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Summary.  The limiting joint distribution of the location and size of the 
maximum deviation between the historgram and the underlying density is 
derived. For smooth densities, the location and size of the maximum are 
asymptotically independent. The size has a limiting double-exponential 
distribution and the location has a limiting normal distribution. 

1. Introduction 

A sample of size k is drawn from a density f 

(1.1) f>~0 and ~f(x)dx=l. 
- o o  

A histogram of cell width h is used to estimate f How far off is the estimate? 
Where does the max imum discrepancy occur? The object of this paper is to 
describe the asymptotic joint distribution of these two variables. 

To state a precise result, assume that 

(1.2) f has a unique max imum at Xo. 

Assume too that f is locally quadratic at Xo: 

(1.3) f(Xo+X)=f(Xo)+�89 2) as x ~ 0 ,  

where ~ is negative; write f"(xo)=cc This does not assume any differentiability; 
however, if f is smooth, then e is thc ordinary second derivative at x o. Finally, 
assume 

(1.4) sup{f(Xo+X): Ixl>b}<f(Xo) for any b>0 .  
x 
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For ordinary functions, (1.2) is equivalent to (1.3) and (1.4). 
To define the histogram, choose a point 2 o with 2 o < X 0 < 2 o + h .  By de- 

finition, cel l j  of the histogram will run from 2j=2o+h j to 2j+ 1 = 2 o + h ( j +  1): 

(1.5) cell j=[2j,2j+O=[2o+hj, 2o+h(j+l)) , j = 0 ,  +1, +2, ... 

The data consists of k independent random variables X1,X2 , . . . ,X  k with 
common probability density f By definition, N i is the number of data points 
falling in cell j. Formally, 

(1.6) Nj is the number of indices i=  1, ..., k with )cj < X i <.~j+ 1- 

By definition, the histogram is 

(1.7) H(x) = N/(kh) for x ~ [2j, 2j+ i)- 

This definition forces the area under H(x) to be 1. Let pj be the probability of 
the jth cell: 

2j+ i 

(1.8) pj=- ~ f(x)dx. 
2j 

Definefh(x ) to be pj/h for x between 2j and 2j+ 1. 
The difference between the histogram and the density can be decomposed 

a s  

(1.9) n (x)  - f ( x )  = I4 (x) - L (x)  + L (x) - f ( x ) .  

The term H(x)--fh(x ) represents sampling error; fh(x)--f(x) represents bias. 
When h is small, sampling error dominates and the distribution of sup [/-/(x) 

x 
1 

- f ( x ) ]  is the same as the distribution of-~sup(Nj-kpj) .  For this reason, it is 

useful to derive the distribution of the location and size of sup(Nj-kpj). The 
following growth condition will be needed: 

/[j(,o.j)'] (1.10) k--* oo and h--* 0 in such a way that k ---, or. 

In the absence of this condition, large-deviations corrections to the central 
limit theorem become relevant: see [2] for a related discussion. A final burst of 
notation: 

(1.11) Wh(X)= [2 1 1 1/2 1og~- -21oglog~+x]  , 

1 Y 
(1.12) ~ ( Y ) = ~ _ ~ S  e-"~/Zdu, 

(1.13) 2p 2 --If"(Xo)lff(Xo). 

The first result can now be stated: 



Maximum Deviation Between the Histogram and the Underlying Density 141 

(1.14) Theorem. Assume (1.1-13). With probability approaching one, Mkh 
=max(Nj-kp j )  is taken on at a unique index Lkh. Moreover, Mkh and Lkh are 

J 
asymptotically independent, Mkh being asymptotically double exponential and Lkh 
asymptotically normal. More precisely, the chance that 

and 

converges to 

p 2 ~  . h Lkh < y 

< w (x) 

1 2 

In particular, the maximum discrepancy between N i and kpj occurs on the 
/ 1~-1/2 

order of h -1 ~log~) cells away from the place x o where the density is 

maximum. Since the cell width is h, the maximum discrepancy occurs at a 

( distance on the order of log from x 0. A final comment on the scaling in 

(1.14): for xEce l l j ,  

(1.15) (kh) 1/2 [H(x) - s  = (kh)- 1/2 (Nj -  kp2) 

SO 

(1.16) (kh) 1/2 max (H -fh)  = (kh) 1/2 max (Nj - kp~). 
J 

The theorem will be proved in Sect. 2, and the bias term will be discussed 
in Sect. 3. The strategy is to derive the results from a general theorem in [4]. 
Section 4 describes the limiting behavior when some of the assumptions are 
violated: examples include uniform, exponential, and beta densities. 

The theory developed here leads to rules for choosing h which seem to 
work well for real histograms; this will be explored in another paper. The 
methods of this paper can also be applied to frequency polygons, but we do 
not pursue this. Likewise, the method applies when f is defined on a half-line 
or a finite interval, provided no class interval crosses the boundary. We do not 
pursue this either. We focus on the maximum (positive) discrepancy. The 
method can be used to study the minimum (negative) discrepancy or the 
maximum absolute discrepancy. We do not pursue this either. 

There has been some previous work related to Theorem (1.14). Smirnov 
(1944) considered the maximum normalized deviation 

sup I H (x)  - f(x)[/l/H-(x). 
x 

While Smirnov did not publish proofs of this theorems, he assumed the density 
was defined on a finite interval and bounded away from zero there. He used 
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the growth condition (1.10). He found that the maximum normalized deviation 
has a limiting double-exponential distribution. This would follow from [4]. 
Similar theorems, with slightly different onditions, are proved by Tumanjan 
(1955), Woodroofe (1967) and Revesz (1972). The latter also considers the same 
maximum deviation we do. He works on a finite interval, assumes one bound- 

/[h ~oo. He ed derivative for the density, and the growth condition k log~ 

proves a strong law of large numbers for the maximum deviation. For exam- 
ple, when h = 1/k 1/3, Revesz shows that with probability one, 

[kl/3/log k]. sup IH(x ) - f ( x ) [  ~ 0 
x 

as k tends to infinity. Some of the authors just mentioned also give results for 
the maximum normalized error of kernel estimators for f There is a recent 
paper on this topic by Bickel and Rosenblatt (1973). One novelty in the 
present paper is the treatment of the location of the maximum. Furthermore, 
as far as we know, this paper is the first to give the asymptotic distribution of 
sup H(x) - f ( x ) .  

x 

Later, the following two calculus estimates will be needed. 

(1.17) Lemma. Suppose f is absolutely continuous on the interval [a,b], with 
a.e. derivative g such that [g [<K< oo. Then 

s-•   K b-at 
and the inequality is sharp. 

Proof  It is enough to do this without the absolute-value sign. 

Case 1. The max of f is at b. Suppose without loss of generality that f (a)=O. 
For a<_x<_b, 

x 

f ( x )  = S g(u) du. 
a 

Integration by parts shows that 

b b 

~ f (x) dx  = ~ (b - u) g(u) du 
a a 

b 

= S [(b - a ) -  (u - a)] g(u) du 
a 

b b 

= (b - a) ~ g(u) du - ~ (u - a) g(u) du 
a a 

b 

= (b - a)f(b) - ~ (u - a) g(u) du. 
a 
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Then 
b b 

(b - a) f (b ) - ~ f (x) dx = i (u - a) g(u) du 
a a 

b 

<=K ~ (u-a)du=�89  - a )  2. 
a 

Case 2. The max of f is at a. Use Case 1 on f (a + b -  x). 

