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0. Introduction 

In 1975 Maisonneuve [13] introduced the "exit system", a kernel/additive 
functional pair (*P,B) associated to a homogeneous random set, as a general 
tool for studying the excursions of Markov processes (a similar idea had been 
suggested by Dynkin [5] in 1971). In [6-I Getoor  used the exit system to 
analyze specific excursions, and recently exit systems were used by Getoor  and 
Sharpe [7, 9-1 to study excursions under duality hypotheses. The purpose of 
this paper  is to explore the relationship between "dual"  exit systems (*P,B) 
and (*P, B) of a pair of dual Markov processes, by means of an auxiliary "two- 
sided" Markov process with random birth and death in which the original 
dual processes may be simultaneously realized. The object of our study is to 
contribute to the theory of excursions of dual processes, using the auxiliary 
process as a convenient and natural tool. 

Section 1 introduces the two-sided processes we will use throughout the 
paper, and establishes our notation. Sections 2 and 3 concern exit systems and 
excursions of the auxiliary process. We introduce and exploit the notion of 
"co-exit system", which comes from the dual exit system. The presentation of 
this part  of the paper was influenced by Maisonneuve's recent work on re- 
generative sets on the real line [12] and benefited greatly from his comments. 

In Sect. 4 we look again at the original dual processes. Here we generalize 
the result of [9] on reversing excursions from a point, eliminating the hy- 
pothesis of dual densities. This section also contains a formula (first discovered 
by Kaspi  [11]) which expresses a duality relationship between the dual exit 
systems. See Sect. 4 for the precise statements. 

1. The Two-sided Markov  Process  

Fix a Lusinian space E and let g denote its Borel a-algebra. Let W be the 
space of paths from IR into Ew{A,A} which admit a "bir th t ime" ~ and a 
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"death time" fl, and which are r.c.l.1, on (~, fl). That is, 

(i) w(t )=A implies w(s)=A all s<t;  
(ii) w(t)=A implies w(s)=A all s > t ;  

(iii) ~(w)=sup{t:  w(t)=A} and fl(w)=-inf{t: w(t)=A}, with w(~(w))=A if 
~(w)~lR, w(fl(w)) = A if fi(w)EN. 

Let Zt(w ) = w(t) denote the coordinate maps on W, and define 

Zt:-Z(_t)_ , t eN .  

2 allows us to view the paths of W in the reverse direction of time; its 
trajectories are r.c.l.1, on (8, f i ) = ( - f i , - e ) .  Let at: W--,W denote the shift 
operators on W 

Z oa,(w)=Zs+,(w), 

and set 3 t = a  t. The a-algebra on W generated by Z t (tEN) is denoted go; (go) 
and (@o) are the natural filtrations of Z and 2 respectively. 

The pair (Z, 2) constitute a "two-sided Markov process" when governed by 
a measure (2 on (W,g ~ which is a-finite on Z~-l(g) for every s and which 
satisfies: 

(1.1) there is a right semigroup (Pt)t>=0 on (E,g) so that Z 
=(W,, go, (go), Zt ' at , ~, fl, (2) is Markov with respect to (Pt); 

(1.2) there is a right semigroup (/~)t>_o on (E,g) so that 2 
=(W, go, (@o), 2t ' 3,, ~, fi, (2) is Markov with resl~ect to (/~). 

In this paper we will be concerned with the case 

(1.3) (Pt) and (Pt ~) are in duality relative to a a-finite measure ~ on (E, g). 

For any realization X = ( Q , ~ , ( ~ ) , X t ,  Ot, (px, x e E u A ) ;  t>0)  of the semi- 
group (P~) - i.e., X is a right process with semigroup (P~) and cemetery point A 
- define projections vt: W ~ 2  (teN) by 

(1.4) Xso'ct(w)=Zs+,(w ) if Z,(w)~E 

= A otherwise. 

It follows from (1.1) that for any (gt~ stopping time T and f ~ Y  we have 

(1.5) (2(fozT[gO+)=PZT(f) o n  {ZTeE, } . 

Naturally the duals of (1.4) and (1.5) hold, relative to a realization )( of (/~). In 
addition, we define another projection zt: W ~ ( ]  

(1.6) Tt :~T  t 

which will be useful in the sequel. 

