows : 

Ccvse ( i )  v ~ l .  I f  n ~ r q - 2 ,  then  

Prob  rA (~) ~ (~+ 1) k n ,2k_ l - ->Aln_ l ,~]  --~- 1,  

A (~+1) ~ 1 Pr~ ---> n-l,k~ - -  �9 

Transi t ions f rom A~+) 1, i (i = 1 ,  2 . . . .  ,2~+1) are as follows 

Prob  [A(~I,i (~+1) 2~+1/22n+1 ~ -->An, j ] :  , n - ~ 1 ;  a n y / , ] .  
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Transi t ions f rom A (~). (i -= 1, 2, . . . ,  2~) are given by  

A(o)] : 1/2.~n+1 any  P r o d  

Case ( i i ) .  v <= --  1 

ProD [A~)2~_ 1 --> A(~+I) 1 1 } ~ - l ,  k J  -~- , a n y  

P r o D  - .  = 

n , i , ] .  

Case ( i i i ) .  v = 0. I f  n => 2, then  

Z ] ( 1 )  1 = 1 Pr~176 -~ n-LkJ , 

ProD [d~~ -> A(~ ) ~ ~] = 1 

Transi t ions f rom A(o) (i 1, 2) are given b y  ~ 1 , i  = 

Prob[A(~~ = 1/22% n ~ 1; any  i, j .  

Transi t ions f rom A(o) ~ 0 , 1  

= __< - 1 ,  >_ I l; a n y  j .  

This chain is irreducible and aperiodic and preserves the  measure  (length) of  
each A (0. Since # (L)  = 3~ < + co the chain is mixing. We can show as in the  ~t,~ ~ 

first example  t h a t  the  t rans format ion  T on X = L u K thus  defined is a lmost  
everywhere  cont inuous and  t h a t  for all integrable subsets  A, B of X 

l im / t (A  (~ T - n  B) = #(A ~ L) tt(B ~ L) 
t~(L) 

n - - >  + v o  

The r igh t -hand  side is of  the  fo rm #1 (A) #2 (B) and Cn ---- 1 for every  n. 

We conclude our pathological  examples  with:  

7.4. Proposition. There exists a quasi-mixing transformation operating on a 

space with atoms. 

Let  for instance B be the  real line and for every  subset  A c R denote b y  A * 
the  set  one gets f rom A b y  deleting all integers in A. The measure /~  will be the  
Lebesgue measure  on R*  and  will assign mass  1 to each integer.  Le t  T be a n y  
t rans format ion  on R* which is mixing for bounded (in the  ord inary  sense) a lmost  
boundaryless  sets. We extend  T to R by  defining T n  = n + 1. I t  is easy  to see 
t h a t  for any  two bounded and  a lmost  boundaryless  sets A, B in R we have  
A n T - n B  = A *  (3 T - n B *  for sufficiently large n, hence if  { ~ }  is the sequence 
governing the  mixing behaviour  of  T on R* then  

l im qn # ( A n  T -n B) = # (A*) ,u (B*) = #1 (A) ,ul (B) 
n---> + eo 

w h e r e / t l  is the Lebesgue measure  on R. 

Fur ther ,  ff E is an a lmost  boundaryless  (relative to /t) set with /t (E) > 0, 
then  any  integers contained in E mus t  be interior points  of  E so t h a t  #1 (E) > 0. 
This takes  care of  condition (fi) in Definition 1.1. 
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