Case 3. The max o f f  is at 3, with a<~<b.  

Use Case 1 on (a, 4) and Case 2 on (4, b): 

< l ~ ! f + � 8 9  f(~) = ~ - a 

and 

f (r  f +�89 

Combining these two inequalities with the indicated weights, 

~ - a  b - {  1 b 1 
f(~) = ~Z~_ af(~ ) + b _--z~f(~ ) < ~ ! f  + ~ K (b - a). 

To see that the inequality is sharp, take g = K. [] 

(1.18) Lemma. Suppose f is absolutely continuous on the interval [a,b], as is f ' .  
0 i Let g be the a.e. derivative f f ,  and suppose [ g l < K < m .  Let c=�89 and 

fi = If'(c)l. Then 

m a x f - r 1 8 9  < { K ( b - a )  2 

Proof. Without loss of generality, suppose a = - 1  and b = 1 so c = 0. Likewise, 
take f(0)=0.  By mapping x into - x ,  it is also permissible to assume that 
f i=f ' (0 )>0 .  

Repeated integration by parts shows that 

f = � 8 9  ~_ f = � 8 8  (l+u)2g(u)du 
1 - 1  

so Ifl-<SK. Now 

where 

so It(x)] <=�89 And 

f (x) - f - fi = fi(x - 1) + z(x) - f  

-i z (x ) -  (x-u)g(u)du 
0 

f ( x ) - f -  f l < f i ( x -  1)+2K < 2 K  
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while 

f ( 1 ) - f - f i > = - ~ K .  [ ]  

The cons tant  1/6 can be improved  to 1/8; we omit  the details. The  1/8 is 
sharp:  take 

f (x)  = (sign x). �89 2. 

(1.19) Notat ion.  a , ~ b ,  means  a,/b, ---, 1 as n ~  0% and a , ~ b ,  means  

0 < lira inf la,J/Ib,[ < lira sup la,]/Ib,I < oo. 
n ~ o o  n ~ o 9  

In  heurist ic argument ,  we write a , - b ,  to m e a n  "near ly  equal." 

2. The Proof of the Main Theorem 

Fix 3 > 0. It  is convenient  to split the cells into 

(2.1) zone I, where Ihj[<6, 

(2.2) zone II, where [hjj > 6, 

Only  zone I contr ibutes  to the m a x i m u m :  inside that  zone, [4] can be used. 
To  make  contact  with [4], imagine that  k and  h are functions of  a hidden 
integer var iable  n tending to infinity; but  cont inue to index by h, ra ther  than n. 
N o w  

(Nj -- kpj)/(kh)1/2 = ~hj Zhj 
where 

O~hj=(pj/h) 1/2 

Zh~ = ( Nj - k p ~)/(kp ~) 1/2. 

The object  of  s tudy is 

The  first step is to est imate O~hj. 

m a x  O~hjZhj. 
J 

(2.3) L e m m a .  Fix q > 0 .  Then for some sufficiently small positive 6, and all 
sufficiently small positive h, if Jhjl < 5 then 

- ~ p  h j J f<~ lhZ jZ+h .  

Proof Start  f rom (1.3). Let  ~/be a small  mul t ip le  of  t/, let ~ > 0  be small, and set 
f l=  - c ~ > 0 .  Then  

f (Xo+X)<f(Xo)- �89  2 for Ixl <2~ .  

Abbrevia te  O=(xo-2o)/h,  so 0 < 0 < 1 ,  and  integrate  over  x with xo+h(j  
-O) < x<-_xo + h(j + l -O):  

h - ~ ( 1  - f/) fih 3 [(/. + 1 - 0) 3 - ( j -  0) 3] pj <f(xo)  1 
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p/f(xo) h < 1 - ( 1  - ~/) pahZ ( j-  0) 2 - - 1 ( 1  - -  ~/) p2hZ(3j - 3 0 + 1) 

= 1 - (1 - ~/) p2 h 2 j2 + (1 - ~)(2 0 - 1) p2 h2j _ (1 - ~) p 2 h 2 (0 a _ 0+  ~) 
=< l - (1- fT)  p2 h2j2 + p2 h2L J +15p 2h2. 

The  rest of the argument  is omit ted as rout ine:  note  that  

h2[jj=h[]l.h<6h. [] 

The ~hj in [4, (1.1)] have already been in t roduced;  now set/3hj~0.  Take  the 
scale parameter  e in [4, (1.2)] to be h itself, and set the centers c to 0. So thj 
=hj in [4, (1.3)]. The  interval I is [ - 6 , 6 ] .  Tu rn  now to I-4, Sect. 4];  write t o 
for t~o , ,'~ for c~,  ]~g f o r / ~ ,  index by the subscript h rather  than n, and set 

t h = t o = 0, 

= fVT(UoSo), 

The present  p2 coincides with the p2 of  E4, (4.6)]. Condi t ions E4, (4.1-6)] are 
easy to check, using the present  (2.3). Condi t ions [4, (1.16-23)] are also easy: 
[4, (1.19)] is the present  assumption (1.10). Theorem [4, (4.7)] now establishes 
the present  (1.14), provided j is confined to zone I, i.e., [hjj <6. 

What  remains is to show that  the j 's  in zone II do not  contr ibute  to the 
maximum. This is somewhat  tedious. The  next l emma does the job, plus a little 
bit more  that  will be useful later. 

(2.4) Lemma.  Assume (1.10). Let y > l  and 0 < a < o o .  Let 

Then 

m=y[akh.21og~] 1/2 

~P{Nj>kpj+m}~O,  
J 

where the sum extends over j's such that pj <ah. 

Note. Here,  {Nj} can be any mul t inomial  variables, with k trials and underly- 
ing cell probabili t ies {p j}, and h > 0  arbitrary.  Let  J be a set of  indices, with 
pj < ah for all j e J. Let  y > 1. Then  with probabi l i ty  tending to one as h ~ 0, 

F 11 t /2 
(2.5) max (Nj - kpj) < y [a k h. 2 log ~] . 

jEJ 

This is almost  immediate  from (2.4). 

Proof It is convenient  to handle  four types of j ' s  separately. 

Zone  A, where bh<pj<ah and kpj>Nm. 
Zone  B, where bh<pj<ah and kpj<Nm. 
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Zone C, where pj<bh and kpj>flm. 
Zone D, where pj<bh and kpi<fim. 

The parameters b, fl and N defining these zones must now be chosen. Begin 
by choosing N < m but large, so that 

y2 

(2.6) 1 + I /N > 1. 

Next, choose ft, Clearly, 

{ x ]1 +x 
(2.7) G(x)= \ l + x ]  ~ x  as x ~ 0 .  

