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Summary. This paper concerns the nonlinear filtering problem of calculating 
"estimates" E[f(xO[y~,s<t  ] where {xt} is a Markov process with infinite- 
simal generator A and {Yt} is an observation process given by dyt=h(x~)dt 
+dwr where {w~} is a Brownian motion. If h(x~) is a semimartingale then an 
unnormalized version of this estimate can be expressed in terms of a 
semigroup T~Yt obtained by a certain y-dependent multiplicative functional 
transformation of the signal process {xt}. The objective of this paper is to 
investigate this transformation and in particular to show that under very 
general conditions its extended generator is A~f=eylt~h(A-�89 

Introduction 

Let {xt} be a Markov process, h a bounded real-valued function and {wt} a 
standard Brownian motion independent of {xt}. Now define 

(1) yt= i h(x~)ds + wt. 
0 

The real-valued 1 process {Yt} is to be thought of as a "noisy observation" of the 
~signal" {xt}, and the objective is to "estimate" functionals of the signal, i.e. 
compute quantities of the form E[f(x~)]y~,s<t]. Further, this computation 
should be done recursively, i.e. in terms of a statistic {~c~} which can be updated 
using only new observations: 

(2) ~zt+ s = ~:(t, s, rot, {Yt+ u, 0 < u <= s}), 

and from which estimates can be calculated in a "pointwise" fashion: 

(3) E[f(xt)  ly s, s < t] = fi(t, f Yt, ~ct). 
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Generally, 7c t will be closely related to the conditional distribution of x~ given 
{Ys, s < t}. Indeed, the main result of filtering theory as presented for example in 
Liptser and Shiryaev's book [9] is a nonlinear measure-valued stochastic 
differential equation [9, theorem 8.1] whose solution is this conditional distribu- 
tion. 

Our starting point in this paper is the so-called Kallianpur-Striebel formula 
[7], [17], equation (6) below. To introduce this let us describe the probabilistic 
set-up in more detail. The L6vy system of {xt} plays an essential role in what 
follows and our basic hypotheses are those of Watanabe [16], under which the 
L6vy system is well-defined. We use the original formulation of the L6vy system 
as introduced in [16] rather than the later, more streamlined version of, for 
example, Benveniste and Jacod [1] because we do not really need the extra 
generality this provides whereas we do make explicit use of the associated 
stochastic calculus developed in [16] and by Kunita and Watanabe in [8]. 

Let S be a locally compact Hausdorff space with countable base, with Borel 
a-field 5 p, and let N(S) and sCQS) denote respectively the set of bounded 
measurable functions f :  S ~ 1R and the set of positive measures on (S, Y). For 
feN(S), r we write 

( f  #) = ~ f(x) #(dx). 
S 

Now let W be the set of right-continuous S-valued functions on IR +, with 
coordinate functions {x,, t>0}, and suppose that {Px, xeS} is a family of 
probability measures on W such that • = {x t, P~} is a Hunt process satisfying 
Meyer's hypothesis (L) 2 and having a lifetime ~ = oo a.s. (Px). The semigroup of 
operators {T~}t>_ o on N(S) associated with ~ is defined by 

Ttf (x)= Ex[f (x,)] 

Additionally, ~ is supposed to have an initial probability distribution ~ze-~/(S). 
(A, 7~(A)) will denote the extended generator of ~ [6, (13.45)]: a function 

feN(S) belongs to ~3(A) if there exists A feN(S) such that {M[} is a local 
martingale (Px) for every xeS, where 

(4) M(=f(xt) -f(Xo) - ~ Af(xs)ds. 
0 

C(IR +) is the space of real-valued continuous functions on IR + with coor- 
dinate functions {Yt, t>0} and #w denotes Wiener measure on C(IR +) (with #~ 
(Yo = 0 ) =  1). Our basic probability space is then f2 = W x C(IR +) equipped with the 
product measure pO=p=,#,~. Thus, under po, t and l)={Yt} are independent 
processes and t) is a standard Brownian motion. We denote qgt= a {y~, s__< t}. 

We shall consider the filtering problem over a finite time interval [0, T]. Fix 
a function heN(S) and for re[0, T] define 

t 

Lt=exp(ih(x,)dys-�89 ) 

2 i.e. t is a h o m o g e n e o u s  s t rong  M a r k o v  process  wi th  quas i - le f t -cont inuous  paths,  and  there 
exists a measure  v on  (S ,Y)  such tha t  every 2-excessive funct ion which is 0 a.e. (dr)  is ident ica l ly  

zero, for any  2 > 0 
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It is well-known that E~ = 1 for all t and that the formula 

dP 
dpo-LT  

defines a measure P under which 

(i) the distributions of t are the same as under pO 
(ii) the process {wt} defined by (1) is a standard Brownian motion 

(iii) {wt} and {xt} are independent. 