(1.7) Remark. We showed in [14] how to construct the measure (2 from a 
given pair of dual processes/semigroups. This measure is stationary 
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(1.8) ~ (2 =(2, st iR, 

with one-dimensional distributions equal to {, and Z was called the auxiliary 
process associated to the dual pair X, 3~. The present notation, and some 
terminology, is different from that of [14, 15] where only Z was used. Results 
for 2 were stated in terms of Z; for instance what was called a "Z-starting- 
time" (or co-stopping time) in [14] would here be the negative of a (~t)- 
stopping time. 

Let ~ denote the Q-completion of go and let Y be the ideal of Q null sets 
of ~. We complete the filtrations of Z by adjoining Y :  (r ~ v .W and ~t 
=~o  v JK. Using the fact that the duality measure ~ is excessive, one can show 
that Q(c~=t)=Q(fi=t)=O for any telR. From this observation and the strong 
Markov properties of Z and 2~, it follows that the completed filtrations (Nt) 
and (~t) are right continuous, i.e., satisfy the "usual hypotheses". 

In the following, P,.+ stands for the non-negative real numbers, IR + + =IR + 
-{0}, and N(.) denotes the Borel sets of whatever space appears inside the 
parentheses. 

2. Exit Systems for the Two-sided Process 

Let M c l R  + + x ~ be a perfectly homogeneous optional subset of ]10, ([[, where 
denotes the lifetime of X, with M(co) closed in ]]0, ~ for each co. "Perfectly 

homogeneous" means t+seM(co) if and only if teM(O~oo) for every t > 0  and 
s>0.  Assume M([A])=0. We associate to M the random subset N of ~,~][ 
c IR x W which satisfies 

(2.1) ( N - t )  n R+§ =Mo~ t 

on {c~<t</~}. The left-hand side of (2.1) means { s - t :  sEN(w), s>t}. Because 
zs+t(w)=Osort(w) (te(~,~), s>0), the homogeneity of M guarantees that N is 
welldefined. (In the terminology of [15], N is the "homogeneous embedding" 
of M.) 

Now let (*P,B) denote the exit system for (X, M), as defined in [13]. We 
identify the additive functional B with the homogeneous random measure 
having B as distribution function. From now on, the letter B will denote this 
measure. As in [15], B has a homogeneous embedding into W, that is, a 
random measure A(w, .) carried by (e(w), ~(w)) which satisfies 

(2.2) A(w, t + A) = B(z t w, A) 

if Zt(w)eE, Ae~(IR+). With this definition we have 

(2.3) Q 2 Yt" Ht~ j Yt*PZ~(H~)A(dt), 
t~N# 

where Y>0 is (Nt)-optional, H is positive and ~(lR)| and Ne 
denotes the set of left endpoints of intervals contiguous to N. The pair (*P, A) 
is called the exit system for (Z, N). 
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Of course, we can carry out analogous embeddings to arrive at exit systems 
for 2. Note that an exit system for 2 can be interpreted as a kind of "co-exit" 
system for Z. Namely, if N is a homogeneous random subset of ~,/?[[ and 
(*/~ ~3) is the exit system for (2, N), the set N--- - N  is a homogeneous random 
subset of ~c~, fl[[. The "dual" of (2.3) for _~, rewritten in terms of N, becomes 

(2.4) Q( ~ Vs" Ks~ ~s) -- Q S V~ ,pzs-(Ks) ffl(ds), 
sJr 

where V_ t is (~t)-optional, K is positive and N(lR)|  A(ds)= 
A(-ds),  and A~, denotes the set of right endpoints of intervals contiguous to .~. 

(2.5) Remark. The process V which appears in (2.4) might be called Z-"co- 
optional" (see [-13 or [4], where such processes are called "left"): the a-field of 
processes V such that V_ t is (r is generated by processes adapted to 
( ~ ) - ( ~ - t )  which are Q-a.e. left continuous. (Note: ~t=a(Zs: s>t} v JK.) 