Choose fl to satisfy 

(2.8) 0 < f i < l / 4  and eG(x)<3x f o r 0 < x < f l .  

Finally, choose b > 0 so small that 

yZ a 
(2.9) 1 + 1/fl b > 1. 

The argument for zones A-B-C involves a variant of Bernstein's inequality 
[3, Theorem 4b]:  

[ _1 m2 l 
(2.10) P{Nj>kpj+m} =<exp [ 

2kpj+mJ" 

Zone A. In (2.10), replace the m in the denominator on the right by its upper 
limit kpj/N, and then pj by its upper limit ah: 

where 

P{Nj>kp~+m} __<exp [ 

= exp [ 

1 + 1IN 2 kpi] 

1 +I/N 2akhJ 

= h  A 

y2 
A -  >1 

1 + 1/N 

by (2.6). Since ~ p j = l ,  there are at most 1/bh terms in zone A. So 
J 

~ P {Nj> kpj +m} =O(hA- l)=o(1), 
J 

the sum being extended over j's in zone A. 
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Zone B. In (2.10), replace the kpj in the denominator on the right by its upper 
limit Nm : 

P{Nj>kpj+m}<exp 2 N + l  ' 

Butm~(khlog~) 1/2 is much larger than log~ by condition (1.10), and then the 

argument can be completed as in zone A. 

Zone C. Let i > l .  Let C i be the set o f f s  in zone C with 

b h/(i + 1) < pj < b h/i. 

So zone C =  ~) Ci. Suppose j ~  C~. In (2.10), replace the m in the denominator 
i = l  

by its upper limit kpj/fi. Then replace pj by its upper limit bh/i: 

P{Nj>kpj+m}<exp[-Bilog{] 

where 
y2 a 

B . . . .  >1  
1+ 1//~ b 

by (2.9). There are at most (i + 1)/bh terms in Ci, so 

and 

i+1  Bi ~, P{Xj>kp~+m} < - ~ - h  
jeC~ 

b •  

oo 

Z P{Nj>kpj+m}< ,~1 (i+ 1) hn/ 
jezone C 

This is O(h B- 1)=o(1) by an elementary argument. 

Zone D. Here the bound [3] can be used again: 

(2.11) P {Nj > kpj + m} < [e G (kpj/m)] m, 

where G was defined by (2.7). For j in zone D, condition (2.8) implies 

e {N~ > kpj + m} < (3 kWm)" 

3k 
- (3 kpj/m)"- 1 P3 

m 

3k 
<_-- (3 fi)~ -1 pj. 

Fn 

But fi < 1/4 by (2.8), so 

(2.12) ~ P{Nj>kpj+m} <3k (~) 
j~zone D m 
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To complete the proof, it is enough to show that the right side of (2.12) 
tends to 0. Taking logs, it is enough to prove 

log k - log m - (log ~) m ~ - c~. 

where r  by (1.10), so 

1 
log k = log ~b + log ~ + 3 log log ~. 

,~ r log ~ dominates the right side of (2.13). 

(2.13) 

(2.14) 

/ 1 \1/2 
B u t m ~ [ k h l o g ~ )  [] 

3. The Bias Term 

The reults of this section can be summarized as follows. If h ,~k  -1/3, then bias 
is negligible and s u p ( H - f )  behaves like sup(H-- fh) ,  as determined in Theo- 
rem (1.14). See Corollary (3.20). 

If h~>k-1/3(logk) 1/3, then bias dominates and s u p ( H - f )  behaves like 
sup (fh--f). Proposition (3.23) shows that, suitably normalized, sup ( H - f )  tends 
to max If'[ in probability. Theorem (3.47) proves that s u p ( H - f )  is taken on at 
unique location, in a neighborhood of the location of maxlf ' l .  The joint 
limiting distribution of the location and size of the maximum deviation is 
determined. 

If h is between k-1/3 and k-1/3(log k) 1/3, then bias and sampling error both 
contribute to s u p ( H - f ) .  Suppose h is of order k-1 /a( logk)  V3. Theorem (3.14) 
determines the joint limiting distribution of the location and size of the 
maximum deviation. In particular, the maximum deviation is taken on at a 

unique location, in a neighborhood of the location of max ( l / f +  7If'l), for 7 a 
suitable constant. 

The idea is to use E4] again, and some effort is needed to bring the present 
problem into that form. First, some heuristics. On cell j, 

(3.l) 

SO 

(3.2) 

where 

kh (H - f )  = (N~-  kpj) + kh ( L  - f )  

(kh) 1/2 max ( H - f )  = max] {C~hjZhj + ~hj} 

zh; = ( N j -  kpj)/(kp;) 1/2 

(3.3) shy = (pjh)  1/2 

7h~ = (kh) 1/2 max (fh --f)- 
cellj 

This is not quite in the form [4, (1.1)3. But letting 

(3.4) flhj=,hj (2 log ~) -1/2 
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gives 
F / 1 \t /2) 

(3.5) (kh) 1/2 max (H - f )  = m a x  {O~hjZhj Ji- 

This is in the form [4, (1.1)], and the coefficients must now be estimated. 
Let I be some long (but finite) closed interval. The scale factor e is taken 

as h itself; the center c, as 0. Thus 

(3.6) thj = hj. 

Conditions (1.1-2-3-4) are in force. To avoid tedious difficulties, assume f is 
smooth: 

(3.7) f has three continuous derivatives; f and f '  vanish at infinity; f is 
positive everywhere. 

Condition (3.7) is discussed in a remark after the proof of (3.14), and again 
Sect. 4. Under this smoothness condition, ~hj--~(hj) and flh~-7hfl(hJ), where 

c~(t) = f ( x  o + 01/2 

(3.8) fi(t) = If '(x o + t)l 

7h=�89 (21og ~) -1/2 

Suppose 

(3.9) 7h converges to a finite positive limit 7 as h--+ 0. In particular, 

( ') k=O h-310g~ , i.e., h=O[k-1/3(logk)l/3]. 

As suggested by [4], consider the functions ~+Tfi and C~4-7hfl. Suppose 

(3.10) c~+Tfi has a unique global maximum, say at t o. Require I to include t o 
as an interior point. 

As will be argued, 

(3.11) f '(Xo + to)=#O. 

Indeed, suppose by way of contradiction that f '(Xo+to)=O. Then to=0, for 
otherwise 

f (x o + t0) 1/2 -t- 4/If '(Xo + to)l = f (Xo + to) 1/a < f (Xo) 1/2 <= f (Xo) + Y If' (Xo)l. 

Expanding around Xo, 

and 

SO 

f (x o + h) = f (Xo) + 0 (h a) 

f ' ( x  o + h) = hf"(Xo) + O(h 2) 

f(Xo + h) 1/2 -Jr- ~/[f'(Xo + h)t = f(Xo) 1/2 q- •[hl bf"(Xo)l + O(h2). 
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But 7>0  by assumption, and f"(Xo)~O by (1.3), so x 0 cannot be the location 
of the global maximum of f (x) l /2+ ?lf'(x)t. This completes the proof of (3.11). 

