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Summary. A characterization theorem based on the proportional relation 
between two truncated moments is proved for both continuous and discrete 
distributions. The results are applied for characterizing distributions of 
Pearson's system and its discrete analogon. 

1. Introduction 

Recently, growing interest has been focussed on characterization of both con- 
tinuous and discrete distributions by truncated moments (Galambos and Kotz 
1978). The most general results (Kotz and Shanbhag 1980) will be reformulated 
in our Propositions 2.1 and 3.1. However general, these characterizations 
reduce to a form simple enough for any kind of application only in case of a 
rather limited class of distributions. A possible way of overcoming this limi- 
tation is to use the relation between two different moments for characterizing 
the distribution. 

In our paper, a characterization theorem based on a simple proportionality 
between two different moments truncated from the left at the same point will 
be proved. Applications to a wide class of continuous and discrete distri- 
butions of great practical significance will be presented. 

2. The Continuous Case 

Let ( O , d , P )  be a given probability space and let X be a continuous random 
variable such that X: f2~H,  where H = [ 0 , a )  for some a~R;- or H = R  +. For a 
given real function h defined on H we consider the function 

E(h(X)[X>x)=eh(x); x6H (2.1) 

provided it is defined. Assume that the distribution function F(x) of the 
random variable X is absolutely continuous and let f(x) be its density. Finally, 



174 Gl~inzel et al. 

put G(x)= 1 -  F(x). We give the following proposition without proof as it is a 
reformulation of the results of Kotz and Shanbhag (1980). 

Proposition 2.1. Let H and X be the same as above. Further let h be a 
continuous and monotonic function defined on H such that 

h][y,~o)~ ~ const 

for any finite y~H. Assume that 
r 

A ( x ) - E o ( x l & d 2  (2.2) 

is infinite for x"=a if I t  is bounded," else, if/-/=IR~-, limA(x) is infinite. Then 
X ~  oo  

the distribution function F(x) of the random variable X is absolutely continuous 
and uniquely determined by eh; particularly 

f ( x ) =  - e x p ( - A ( x ) )  for x>O (if H is bounded then for xe[0,a))  (2.3) 

for x > a if H is bounded. 

In the following we try to answer the question: under which conditions the 
distribution of a given random variable can be characterized by a simple 
proportional relation 

eg = 2h g e h 

between eg and % the truncated moments belonging to the real functions g 
and h defined on H in the sense of Eq. (2.1); 2h g is a real function defined on H. 

In the following we use the notation C~,~(H) for the class of two times 
continously differentiable and strictly monotonic functions defined on the set 
H. 

Theorem 2.1. Let X: f2--+ H be a continuous random variable with the distribution 
function F and let g and h be two real functions defined on H such that 

e g = e h)~gh (2.4) 

is defined. Assume that g, hECI(H),2~eC2(H) and FeC2sm(H). Finally, assume 
that the equation 

h2~,=g (2.5) 

has no solution on int H. Then F is uniquely determined by the functions g, h and 

2~h. 

Proof Both sides of Eq. (2.4) are differentiable by assumption. After differen- 
tiation and putting 2~, = 2 we have 

a 

2'(x) S h (t) f (t) d t= f (x)(2(x) h (x) - g(x)), (2.6) 
x 

where a = m a x H  if H is bounded or a =  oc if H=~,.~-. 
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Because by assumption neither f nor (2h-g) can be zero on intH, 2' 
cannot change its sign. Thus 2 is a strictly monotonic function. On the other 
hand 

eh(X)+O; x~int H 

follows. After dividing Eq. (2.6) with 2' and after differentiation of the resulting 
equation 

f '  _ 2"(2h - g ) - 2 ' ( 2 ' h + 2 h ' -  g ' ) -  2'Zh (2.7) 
f 2 ' (2h-g)  

is obtained. The solution of Eq. (2.7) is 

")Cl --i 2'h dt 
f ( x I = C  ~ e o ~h-g , (2.S) 

where the constant C has to be chosen so that i f ( x )dx  = 1. 
0 

Remark 2.1. If h =const, or more specially if h-= 1, then a version of Proposi- 
tion 2.1 restricted to distribution functions of the class C~m(H ) is obtained; the 
milder condition eg#:g on int H substitutes the monotonicity condition of g in 
Proposition 2.1. 