Via the notions of exit and co-exit systems we can study dual exit systems. 
Under duality hypotheses, the structure of closed, homogeneous, optional sets 
is completely known [7]: if M is a closed, homogeneous, optional subset of 
]]0,~[[ then there exists a Borel set F c E x E  such that {(t, co): t>0 ,  
(Xt_(co), Xt(co))~F } is indistinguishable from M. Assuming M has this represen- 
tation exactly, the set N corresponding to M is {(t,w): (Z,_(w),Zt(w))~F }. 
Choosing M = {(t, co)' )(~_(co), )(t(co))E/~}, where F -  {(x, y): (y, x)sF}, the embed- 
ded set b? then satisfies - b ? = N .  In an obvious sense M and 1~ are dual 
random sets (their debuts R and /~ are dual exact terminal times in the 
classical sense [7]), and their respective exit systems (*P,B) and (*/~/~) are 
what we called "dual exit systems" in the introduction. In general, B and/~ are 
not what are commonly called dual additive functionals (when this is the case, 
A = I [  [-15]). However, (2.3) and (2.4) (with /V=N) indicate how the auxiliary 
process can be used to relate dual exit systems: the corresponding exit and co- 
exit systems for Z share their underlying homogeneous random set. 

In the remainder of the paper we assume that X and Jf are Borel right 
processes, and for convenience we assume both are realized as the coordinate 
process on the canonical space (f2, fro) of r.c.l.1, paths from IR + into Eu{A}.  
Now Xdco ) =Jr,(co)= co(t), and the processes are distinguished by their laws (px) 
and (P~) on (Q, ~o). 

3. Exit and Co-Exit  Systems of Z 

We begin with a formula which contains (2.3) and (2.4). In the following N 
always denotes a closed, homogeneous random set indistinguishable from 
{(z,_, zt)cr}. 

(3.1) Definition. Let (} denote the a-algebra on IR x IR x W generated by real- 
valued functions U(s, t, w)~N(IR)|174 which satisfy 



Exit Systems for Dual Markov Processes 263 

(i) lim U(r, u,w)= U(s, t,w) for a.a. w; 
r ~ s  r < s  

u ~ t  u > t  

(ii) w-- ,U(s , t ,w)~fq[s , t ] -~s~fr  t for s < t ;  

(iii) U(s,t,w)=O if s>t. 

Remark. The family C is related to the "hi-optional" a-field (9 for two-parame- 
ter processes with index set I={(s,t): - s < t } ,  relative to the filtrations ~ 
=((#t) and 5~ )=((~s) (see Bakry [-31): (9=(91c~(92 where (91 is the a-field of 
processes V(s, t, w)" IR x IR x W ~ I R  which are ~(lR)| and 
which vanish off 1, and (92 is defined similarly in terms of (9(y.2), when the 
second real variable plays the role of parameter. Here, (9(~.~) is the optional o-- 
field relative to (~i). A process U is (9-measurable provided (s, t, w)-~ U(-s ,  t, w) 
is bi-optional. 

(3.2) Proposition. For H, K>O and ~(N)| and U>=O and C- 
measurable, 

(3.3) Q( 2 U(s,t) 'K~~176 YY U(s,t) *pz~ (K~)*PZ'(Ht)fl(ds)A(dO" 
s<t  s<t  

sEN,~ 

t~N l 

Proof. Because N~ is optional with countable sections, 

n 

where {S~} are pairwise disjoint (ff~)-stopping times in ]]c~, oct. Therefore the 
process 

Z V(s, t). L. 
s eN~ 

= ~ U(S,,t). Ks o~s . l(s <=t ~ 
n 

is optional if U(s, t)~(9 § is right continuous in t; this extends to general U~(~ + 
by a monotone class argument. Now applying the exit system (2.3) to the left 
side of (3.3) we obtain 

(3.4) Q ~ Yt. Htozt=Q ~ Yt*PZ~(Ht) Aidt) 
t~N L 

=Q[ ~, Ks~ ~ U(s,t)*PZ~(H)A(dt)] 
s~N~ [s. ~ )  

=Q[ Vs-K oL]. 
s~N, 

The process V, given by the integral, is co-optional in the sense of (2.5)(i). 
Using (2.4), (3.4) becomes 

Q ~ U(s, t) ,pz,-  (K,) *PZt(H,) ft(ds) A(dt), 
s<t  

which verifies (3.3). 
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Next, we explore some special cases of (3.3). We shall use the notation: 

Dt=inf{s>t: seN} (inf0 = oo) 

G,=sup{s<t: seN} ( s u p 0 = - o o )  

, A~=t-G~, Rt=Dt-t .  