In particular, fl is f '  or - f '  with the same choice of sign over some 
neighborhood of t o. Therefore, fl has a continuous second derivative. 

The further assumption is needed, that 

(3.11) 

Set 

(3.12) 

C('(to) + ? fi"(to) < 0. 

p2 _ _ [C(,(to) + 7fl,,(to)]/O~(to)" 

If 7=0, then p2= _f,,(Xo)/f(Xo) as before. 
In view of (3.7-11), it is not hard to see that 

(3.13) C~+Th fl has a unique global maximum, say at th; and th--*t o as h--,0. 
Indeed, t h -  t o = O(7h-- 7). 

The main result of this section can now be stated. 

(3.14) Theorem. Suppose (1.1-13) and (3.7-13). In particular, c~(t)=f(Xo+t) 1/2 
and fl(t)=(f'(xo+t)[. Let h-,O. Then with probability approaching one, M~h 
= m a x ( H - f )  is attained in a unique cell; call its index Ekh. Furthermore, the 
chance that 

and 

converges to 

1 , 
P log~(hIJkh--th) < y 

r - -  X Mkh" ]/kh ~O~(th) Wh( )"~- 7hfl(th) ~/ L IO~-~ ~ a  

Note. In particular, max ( H - f )  occurs in the vicinity of the maximum of 

]/)~X) +7[f'(x)l. As far as the scaling is concerned, M'kh.lfkh=Mkh/1/k-h: see 
(1.16). 

Proofi The first step is to estimate ah~. AS is easily verified from (3.7), 
1/2 { 1\ ~hj=O~(hj)i/2+O(h)=c~(hj) +o kl/log ~) 

(3.15) 
as h ~0 ,  uniformly in j with hj ~ I. 

Likewise for [~hj" Indeed, by (1.18) and Taylor's theorem, 

(3.16) max {fh(x)--f(x)" 2 0 + h j < x  <2  o +h(] + 1)} =�89 o +hj)l + O(h z) 
x 

as h--*0, uniformly i n j  with hj6I .  
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1)_1 
(3.17) If k~h -5 log~ , as is implied 

+o (1/log~)as h~0 ,  uniformly in j with hj~I. 

by (3.9), then [lhj=Yhfl(hj) 

Thus, conditions [4, (1.1-5)] are satisfied. The remaining conditions for [4, 
(1.24)] have all been assumed: [4, (1.11)] follows from the continuity of f'". As 
a result, the conclusions of (3.14) apply provided max [H(x)-f(x)] is taken 

x 

over any long but finite closed interval including x o + t o as an interior point. 
In other words, the j in max{C%Zhj+Thj} is constrained so hjeI, where I is 

J 
any long but finite closed interval including t o as an interior point. 

In particular, the max of O~hjZhj-t-~h j o v e r  such j's is of order 

Note that 

[C~(th)+ Yhfl(th) ] (2 10g~)1\1/2. 

~(th) + ~h~(th) >= ~(to) + 7h~(to) >-_ ~(to) > o, 

because ~(t)=[f'(Xo+t)l~O. It must now be shown that the remaining fs  do 
not contribute to the max: namely, if I sufficiently long, then 

m a x  {O~hjZhj "~- 7h j} 
hj(~I 

i sonlyasmal lmul t ip leof~( to)  2 ~ .  

Since f vanishes at infinity, p~<ah where a is small for hj~llong. By (2.4), 
with overwhelming probability, 

for all j with hj (~ I. Refer back to Definition (3.3) of %~ and Zhj. With that 
same overwhelming probability, 

O:hj Zhj = (Nj -- k pj)/(k h) 1/2 
i\i/2 

<2al/! (21og~) 

for hj ~ I. 
This leaves the job of estimating 

(3.18) max {7h/ hjq~l} 
J 

where 7hi was defined in (3.3). By (1.17), 

(3.19) max ( fh - f )  <�89 max [f'l. 
ce l l j  c e l l j  
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Since f '  vanishes at infinity, (3.18) is only a small multiple of 

�89 (2 1\1/2 l o g ~ ) .  [] 

Remark. Condition (3.7) is hardly minimal. The existence and continuity of f "  
and f ' " ,  as well as the positivity of f, are needed only in the vicinity of x o + to, 
the unique (by assumption) location of the global maximum of f ( x o + t )  1/2 
+ 7 [f '(xo + t)l. With these weaker conditions, one can still eliminate the j's with 
O<6<lhj[<l /~ ,  as candidates for the location L~h of the max. This interval 
can be represented as a finite union of closed intervals J so short that 

max e + 7 max fl <max  (c~ + yfl). 
J J 

On J, control over 

max 7hj Zhj = max (Nj - k p j)/(k h) 1/2 

is obtained by (2.4). Compare [-4, (2.5) or (3.3)]. Likewise, the conditions that f 
and f '  vanish at infinity can be weakened to 

f ( x  o + to) > lim sup f ( x )  

I f ' (x  o + to) ] >l im sup If'(x)l. 
j x l  ~ co  

Control over 7hi is obtained from (1.17); and control o v e r  O;hjZhj , as before, 
from (2.4). 

A Second Remark. As Richard Olshen points out, condition (3.10) is almost 
bound to fail for symmetric unimodal densities, like the normal or the Cauchy; 
then Xo=0 and two global maxima for e+7/?  can be anticipated, at + t  o say. 
Suppose the regularity conditions hold at both places. Under such circum- 
stances, (3.14) describes M + =max  [ H ( x ) - f ( x ) ] ,  which occurs near t 0. It also 

X > 0  
describes M - = m a x  [ H ( x ) - f ( x ) ] ,  which occurs near - t  o. The two maxima, 

X < 0  
and their locations, are asymptotically independent. So 

max [ H ( x ) - f ( x ) ]  = M  + v M -  
a l l x  

is still double exponential. The location of the overall maximum, however, is 
no longer normal, for it is near t o with probability 1/2 and near - t  o with 
probability 1/2. Given that the location is near to, its conditional distribution 
does become asymptotically normal, and likewise for - t  o. 

A Third Remark. Apparently, the situation is different when 7h~0. Condition 
(1.ll) of [4] is violated; fl is locally wedgeshaped, not parabolic. In effect, we 
are trying to maximize 

]/~Xo) [1-�89 aZj2 h2] Zhj + ~ Thb [j h] r log ~ 
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where a2= I/2if'(xo)l/f(Xo) and b=[f"(Xo)t/1Sf-(x~: compare (i.i3). There are 
two distinct places where the maximum can occur, one for positive j near 

CTh/h , and one for negative j near --CTh/h, where c--b/a;=2l/j~xo). The 
respective maxima in these two places are asymptotically independent, each 
being more or less as described in (3.14), although p must be computed from a 
and b. Also, the location of the maximum over positive j is in effect a 
truncated normal. So the global maximum is still double-exponential, but its 

location is a mixture of truncated normals. If 7h=o (1/l/2/~ogl/h), the trun- 
cation point is at 0, so the mixture is itself normal: see (3.20). If 7h is of order 

l/]~21oggl/h, the truncation point stabilizes away from 0. For larger 7h, the 
truncation point drifts off to + o% and we get a mixture of two normals. Note 
that th=O(yh). However, when 7h is, e.g., of order 1/(2 log 1/h) ~/~, the coefficients 
c~(t~,) and /~(th) differ sufficiently from ~(0) and//(0): for 

( ~ h ) / ~  ( o )  - I ~ ~,~, 
[ 3 ( t h ) / f l ( O )  - 1 ~ y~ .  