Remark 2.2. Let g, h and 2 g be real functions defined on H and assume that the 
conditions of Theorem 2.1 are satisfied. Let g* and 1l* be real functions defined 
on H such that 

h*=c~h+fl; ~dR\{0},  fi~IR 
and 

g * = y g + 3 ;  7~N.\{0}, 3~IR. 

Then Eq. (2.4) is equivalent with 

where 
eg. = ~t eh. + CO, (2.9) 

t)=7-2 g and cp=-fiO+6. (2.10) 

Applications 

Let (~2, d , P )  be a probability space and let X: f2--*H~_lR0 ~ be a continuous 
random variable with differentiable distribution function, where H =  [0, a] for 
a~lRo ~ or H = I R ;  ~. 

Definition 2.1. The distribution of a continuous random variable belongs to 
Pearson's system, if its density function f is differentiable and satisfies the 
following equation: 

1 df  d l o g f  x + A  
f d x -  dx - B x 2 + C x + D  ; A,B,C,D~]R. (2.11) 
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Theorem 2.2. Let X be a nonnegative random variable. Then X has a distribution 
belonging to Pearson's system if and only if the functions in Eq. (2.10) have the 
forms 

cp(t)=at+b; a>0 ,  b > 0  
and 

tp(t)=ct; e+aob>O (ao =rain(a, 1)) 

for r = - 1  and s = 1, provided e-1 and e 1 exist and are differentiable. In the case 
a > 1 the sum c + b may be zero. 

Proof Assume that e -1 and e 1 exist and consider Eq. (2.10) 

el(x) = c x e -  X(x) + a x + b. (2.12) 

It is clear that both sides of Eq. (2.12) are differentiable. Since cp and ~ are 
differentiable, the density function f is differentiable too. From Eq. (2.12) we 
get by repeated differentiation 

d l o g f ( x )  ( 2 a - 1 ) x + c  
dx - ( a _ l ) x 2 + ( b + c ) x  (2.13) 

i.e., under the given conditions the distribution of X is a member of Pearson's 
system indeed. 

Assume that the distribution function of X belongs to Pearson's system. 
Then the density is differentiable and satisfies Eq. (2.11). Since X > 0  we have D 
=0, i.e. Z ( x ) = B x 2 + C x + D = O  (cf. Eq. (2.11)) has always the solution x=0.  
We can derive four types of distribution functions: 

(i) C > 0, B + 0 and one solution of Z(x) is negative: infinite Beta distribution 
(ii) C>0,  B + 0  and one solution of Z(x) is positive: finite Beta distribution 
(iii) C > 0, B = 0, A < C: Gamma distribution 
(iv) C=0,  B > I  and A < 0 :  a distribution with the density function f ( x )  

A 1 

= K  .x -~e- I~ l~  -, where K is a positive value depending on A and B such that 
o3 

~ f (x) dx = 1. 
0 

Assume that X has a distribution of type (i). Then the density function can 
be written in the form 

1 7~ . x p -  1 

f (x)=B(~, f i )  (7 +x)~+p; ~,fi, 7 >0. (2.14) 

Since the expectation exists, c~ > 1 has to be assumed. By definition, 

tP ~ tP-1 
K - - d r  dt 

el(x)= x (7+t) e+p x (2+t) ~+~-1 

K ~ (~+t)~+p ~ ( ~ ) ; + ~ d t  

or, equivalently 
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1 x # 

on the other hand 

/7 (7"~-X)  a + # - I  ~-t-/7-1 

- ?  ~ t #-~ r - -  
J~ (?+t) ~+#dt fi 

e - l ( x )=e l (x ) ;  

t#- 2(t + ? ' -  ? )dt  1 x e-* 

1-- x (?+t)~+# - - ? e - l ( x )  / 7 - 1 ( 7 + x )  ~+#-1 +c~+/7--1 
~ t r  7 t#-I dt /7--1 