The same letters with ..... refer to N; note that Gt=D_t . When - c o  < G,<a, 
G, eNe and D~>a. For fixed u>0,  let (G",D ") denote the first interval con- 
tiguous to N which lies to the right of 0 and exceeds u in length. (Here the 
choice of 0 as a reference point is convenient but arbitrary.) If no such interval 
exists, G"=D ~= co. Let ("G,"D) be the last contiguous interval exceeding u in 
length which lies to the left of 0, i.e., the last one whose right endpoint is 
negative. ( " G = " D = - o o  if such an interval fails to exist.) If t en  l and seN~ 
satisfy t>O, s<O, Rt>u, A~>u and [s,t]c(UG, D"), then s="D and t=G". In 
the following discussion F will be a non-negative (P-measurable function, and 
~b, r will be non-negative Y*-measurable functions. Recall that R denotes the 
debut of M c l R  ++ x f2 which corresponds to N,/~ is the dual object. 

Applying (3.3) with 

U(s, t)=F(s, t) i{~=<,} 
Mr= ~ l{o<b_t<R}, K~=O 1{o . . . . .  ~} 

we obtain 

(3.5) Q[F(D,, Gb).tpo~Do.qSorob; a<Da<Gb <b ] 

=Q g F(s, t)*Pz'-(O; s-a</~)*PZ~(qb; b-t<R)A(ds) A(dt), 
a<s<=t<b 

which concerns the beginning of the "excursion straddling b" and the end of 
the "excursion straddling a". 

Similarly, for the two excursions exceeding u in length (UG, UD) and (G u, DU), 
we choose 

U (s, t)= F(s, t) l(uG, ol(s) l[o,D,)(t) 

H=~b I[R>,}, K = 0  l~k>, } 
to obtain 

(3.6) Q[F(UD, G").Oo~,o. Ooza,; c~ <"D, G"<fi] 
=Q ~ ~ F(s,t)*Pz'-(O;u<R)*PZ~(~;u<R)71(ds)A(dt). 

tE[O,D u) s~(uG, O] 

4. Reversing Excursions 

In this section we use the exit and co-exit systems to investigate the effect of 
reversing all the excursions from a single point beE. We assume now that X 
and )( are standard processes in duality. Our result extends work of Getoor  
and Sharpe [91 for dual processes possessing "dual densities". To avoid tri- 
vialities we assume {b} is not a trap, and 
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(4.1) (i) b is regular for {b} relative to the process X, 

(ii) all excursions of X from {b} begin and end at b, 

(iii) Pb(sup{t: Xt=b } < oo)=0=Pb(sup{t:  Xt=b} < 09). 

(Equivalently, dual versions of (i) and (ii) hold; (ii) is equivalent to the 
indistinguishability of the sets {(t, co): t>0 ,  Xt_(co)=b } and {(t, co): t>0 ,  X~(co) 
= b}. See [9] (Sect. 9) for the precise meaning of (ii).) The excursions from b of 
the process X are studied via the set M = {(t, co): t >0, Xt(co ) = b}; its debut is 
a.s. equal to inf{t>0:  Xt =b}=_R. The associated random set N={(t,w): 
Zt(w)=b } is indistinguishable from N={(t,w): Zt_(w)=b } and we shall sup- 
pose for convenience (as is done in [9]) that Z hits and leaves b continuously 
everywhere on W. Thus N =/V. Under our hypotheses b is not a holding point, 
and N is closed and perfect. 

In order to state and discuss our result we introduce some notation from 
[9]. Let q~: f2~O be the mapping which reverses every excursion of finite 
length away from b, namely 

(4.2) (q~ co) (t) = X(gt(~)+ at(~)-t)- (co) if 0 < gt(co) < dr(co) 

= X~(co) otherwise, 

where g t=sup{s< t :  s~M} and dt=t+RoO t. The operator of reversal at time R, 
denoted p, is given by 

( 4 . 3 )  (pco)(t)=co[(R(co)-t)-] if 0<r<R(co)<  oe 

= A otherwise. 

Finally let n denote the "characteristic measure" (following It6 [10]) of the 
Poisson point process of excursions from b for the process X; rl denotes the 
corresponding object for J~. 