The next corollary shows that if h is small, sampling error dominates. 

(3.20) Corollary. Suppose (1.1-13) and (3.7-13). Suppose that k=o(h-3), so 
yh~O. Then the asymptotic behavior of the location and size of m a x ( H - f )  
coincides with that for (H _fh). 

Proof. This is easiest to argue from [4, (4.1)] with/~,,j = ]~hj= ~/hfl(thj) q-0 (1/log 1/h) 
by (3.17). However, th=O(?h) so  )~hfl(th) =O( '~h  2) = 0 (l/log l/h). [] 

Now consider the case where 
1 

(3.2t) kh3/log ~ ~ oo , 

so bias dominates. In essence, 

(k "~t~2h,' max(H-f)~maxj~I0~(hj)Zhj+~/hfl(hj)]/U22, log~} 

r- 

a n d  7h--*~. Thus, the term 7l, fl(hj) 1//2 log 1 dominates, and what counts is the 

behavior of/~(t) = If'(Xo + 0l at its maximum. Assume 

(3.22) If'l has a unique global maximum, say at x o + t  1. 

Clearly, f '  cannot vanish at xo + tl. (If the domain of f is a finite interval, an 
extra assumption is called for here.) 

(3.23) Proposition. Suppose (1.1-13) and (3.7-8) and (3.21-22). Then 

(  )lj2 
(kh)t/2 ~/~ -1 2log m a x ( H - f ) = 2 . h - l m a x ( H - f ) - , f l ( t l ) = m a x l f ' l  
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in probability. Furthermore, for any fi positive, with probability approaching one, 
the max is taken on only for j's with [hi- tx] < 6. 

Proof Refer back to (3.5). In view of (1.14), 

max {ehjZh~} = max {(Nj- kpy(kh)1/2} 
J J 

I- 1-11/2 
~ [f(Xo)]lJ2 [2 log~] �9 

g 11 1/2 
This is negligible by comparison with 7h[21ogg] . Likewise, if Ihj-ql>O, 

then (3.19) entails 

where 

maxflh; 21og 1/2<07h[21og~] 
J 

O=max{[f'(Xo+t)f" [t-ql>=6}<ff'(Xo+tl)[. [] 
t 

Proposition (3.23) is a "weak law" for the maximum. To get a distri- 
butional result, assume 

(3.24) 

and 

f '"(Xo+tt)#O 

h - 3 1 o g ~ k ~ h - 5 1 o g  h. 

1 
If k is of order h-s  log ~ or more, the behavior changes finer estimates than 

(3.17) are needed for /~hj" If k is of order h -7 or more, the location Ekh of the 
max changes its character, becoming discrete. We do not pursue these issues; 
for a related discussion, see [8, Sect. 3]. 

The heuristics will now be indicated. Proposition (3.23) shows that 

max (~hiZhj + ~kj) 
is essentially 

/ 1\1/2 
7hfl(tl) [21og~) , 

which is blowing up as h ~ 0. Subtract this lead term off, getting 
/ 1\1/2 

(kh) 1/2 (H- - f ) - -  Yh/~(t 1) ~2 log ~) = ehjZhj + 9hi (3.25) 

where 

(3.26) 
[ 1\1/2 

f f h j = ~ h j -  ~)hfl(tl)  ~2 log~) 

= �89 kla h3/Z [2 ~ max ( f h - f ) -  fl(tl)] 
cellj 
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from (3.3) and (3.8). Now from (3.16) 

1 max ( L - f ) - ~ ( h J ) .  2~ c~llj 

For hj close to t~, where fl is maximum, 

f l ( h j ) _ g ( t ~ ) .  ~ ,' =~ f i  ( t l ) h 2 ( j - h - l t ~ )  2. 

Parenthetically, this last can be made rigorous if k ~ h  -3 log~ , but is too 

aggressive for smaller k's. To sum up, the right side of (3.25) is nearly 

~hjZhj .3y 1 kl/2hT/2 fl,, (t 1)(j _ h-  1 tl)2.  

Now it will be possible to use [43 again, but with a new scale factor e~, 
chosen to satisfy 

/ 1 \t/2 
e~ (210g~h } -k~/ZhT/2. 

To make this rigorous, set 

(3.27) m -- (�89 kl/2hT/2)- ~/2. 

(The factor i/2 here is almost accidental.) So m ~  oo as h ~ 0 ;  set 

(3.28) e h = m- 1 (2 log m)- 1/4 

Now (3.25) can be studied, in the guise 

[r 8hi  where J 

~h 
(3.29) 

This is in the form of[4, (1.1)3. The center called for in [4, (1.3)] is defined as follows: 

ch = t d h .  (3.3o) 

Write 

(3.31) 0hj=~h(J,e~) 

to avoid confusion with the thj previously used. Clearly, 

(3.32) ~hj = hj = 6 h Ohj + t 1 
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where 

(3.33) 6h =hgz l ~O. 

This latter is easily verified, because for small h, using the growth condition 
(3.24), 

1 1 1 1 _<logl. (3.34) ~ log ~ -  ~ log log ~ < log m 
f l ,  

By (3.28), 
(3.35) log l z  log m. 

gh 
Then 
(3.36) l o g l ~ l o g ~ .  

A useful identity: 
l \ a /2  

(3.37) ~h 21og~) 62=(21ogm) I/2. 

For the function c~, of [4, (1.4)], take 

( 3 . 3 8 )  C~h(O)=7(t1+ghO)=f(xo+ q+~hO) lie by (3.8) 

so that 
~z h (Ohj) = c~ (h j). 

It is convenient to prove something a bit stronger than [4, (1.4)]: 

(3.39) O:hj=C~h(Ohfl + O (1/log ~ )  

uniformly in j with thj confined to a compact interval. 
This is immediate from (3.15) and (3.36). 
For the functions/?, of [4, (1.5)], take 

/ 1 \1/2 
(3.40) /~h(0)= [logm/1og~) 6f  2" [fl(t 1 -}-(~hO)--fl(tl)] 

where/3(0 = ]f'(x o + t)J. By (3.32), 

(3.41 flh(Ohfl---- (logm/log 1 )1/2 -- 3~- ~ [B(hj)- fl(t 1)]. 

For [4, (1.5)], it is claimed that 

(3.42) f lh~=~h(Ohj)+o(1/ logl )uni formlyinjwi th th jconf inedtoacompact  

interval. 