(7~) ;+  p dt x (?+t)  =+# 

From the last two equations Eq. (2.12) can directly be derived with a =  b 
c~-1'  /7~ /7 - i  

- ~ - 1  and c -  - -  ?. The validity of Eq. (2.12) for the types (ii)-(iv) can be 
0~-1 

shown similarly. 

Discussion. Consider the following cases resulting from special choices of the 
parameters in Eq. (2.12); note that b has to be positive. 

Case 1. a > 1. 

1.1. c =  - b :  Type (iv) of Theorem 2.2. The density function is 

a - l /  b 1 
f ( x ) =  e a - i x .  

(aS) F . x 7 1 +  1 

1.2. - b - c  < 0: Type (i) of Theorem 2.2. The parameters of this infinite Beta 
a b b+c  

distribution are c~= 1' f i=b  > 1 and y = (cf. Eq. (2.14)). 
a -  +c  a - 1  

1.3. c = 0: Infinite Pareto distribution (a special case of the Beta distribution). 
b 

The density function results from the preceding one with /7-  - 1 :  
b+c  

f ( x ) =  a / b 1-~--~i--1 
a - 1  1~ -1  + x )  

b 
1.4. c >0 :  Same as case 1.2 with 0 <  b + 7 < 1 .  

Cases 1.2.-1.4 coincide with type (i) of Theorem 2.2. 

Case 2. a = 1. 

2.1. - b < c < 0: Gamma distribution; its density function is 

[ ~ b 1 x 
x kb~+ c}-  e b~c b 

b b ~Tcc > f ( x ) = F  (b~cc)/'(b+c)b-T2 with 1. 
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2.2. c = 0 :  Exponential distribution (a special case of the G a m m a  distribu- 
1 x 

tion). The density is f(x) =~ �9 e-b. 

b 
2.3. c > 0 :  Same as case 2.1 with 0 < b + c < l .  

Case 2 coincides with type (iii) of Theorem 2. 

Case 3. 0 < a < 1. Type (ii) of Theorem 2.2. Since a < 1, we obtain a finite Beta 
distribution if c > - a - b. The density takes the form 

b 1 . . t  - a ) ( b + c )  ~ 1 x(b+~)_ (b+c [( c+ab -7- 

V 
f ( x ) =  ( b + c ] ~ ,  

ti- / 

Note that for c = 0  the right-hand side of Eq. (2.12) does not depend on e-~(x). 

3. The Discrete Case 

Let (f2, ~ , P )  be a probabili ty space and suppose in the following that X is a 
nonnegative random variable such that X: Y2~H with H = { 0 , 1 , 2 , . . . , n }  for 
some n ~ N  or H = N  o. Parallel to the continuous case, consider 

E(h(X)lX>k)=eh(k); kaH, (3.1) 

where h is a given function defined on H such that Eq. (3.1) is defined. Put Pk 
=P(X=k), Fk=P(X <k ) and G k = I - F  k for each k~H. The following proposi- 
tion is a consequence of the results of Kotz  and Shanbhag (1980). 

Proposition 3.1. Let X and H be the same as above. Further let h be a 
monotonic function defined on H such that 

hl~m,m+ 1....}~u~ c~ 

for any finite m~H. Assume that if H is finite and n = m a x H  the equality eh(n ) 
=h(n) holds; else, if H = N  o, assume that 

k-1 %(0-- h(i) (3.2) 
A(k)= i=o ~ log eh(i + 1)-h( i )  

is infinite for k--+cc. Then the distribution of the random variable X is 
uniquely determined by eh; particularly, 

f (k-1 eh(i)--h(i ) "1 

e (0- I l 

eh(k+l)--eh(k) 
eh(k + 1) -- h(k) 

if H = N  o or H is finite 
and k < n = max H 

if H is finite 
and n = m a x  H. (3.3) 

To find another way for characterizing a discrete distribution we proceed in 
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analogy to the continuous case from a simple proportional relation between 
two truncated moments, now in the form of the ratio: 

eh 

Note that in the discrete case ).~ can be defined only if e h does not vanish on 
H. 