Assuming (4.1)(i)-(iii) and dual densities, it was shown in [9] that 

(4.4) ~ pb = fib. 

The proof of this theorem in [9] rests on their assumption of dual densities at 
only one point, namely in proving 

(4.5) pl~=n on (~2, if~ 

In what follows we prove (4.5) under (4.1) (i)-(iii) only. 
The additive functional B in the exit-system (*P,B) for M is a local time 

at b [-7]; the "standard" Maisonneuve exit system is normalized so that 
*W(1--e-R)=I .  In [-9] the exit system for M was chosen so that the local 
time involved is the standard local time {, i.e., 

~3 

E x y e -t dd t = E;'(e- Tb). 
0 

Let (/~ d) denote this exit system. It was shown in [9] that 

(4.6) n(F)=fib(lrokR) for P ~ f f  ~ 
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(Here k~ is the killing operator.) For the Maisonneuve exit system, B=e(, and 

*W=I/5b,  where c is a constant, and furthermore, 
C 

(4.7) {t = m ([0, t] c~ M) + B t , 

where m is Lebesgue measure [13]. Similar statements hold for the dual 
objects. 

The key step in proving (4.5) is 

(4.8) Lemma. (i) Q(A[0, 1])=Q(A[0, 11). 
(ii) For non-negative Heft*, 

*pb(HokR) = *pb(HopokR). 

Proof. By (2.3), 

(4.9) Q ~ HOkRO~t=*pb(HokR)Q(A[O, 1]). 
O < t < l  

teN~ 

The left-hand side of (4.9) equals 

(4.10) Q ~ HopokRO~s+{Q[HopokgO~D1]--Q[Hopokgo~Do]}. 
0 < s < l  

s~N~ 

The term in brackets subtracts the contribution due to the excursion straddling 
0 and adds the contribution due to the excursion straddling 1. These two 
contributions are equal (and hence cancel out) due to the shift invariance (1.8) 
of Q. (Because neither A nor A charges points, Q{t~N~}=O=Q{t~N~} for any 
t. Consequently, there is no contribution in (4.9) from excursions which end at 
1 or in (4.10) from excursions which begin at 0). By (2.4), the remaining term in 
(4.10) equals *pb(HopokR)Q(71[O, 11). Choosing H =  1 - e -  so that *W(Hok R) 
=*pb(HopokR)=l, the equality of (4.9) and (4.10) proves (i). Note that 
Q(A[0, 1])=v~(E)< ~ ,  where v B is the Revuz measure of B (see [2] or [8]). 
That done, (ii) follows immediately for all H from the same equality. 

Using (4.6) and its dual, (4.8)(ii) is equivalent to 

(4.11) cp~=~n. 

But (4.7) and (4.8)(i) imply c=d,  for Q(Nc~[0, 1])=Q(Nc~[0,  1]) is immediate 
from (1.8). This proves (4.5). 

Now consider the general homogeneous random set N as in Sect. 3, togeth- 
er with its exit and co-exit systems. Assume N is unbounded so that all its 
contiguous intervals are of finite length. Then the following analogue of (4.8) 
holds: 

(4.12) Proposition. For non-negative H~2* 

1 1 

Q ~ *PZ~(HokR) A(dt) = Q ~*Pz'-(Hop okg) A(dt). 
0 0 
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Proof Use the idea behind the proof of (4.8). That argument involves exchang- 
ing an excursion straddling 0 for an excursion straddling 1 and depends on 

(4.13) Lemma. Q{(tsN~}=Q{t~N,}=O for any t. 

Proof. There are at most countably many values s with P~(A B s > 0)>  0, where B 
is the additive functional in the exit system for (X, M) corresponding to N. 
Because { is excessive, Pr  implies P r  for any s>u. This 
shows Q(AAt>O)=O for any t. Since {tENe} has positive measure only if A 
jumps at t, the first part is proved. The second is proved similarly using/1. 

We can express (4.12) in terms of the original processes X, )(  and their exit 
systems. Define, for x~E, Hej~* 

nX(H) = *W(HokR) , 

and let v, ~9 be the Revuz measures of B and/~  respectively, Then (4.12) states 

(4.14) ~p ~x(-) ~)(dx) = ~nx(") v(dx). 

This relationship was discovered by Kaspi [11] under slightly different hy- 
potheses, using a quite different approach. 
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