This follows from (3.17) by tedious algebra, using the growth condition k 
( 1 ) - 1  

h- 5 log ~ . Indeed, 



Maximum Deviation Between the Histogram and the Underlying Density 157 

/ 1 \ - -  1./2 
fib,= 121~ 9h0 by (3.29) 

/ 1 \ -  1/2 
= k21og~) [~)h j - -~ )h f l ( t l )  / 1\1/2] ~21og~) ] by (3.26) 

(log -1/log !11/2 1-fihj--Yhfl(tl)] by (3.4) 
\ h gh] 

-----?h t l o g /  1og~) [fi(hj)-fi(tl)] + ~  1/log by (3.17) and (3.36) 

= ?h (2 1 2 - 1 1og~)(~h' (2log 1 )  1/2g)~21-~(hj)-fi(t1)]+o (1/log~hh) 

= ( l~176176 ( 1 / l ~  by (3.37) 

=flh(Ohj)+O(1/log!--h) by (3.41) 

This completes the argument for (3.42). 
Condition [4, (1.6)] is clear: for I, take any long (but finite) closed interval, 

with 0 as an interior point. For [4, (1.7)], let 

(3.43) %(0) = a(tl) = f(x o + tl) 1/2 

for all 0. Then %-+% as h--+0 because c~ is continuous and 3h--+0: see (3.38) 
and (3.33). Let 

fio( O)= �89 fi" (tl) 02. (3.44) 

Then 

(3.45) fih(O)~fio(O) uniformly over OeI. 
1 \i/2 

Indeed, the normalizing factor log m/ log~t  tends to 1 by (3.35). Next, 

recall that t I is the location of the maximum of fl(t)=lf'(Xo+t)[, so fi(q)>0. 
Suppose, e.g., that f'(Xo+q)>O. Then fi(t)=f'(Xo+t ) in some neighborhood of 
tl, and 

fl'(t)=f"(Xo+O, fl"(t)=f'"(Xo+t ). 

In particular, f i ' (q)=0 and fl"(t l)<0: see (3.24). Now expand: 

~-2 [/~(tl + ~h0)-/~(tl)] = i / r ( 0  02 

where ~-+t 1 as h--+0. The assumed continuity of f ' "  at t 1 completes the 
argument for (3.45). 

The remaining conditions for [-4, (1.24)] are quite easy to verify; [-4, (1.11)] 
follows from the continuity of f" ' ,  as in the argument for (3.45). Let O h be the 
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(unique) location of the global maximum of %+fib" Then Oh--,O; indeed, O h 
= O (~Sh). Let 

(3.46) 
;9~ = - y '  ( t , ) / ~ ( q )  

= l f ' " ( X o  + t l ) l / f ( x o  + t l )  1/2 

(3.47) Theorem. Suppose (1.1-13), (3.7-8), (3.21-22), and (3.24). With probability 
approaching one, M'kh = max (H- f )  is taken on in a unique cell, of index Zkh. The 
chance that 

and 

i)]~log!-n[6hl(hEkh--tt)--Oh]<Y 

i 

converges to 

Proof If j is confined so Oboe1, the result follows from [4, (1,24)]. It is only 
necessary to show that the remaining f s  do not matter. If Ithj-t~l>6>O, this 
is immediate from (3.23). Next, consider the j's such that 

(3.49) 

is of smaller order than 

(3.48) A<]Ohj [ but ]thj--t~[<6. 

Refer to (3.25) and (3.29): it must be shown that the max over j's satisfying 
(3.48) of 

ahjZhj + flhi ]/f21Og ~h 

Now 

[~h(0,) +/~h(0,)] ]/2 log~. 
~h 

~h(Oh) + fib(Oh) > ~h(O) + fib(O) = ~(tl)  > O, 

since %+fib is maximized at O h. Refer to (3.38) and (3.40) for the definitions of 
~h and flh. 

Apply [4, (3.1)] to Zhj , but on the h-scale: i.e., put h for the e in [4, (3.1)]. 
The conclusion is that with overwhelming probability, 

maxZh~<2[21og~]l/2<4[21og~h] 1/2 

for h small, by (3.36). Hence 
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l og - - |  } max ehyto+fiaj. [ 2 t -11/2] 
GJ ) 

[ 1_] 1/2 
< 2 log [4 max ~h.S + max fihj] 

k ~hJ j j 

< 21og--[  4max~(Ohj)+maxf ih(Oh~)+o t/log 
~h-I J J 

by (3.39) and (3.42), where the max is taken over all j's satisfying (3.48). 
From the definition (3.38) of eh it is clear that %(0)<f(xo)  1/z. Refer now to 

the definition (3.40) of fib(O). Recall that q is the location of the global 
maximum of f i ( t )=If ' (x+t)[ ,  and fi is locally quadratic at t 1. If (5 is small, and 
0 < 6' < (5, then 

max {p(t 1 +u): 6' <_u_< (5} =fl(t l  +63, 
u 

max {fi(t t - u ) :  6'<<_u<_6} =fl(q-(5 ' ) .  
u 

So, confining j to satisfy (3.48), and writing v for max, 

And so 

max ph(Ohi) < flh (A) V fib(--A). 
J 

lira sup max Bh(%)<~B (q)A . 
h~0 j 

" .< Recall fi (q) 0. Now choose A so large that 

2= 4f(Xo) 1/2 +�89 z <0. 

With overwhelming probability, the max of the variables in (3.49), over the f s  
satisfying (3.48), is smaller than 

[2 log !hi 1/2 [2 +o (1/log 1 ) ]  

where )o< O. Such f s  do not matter. [5 

Remark. If k > h  -3 log , the scaling can be simplified: the O h can be set to 

0, and eh(Oh) to C~(tl) , and flh(Oh) to zero. 

4. Examples 

Our object in this section is to indicate what happens when the regularity 
conditions are violated. Some arguments are only sketched, for the focus is on 
qualitative features. Define Mkh and Lkh as in (1.14). 
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(4.2) 

Then the chance that 

(4.1) Example. The density f is uniform on [a,b]. This violates the condition 
(1.2) that f have a unique maximum. In this case, Lkh is uniform, rather than 
asymptotically normal; Lkh and Mkh are independent; Mkh is asymptotically 
double-exponential, but with a different scaling than in (1.14). To state a more 
general result, do not assume f uniform. Instead, suppose maxf=tL,  attained 
on a whole interval of length 2. If x is bounded a w a y  from this interval, 
suppose sup f (x) < #. Let 

x 

r 2 1 1 a 1/2 Wff (X) = [ l o g ~ - l o g l o g ~ + x ]  . 

Mkh//  < 
converges to 

exp [- - c e-  x/2] 

where c--�89 -1/2. The relevant growth condition is (1.10). 

Sketch of Proof. In the critical interval, pi=#h, so the chance that 

N~- kpj > (~kh) 1/2 w*(x) 
is nearly 

(2 z0 -1/2 w* (x) - t  exp 1 , 2 { - y w  h (x) } -�89 exp ( -x/2) .  

See/-5, (3.17)]. The part of the line bounded away from the critical interval can 
be handled by (2.4). We omit further details. [] 

(4.3) Example. Consider the beta density f (x)=�89 -~/2 for 0_<x<l .  Here, f 
has a unique maximum at 0, but f ( 0 ) =  oo. Now Lkh and Mkh are no longer 
independent; Lkh converges in law, without any rescaling, to a probability on 
the nonnegative integers; and k-a/2h-I/4Mkh converges in law to something 
which is not double-exponential. The scaling k-1/2h -1/4 of Mkh here is quite 
different from the k-1/2h-1/2 in (1.14). 