Theorem 3.1. Let X: ~2--*H be a discrete random variable and let g and h be two 
functions defined on H such that 

2g e g  (3.4) 
h - -  

eh 

is defined. Assume that 2~h is strictly monotonic and pk +O for each finite k6H. 
Then the distribution of X is uniquely determined by the functions g, h and 2gh. 

Proof Put 2=)~, and Bk= ~, h(i)pi, where n = m a x H ,  if H is bounded, or n 
= ~ ,  if H = N 0 "  ~=k 

Consider the case H={0 ,1 ,2 , . . . , n}  for some nEN. For k < n  the following 
two equations can be derived from Eq. (3.4) by elementary calculations: 

and 

h ( k ) 2 ( k + l ) - g ( k ) = { Z ( k + l ) - 2 ( k ) }  B~ (3.5) 
Pk 

h(k) 2(k) - g(k) = {2(k + 1) - 2(k)} Bk+l (3.6) 
Pk 

According to the assumptions the right hand sides of Eqs. (3.5) and (3.6) 
cannot be zero; thus the corresponding left hand sides cannot be zero either. 
Using Eq. (3.5) for k = i + 1 < 17-1 and Eq. (3.6) for k = i < n -  1 we obtain the 
following result: 

For k = n - 1 

Pk+t __ ,~(k)h(k)-g(k) 2(k + 2)-)~(k + 1) 

Pk 2 ( k + 2 ) h ( k + l ) - g ( k + l )  ~ ( k + l ) - 2 ( k )  

p. 2 ( n - 1 ) h ( n - 1 ) - g ( n - 1 )  

P, - t  {2(n) - ~.(n - 1)} h(n) 

(3.7) 

(3.8) 

results directly from Eq. (3.6). Po has to be chosen so that ~ Pi= 1. Consider 
iEH 

now the case H = N  o. Equation (3.7) is obviously valid for each finite k~H. 
Consequently we have 

Ak Pk )~(k+l)-2(k)  i~i 2 ( i - 1 ) h ( i - 1 ) - g ( i - 1 ) ;  k~H 
Po ;~(1)- 2(0) ~=t )~(i 4- 1) h( i ) -  g(i) 

and Po = 1 + A k . This completes the proof. 
\ k= 1 
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Remark3.I .  If h -cons t ,  a version of Proposition 3.1 analogous to that de- 
scribed in Remark 2.1 is obtained. 

Applications 

Let ((2, d , P )  be a probability space and let X: ~2~H___N 0 be a discrete 
random variable, where H =  {0, 1,2, ...,n} for some h e N  or H = N  o. For given 
j s Z  the j-th descending factorial is defined as 

l 
0 if k <j.  

k (j)= k ! 
l(k---j)! if k ~j 

k~N 0. 

The j-th descending factorial moment of the random variable X is defined as 

E(X(J)) = ie. ~" (i--j)--~(. �9 P(X  = i), 

provided it exists. Consequently, we define the truncated j-th descending fac- 
torial moment of X as 

E(X(J~IX>_k)= ~ - -  .P(X=iIX>_k);  k~H, 
- i ~ u  ( i - j ) !  

provided the series at the right-hand side is convergent for all k~H. Put e(J)(k) 
=eh(k ) for h(k)--k ~jl and j # 0 .  Taking into account that the statement of 
Remark 2.2 is valid in the discrete case too, it is reasonable to consider the 
following equation 

e(J)(k)=e(~ ~(k)+ (p(k); k~H, (3.9) 

where ~0 and q are functions according to Eqs. (2.10) such that Eq. (3.4) has 
sense. 

Definition 3.1. We say that the distribution of a given discrete random variable 
X belongs to Irwin's system (Irwin 1975) if 

(k + D(k + 
pk~l - (k+c~+f l+7)(k+l )Pk;  k~H (3.10) 

where c~, fi and ~ are parameters such that the distribution has a sense. 

Remark 3.1. Condition (3.10) is obviously equivalent with the following one: 

P k + l - - P k  __ A k + B  (3.11) 
Pk k2 ~- (C-I  - 1) k+  C 

A = e + l ,  B = a + l - - ( 1 - f i ) ( 1 - - 7 ) ,  C=c~+f l+  7. 

Thus we can consider Irwin's system as a discrete analogon to the nonnegative 
class of Pearson's system (cf. proof of Theorem 2.2). Note that the denominator 
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of the right-hand side of Eq. (3.11) has always a root in k =  -1 .  The following 
lemma (cf. Chen 1980) is given without proof. 

Lemma 3.1. Consider a distribution of Irwin's system as defined by Eq. (3.10) 
with such parameters that the distribution is infinite. Then Pk is characterized by 
the following property: 

kl+~pk~d as k--,c~ c~MR +, (3.12) 

where d is a positive constant depending on the parameters but independent of k. 

Theorem 3.2. Let X be a nonnegative discrete random variable. Then X has a 
distribution belonging to Irwin's system if and only if the functions in Eq. (3.9) 
have the forms 

q)(k)=ak+b; a>0 ,  b > 0  
and 

tp(k)=ck; C + a o b + 2 a - l > O  ( a 0 = m i n ( 2 - ! , l ) )  

for i= - 1 and j = 1, provided e (1) exists and the distribution has a sense. 

Proof. Note at first that e (-1) is defined for any nonnegative discrete distri- 
bution. Assume that e (a) exists too, and consider Eq. (3.9) in its actual form: 

e(t)(k) = cke (- 1)(k) + ak + b. (3.13) 

By definition, we obtain 

ipi=ck ~ Pl +akGk+bGk, 
ieHk id-Ik i q- 1 

where H k = H - { 0  , 1 ,2 , . . . , k -1} .  By subtracting from this equation the anal- 
ogous one for k +  1, the following result is obtained: 

k - c  ~ P~i~+akpk-aGk+bpk. 
k . p l , = c ~ - l p k  i~Hk+~ i+1  

Repeating the same procedure on the result 

G{(a-1)  -k 2 + ( b + c + a - 1 )  - k + b } = G + l ( k + l ) { ( a - 1 )  - k + ( b + c + 2 a - 1 ) }  

follows, leading directly to 

Pk+ I - -G (2a-- 1) .k +(c + 2 a - 1 )  
Pk ( k + l ) [ ( a - 1 ) k + ( c + 2 a - 1 ) + b ] "  (3.14) 

According to Remark 3.1, the distribution {Pk}k~/ belongs to Irwin's system, 
provided it has a sense. 

Assume that the distribution of the random variable X is a member of 
Irwin's system. Let k~H be fixed and put q~=P(X=ilX>k) .  Then Eq. (3.10) is 
obviously valid also for the pair (q~, q~+ l), provided i>  k: 

( i+a+fi+y)( i+ 1) q~+~-(fi+i)(~;+i) q~=0. (3.15) 
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Suppose that the distribution is infinite. Since the expectation exists we have to 
assume that c~>l. Consider now Eq. (3.15) for the pair (qk, qk+l) and add to it 
the same equation for the pairs (qk+l, qk+ 2), (qk+ 2, qk+ 3),"" (q j-1, qj), where j is 
an arbitrary natural number with j > k + 1. The resulting equation is: 

j j - 1  j - 1  

(c~+f l+7-1)  ~ iqi+j2qj--k2qk--f lT~qi--( f i+7)~iqi=O. (3.16) 
i = k +  l i = k  i = k  

I f j ~ o o  each term of Eq. (3.16) is convergent because the expectation exists by 
assumption and according to Lemma 3.1, 

�9 .2  �9 .2  d d 
!lmj qj=!lmj - r ~ = l i m  .-gzs_l=0. 