To describe the limit in more detail, let 

(4.4) c~ = [(j+ 1) 1/z _jl/2] -2/2 ~21/2jl/4. 

Let L* and M* be the index and size respectively of the maximum of W~/c 1, 
W2/c2, ..., the W's being independent N(0, 1) variables. Then (Lkh, Mkh ) con- 
verges in law to (L*, M*). The relevant growth condition is that 

(4.5) d,= kl/2 hl/4--+ oo. 

Sketch of Proof. Clearly, 

(4.6) pj=h~/2/c 2, 

where cj was defined in (4.4). For any fixed J, we claim that the joint 
distribution of 

(Nj - kpj)/)~: 0 <=j <= J 
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converges to the joint distribution of 

VO/cj: O<=j<=J. 

The scaling-factor )~ is defined in (4.5). For  J ~  0, this follows from the central 
limit theorem with a uniform error bound. We now do J =  1. Given N o=n0,  
conditionally N 1 is binomial; the number of trials is 

k '=k-no=k(1-po)+~o  

where ~o/,~ is (unconditionally) almost N(0, 1). The success probability is p' 
=pl/1-po.  Thus, N 1 has conditional mean k'p' and variance kp'(1-p'). But 
kp 1 =,~2/c~ by (4.5-6), and 

k' p ' - k p l  =pl ~o/(1-Po) 

is of order 2h ~/; which can be ignored. Thus, with high probability, given N o 
the conditional law of (N 1-kp~)/2 will be close to the law of W~/c 1. General J 
is done by induction. For  a more efficient argument, see [8, (3.17)]. 

The final step is to show that large j's don't  count. We found this a bit 
difficult, and indicate the main steps. Fix x > 0  but small. Set m=2x, where 2 
was defined in (4.5). Let 

qj=P{Nj>kpj+m}.  

Then ~ qj is an upper bound to the chance that 2 - 1 ( N j - k p j ) > x  for some 
j = J  

j>J.  We estimate this sum in two parts, defined by a parameter A with 
A > 9/x 2. 

If J~j<=A)~ 2, we use (2.10), replacing p~ by its upper bound ~hl/2j -1/2, 
valid for j > 1 : 

qj < exp { - xZjl/2/[1 + 22-  ljl/2 x]}. 

Next, replace the j in the denominator by its upper bound A)~ 2 to get 

qj < exp { - x2jl/2/[1 + 2A 1/2 x]}. 

So ~ {qj: J<j<A)o 2} is small for J large: how large depends, of course, on x. 
J 

If A22<j, we use (2.11). Again, replace p~ by Lhl/21-1/22 J , and note that 
eG(u)<3u for small u: 

qj < (9 X2/x2j)~x/2 

Now ~{qj: A.)vz~j} can be bounded above by an integral, and it is very 
J 

small. []  

We next take up the role of condition (1.3), that f be locally quadratic at its 
unique global maximum x o. It is this assumption which makes the location Lkh 
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asymptotically normal. To make this clear, suppose (1.1-10), except (1.3) is 
replaced by the condition that as x---, 0, 

(4.7) f ( x  o + x )= f ( X o ) -  Aixl a + o(Ix[ a) 
A and a are positive. 

Then Lkh and M~h are still asymptotically independent. And M~h is asymptoti- 
cally double-exponential, although the scale w h of (1.11) must be replaced by 

1 ] 1 / 2  

It is perhaps worth noting that as a ~ 0% condition (4.7) forces f to get flatter 
and flatter; while the scale w~ converges to the scale w~ for the uniform: see 

/ 1\1/2 
(4.2). Likewise, L~h should be scaled not proportionally to h [log~) , as in 

/ 1\1/a 
(1.14), but to h (log ~) . Its asymptotic density is then proportional to exp { -lUfa}. 

A familiar example covered by (4.7) is the density f (x)=�89 
with a-- 1. 

Suppose (4.7) is weakened further, breaking the symmetry: as x ~ 0  § 

f ( x  o + x) =f(Xo) - A x a + o (x a) 
(4.9) f (x o - x) =f(Xo) - B x b + o (x b) 

A, B, a, b positive. 

If e.g. a<b, then the maximum occurs just to the right of x o, i.e., Lkh is 
asymptotically positive. Again, Lk~ and Mkh are asymptotically independent. If 
a=b  but e.g. A < B ,  then Lkh and Mkh are I no longer independent: if Lkh is 
positive, then Mkh is bigger. 

To handle this sort of situation, let 

(4.10) M~,=max  {Nj -kp i :  j>0} .  
J 

With overwhelming probability, this is attained at a unique index L~h. Likewise 
for M ~  and L~h. Let 

oo 

K, = S exp ( - u a) du 
0 

Y 

(4.11) ~a (Y) = K21 ~ exp ( - ua) du 
0 

c a = �89 1/2K a A - 1/af(xo)l/a. 

(4.12) Theorem. Suppose (1.1-10), except that (1.3) is replaced by (4.9). Then the 
four variables M+kh, Mkh,+ Lkh,+ L~h are asymptotically independent. Furthermore, 

P([A/f(x~ / 1\1/a ) (1og~) h L ~ h < y ~  r 

P {M~/(kh) 1/2 <f(xo)  1/2 w~(x)} ~ exp { - %e-~/2}. 
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Likewise for L- and M - .  

Sketch of  Proof  Only j's with hj near x 0 matter. Suppose h j > x  o, but close. 
Then, 

so the chance that 

is essentially 

where 

pj f (Xo)  h - I -~(A~o ) (h j) a 

N j -  kp j > If(x0) kh ] 1/z w~(x) 

(2g)- 1/2Wah(X ) - 1 exp { -�89 

_ ca e -  x/2 15 g a 1 exp { - (15j)a} 

r A 111/a 
15 = [f(~o) log~] h. 

The argument can be done as in [4]. [] 

The conclusions about M~ and L+s continue to hold, even if e.g. B = 0 ;  and 
the theorem then handles the case of an exponential density. 

We turn next to the regularity conditions assumed in section 3 to deal with 
the bias term. One such was (3.7), which required the existence of three con- 
tinuous derivatives. 

(4.13) Example. There is a C 2 density f, which is positive everywhere, and 
locally quadratic at its unique global maximum; f and f '  and f "  vanish at oo; 

and f is Coo except at 0. Furthermore, 1/ f ( t )+l f ' ( t ) l  has a unique global 
maximum at 0, but is not locally quadratic there, because f ' "  does not exist at 0. 
The conclusions of Theorem (3.14) fail, for this f 

Construction. In a small neighborhood of 0, set 

for C > 0. Then 

and 

so 

f ( x ) =  l + 2x - - �89  2-3~,~,2 c'1~15/2 

f ' ( x ) = 2 - x - C l x l a / 2 > O  

f ( x )  ~/2 = 1 + x + O(x a) 

f ( x )  1/2 + If' (x)l = 3 - C Ix[ 3/2 + 0 (xe). 