] ~ c o  j ~  j j ~ o ~ J  

Thus we have 
(~ - 1) e(~)(k) = fl 7 + (c~ + fl + V - 1) kqk + k 2 qk" (3.17) 

On the other hand, after dividing Eq. (3.15) by i+1 the following equation is 
obtained in analogous manner: 

( f l -  1)( 7 - 1 )  e (- 1)(k)=c~-(c~+fi+7-1) qk--kqk. (3.18) 

Equations (3.17) and (3.18) lead directly to our statement: 

e(1)(k)= (fl-1)(y-1)ke(-e-1 1)( o: k-~ c~-l'flY (3.19) 

Equation (3.19) is obviously valid for all k~H. 
Consider now the case H = { 0 , 1 , 2  .... ,n}. Equation (3.16) holds for j<n  in 

this case too. For i=n Eq. (3.15) takes the following form: 

- f l~q , - ( f l+  v) nq,-n2q,=O. 

From this equation and Eq. (3.16) with j = n - 1  Eq. (3.17) can be obtained. 
Equation (3.18) and consequently Eq. (3.19) can be derived similarly. Thus the 
proof is completed. 

Remark 3.2. According to Theorem 3.2 the case C+aob+2a=O can be consid- 
ered as defined for a=0.5,  if 2b~N. Then c = 0  and a discrete uniform distribu- 
tion with H =  {0, 1,2 .... ,2b} and the expectation b is obtained. 

Remark 3.3. Substituting the parameters fl and 7 by 7 ' = f l + 7 - 1  and ff 

we obtain Eq. (3.19) in the form 
/~+~,-1 

e(1)(k)= 7'ke(-1)(k)+ k + - -  (3.20) 
~ - 1  ~ - 1  ~ - 1  

that corresponds directly to the continuous case (cf. proof of Theorem 2.2). 
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Discussion 

Consider the following cases resulting from special choices of the parameters in 
Eq. (3.13); note that b has to be positive. 

Case 1. a > l. 
1 . 1 . - 2 a - b + l < c < - a - b + l - 2 ~ "  This is possible only if 

a > ~ ,  i.e. ~>2]/@-~. Then the quadratic expression ( a - 1 ) k 2 + ( b + c + a  
- 1 )  k +b has two positive roots. The condition for obtaining a distribution is 
that the smaller root is a natural number (extensions for real roots were given 
by Kemp and Kemp 1956). Under these conditions the distribution is a 
hygergeometric one. 

1.2. m a x { - 2 a - b + l , - a - b + l - 2 ~ b ( a - 1 ) } < c < - a - b + l + 2 _ l ~ ( a - l i :  
This corresponds to the case when the parameters/7 and 7 are complex con- 
jugate (Irwin 1975). 

1.3. - a -  b + 1 + 2]/b(a - 1) < c: Inverse Pdlya-Eggenberger distribution. 
The special case c--0 corresponds to a Waring distribution. 

Case 2. a = 1. 

2.1. - b - 1  < c < - b :  Binomial distribution if b@cc~2g. The parameters are 

b 
n -  and p = - ( b + c ) .  

b + c  

2.2. c = - b :  Poisson distribution with the parameter b. 
2.3. c > -  b: Negative binomial distribution, particularly 

Case 3. a < 1. 

(~ b ~ + k -  1 ) 1 ( b+< 7 
Pk = +C k \ b + c + l ]  \b~--c+-l] " 

l 1 \  
3.1. c>  - 2 a -  t 2 - a ) b + l .  Pdlya-Eggenberger (negative hypergeometric) 

distribution. Note that for a < 0.5 c has to be positive. 
3.2. c=0  and a=0.5: Discrete uniform distribution, provided 2b~N (cf. 

Remark 3.2). 
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