In particular, f (x)  1/2 q- l f ' (x) [  has a strict local maximum at 0. Continue f over 
the whole line so as to satisfy the conditions of the example, with 0 being the 
unique location of the global maximum of f i / 2 + l f , i .  To show that (3.14) fails, 
start at (3.8). Choose k and h so 7h -= 1. Then 

ct(t) + yhf i ( t )=f(x  0 + t) 1/2 + If'(Xo + t)[ 

will have its global maximum at t h = t O = - - X  o. Define M'kh and /2kh as in (3.14). 
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Their joint asymptotic distribution will now be computed:  Ekh is not asymptoti- 
cally normal, and the scale for M~h changes 

Following the notation in (4.8-11), let 

(4.14) 

Then the chance that 

K =  of exp(-]u[3/Z)du 
- -  0 0  

Y 

~P(y)=K -1 f exp(-[u[a/Z)du 
- - 0 0  

c =�89 ~/2 K(2 C) -2/3. 

1\2/3 
2 C l o g s )  hEkh<y 

and 
1 7 , 1 1 1/2 r 131/2 

(kh)~/ZM'kh<= 2 l o g ~ - ~ l o g l o g ~ + x ]  +2  [21og~] 

converges to 
tp(y) �9 exp { -ce-X/2}. 

Sketch of Proof. All the action occurs near 0, and in effect we are studying 

maxj {c~(hj) Zhj + [2 + fl(hj)] [2 log~] ~ 1 1  ~/2) 

where 
c~(u) = 1 + u, 

Nu) = - u -  Clu? j2, 

Zhj = (Nj - kp ;)/(kPa) 1/2. 

We have to estimate the chance that 

l \ l / 2  
c~(hj)Zhj+fl(hj) 21og~) >w 

where w=w3/2(x), the scale defined in (4.8). Let 

1\1/2 
w-f l (hj )  (2 log~) 

2 -  
c~(hj) 

/ l \a/2 
Then 2 ~  {210gT] -More  particularly, 

\ n !  

[ 1\i/2 
22 -- W 2 -- 2w 2 h j -  2wfi(hj) [2 log ~ 

\ 

- w z + 2(6j) 3/2 
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where 

because 

c5= (2 1\2/3 
C logs )  -h, 

(1) 
- 2 w a h j - - 4  log~ hj 

t 1\ 1/2 1 1\ l/z 
-2wfi(hj)  t21og~) - 2w.hj .  t21og~) 

/ 1\~/2 
+ 2w clhjl [21og ) 

- 4  

So the chance that Zhj >)~ is nearly 

(2~z)1/2 ~-1 1 2 e x p ( - 7 2  ) - c 3 K  -1 exp { - (b  j)3/2}. 

The argument is done in detail as in [4J. [] 

The density in (4.13) is somewhat contrived. Our last example uses a 
standard denisty: the beta. 

(4.15) Example. Let f ( x ) = 3 ] / x  for 0_x_<l ,  and vanish elsewhere. This vio- 
lates all our regularity conditions, for the maximum of f occurs at the end- 
point 1, where f is locally linear: 

(4.16) f ( 1 -  ~)=~- �88  2) as e--+0 +. 

Furthermore, f (x) t /2+f '(x)  has a maximum of infinity at x=0 ,  where f van- 
ishes. The asymptotic behavior of Ekh and M'kh, defined as in (3.14), is very 
different from what is described there. Indeed, with positive probability the 
max will occur near 0 and be due to bias. With the remaining positive 
probability the max will occur near 1 and be due to sampling error. The max 
cannot occur in the interior. These paradoxical assertions are true provided k 
goes to infinity and h goes to zero at the right rate (4.21) below. The parameter 
2 in that equality controls the balance between 0 and 1. 

The starting point is (3.1). Consider the cell [0, hi. There, 

(4.17) kh max ( s  - f )  = khfh = kh 3/2. 

Cells [h, 2hi, [3h, 4hi, etc. have strictly smaller bias terms, and do not matter. 
Indeed, since f is strictly concave, 

x + h  

(4.18) h-1 ~ f ( u )du - f ( x )  is strictly decreasing as x increases. 
x 

We are interested in x =jh. Near 0, the sampling errors N j - k p j  are essentially 
normal, with standard deviations of the order k 1/2 h 3/4. These will not matter 
either. 
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Consider next a neighborhood of 1. There, bias will be negligible, and the 
sampling-error component maxj(Nj.- kpj) can be handled by (4.12). The relevant 
a is 1 by (4.16) and this is substituted into the scale w~ defined at (4.8). In more 
detail, let M 1 be the max of (N~-kp~) over ceils in say [.01, 1], and let L 1 be the 
location of this maximum; by our convention, Lt is a negative integer, count- 

~ ( 1 )  3 
ing cells down from x o = l .  Now if the growth condition k~> log~ is 

satisfied, L~ and M 1 are asymptotically independent. Furthermore, L 1 is asymp- 
totically exponential: 

And M 1 is asymptotically double-exponential, but on the scale w~: 

1 \1/2) 
(4.19) P M 1 <(~kh) 1/2 (2log l ~ - 3 1 o g l o g ~ + x )  ~ e x p { - c l e  -x/2} 

where c 1 is defined by (4.11) with a =  1 and f(xo)=3/2. 
Fix any real number 2. In particular MI will be of order 

1 1 1/2 
(4.20) (~kh) 1/2 [2 l o g ~ -  3 log log~+  22] 

Choose k and h to equalize sampling-error (4.20) and bias (4.17). 

(4.21) k=3(~)2[log~-31oglogh+2]. 

This is different from the rate defined in (3.9). 
Now, let h ~ 0  and k ~  oo at the critical rate (4.21). In particular, (4.17) and 

(4.20) both tend to infinity. To avoid trival difficulties, suppose h is the 
reciprocal of an integer, and 0 falls on the boundary of a cell. The asymptotics 
of max (H- f )  can now be described. Recall from (3.1) that (kh)(H-jO and Mz 
are comparable. Near 0, ( H - f ) - k h  3/; by (4.17). Near 1, we have (4.19). Now 
M I exceeds kh 3/2 with probability approaching e x p { - c l e - a } .  If M 1 exceeds 
kh 3/2, then with conditional probability approaching one, max(H-f)=Mx/kh: 
so the max occurs near 1. If M 1 fails to exceed kh 3/2, then with conditional 
probability approaching one, m a x ( H - J )  occurs in the cell [0,hi, and is 
essentially h I/2. 

The conditional probability fails to be one exactly due to the normal 
sampling error surrounding the bias kh 3/2. However, as noted above, this error 
is of order kl/2h 3/4, and is much smaller than the the randomness in Mr,  

( 1) z/z 
which is of order kh/log~ ; asymptotically, this all washes out. 

The interval from e.g, 100h to 0.01 requires special attention. There, sampl- 
ing error and bias can be estimated separately, by (2.4) and (4.17) respectively, 
and added. They are of too small an order of magnitude to matter. We omit 
further details. [] 
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