Thus the filtering problem consists of calculating E[f(xt) ] Y/z] for a suitably 
large class of fEN(S), where E denotes integration with respect to measure P. 
This can be expressed in terms of integration with respect to p0 by the following 
standard formula 

E~ ~t] 
E[f(x)]~]= EO[L ~l~] 

Denote by at(f) the numerator of this expression. It suffices to calculate a~(f) 
for feN(S)  because then 

(5) E[f(xt) ] ~] = at(f  )~at(1 ) 

where 1EN(S) is the constant function taking the value 1 for all xES. Since, 
under measure pO, t and t~ are independent, the conditional expectation opera- 
tor E~ [~t] amounts to "integrating out" the t-dependence and thus at(f) can 
be expressed in the following form: 

(6) o-t(f)= j" f(xt) exp h(xs)dys-�89 P~(dx) 
W 0 

This heuristic reasoning was justified in [7], and (6) is known as the Kallianpur- 
Striebel formula. Now suppose that zt=h(xt) is a semimartingale. Then the joint 
variation process (y, z)t =0 in view of the independence of t and tg, and hence 
by the change of variables formula [6, (2.52)], 

t t 

h(xs) d ys = Yt h (xt) - j" Ys dh(x~) 
0 0 

Thus the formula 

1 (7) a t ( f ,y)= ~ f(xt)exp y(t)h(xt)- y(s)dh(xs)-~h-(x~)ds P~(dx) 
W 0 0 

defines a functional at: N(S) x C[0. T] ~IR such that 

(i) at ( fy  ) is well-defined for all yeC[O, T] (not just on a subset of Wiener 
measure 1) 

(ii) at( f, y)/a~(1,y) is a version of the conditional expectation E[f(xOl~]. 
It is shown by Clark [2] and Kushner [91 that ~;t(f,Y) is locally Lipschitz 
continuous in y and that this fact has important implications in terms of "robust 
estimation". 
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From now on y =  {y(s), 0 < s <  T} will be an arbitrary, but fixed, continuous 
function. We shall have no further use for the factor C(IR +) of f2 and henceforth 
the "probability space" is (W, {P~}), the canonical space for ~r 

For 0_< s _< t _< T define 

(8) ~ =exp ( -  ! y(u)dh(x,)- �89 ! h2(xu)du). 

Then ~ is a multiplicative functional (m.f.) of t. (It is non-standard in that it is 
not homogeneous and does not satisfy Ex, s[c~] < 1, the latter because at(f) is an 
unnorrnalized conditional expectation). The following formula thus defines a 
two-parameter semigroup of operators on ~(S) 

(9) T~Y,,f (x) = Es.x [fix,) ~;]. 

Combining (6)-(9) we can write 

(10) G(f )  = at(f, Y) = < Tg, t(e'(')hf), 7c). 

This formula provides the starting point for the present paper. The idea 
behind our approach is that (10) leads to a recursive filter in a form in which no 
stochastic integration is involved. Write (10) in the form 

(11) ~t(f) = < eY(t)hf rC~) 

where 
= 

and U~Ys is the semigroup adjoint to Ts,Yt defined by 

( f ,  = (Ts ; , f ,  

Now formally n~ is the solution of the forward equation 

d 

where At y is the generator of T~Y,t, and this gives us a recursive filter in that (12) 
corresponds to the "updating equation" (2) while the "pointwise computation" 
(3) is given by (5) and (11). 

Our interest is in substantiating this program and hence in investigating the 
infinitesimal characteristics of the semigroup T~,'t. In view of (4), the m.f. c~ 7 of (8) 
is well-defined (i.e. h(xt) is a semimartingale) if h~3(A); our main result is 
Theorem (33) which states that under this condition and some other mild 
assumptions the extended generator of Ts~,' t is 

A[ f = eY(t'h(A -- �89 Y(t)hf). 

An explicit formula (35) for this is also given. In order that this result be useful 
we need to know that T~,Yt is actually determined by A~, and we next investigate 
the case where t is governed by a L6vy generator in the sense of Stroock [14]. 
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We show using the results of [14] that the operator At y then corresponds to a 
well-posed martingale problem and hence determines TsYr A special case of this 
has been investigated in greater detail by Pardoux [13]; see Remark (44) below. 

If {xt} is a diffusion process with boundary conditions then the condition 
h ~ ( A )  is unduly restrictive. In the concluding section we show that the m.f. 
transformation is nevertheless well defined and that its effect is to introduce y- 
dependent perturbations both into the operator coefficients and into the bound- 
ary conditions. 

The L6vy System and the Local Characteristics of M y 

For  f ~ ) (A )  the process My defined by (4) is both an additive functional and a 
locally square-integrable martingale. We can decompose M s into a sum 

(13) s sc Sd M t = M t + M~ 

where M sc is a local martingale with continuous paths and M Id is orthogonal to 
the stable subspace of continuous martingales. 

In order to elucidate the structure of MSmore explicitly we need to consider 
the L6vy system of ~. This was introduced by Watanabe [16] and further 
accounts can be found in Kunita and Watanabe [8], Meyer [12] and Jacod [6]. 
Under the conditions stated in the Introduction there exist a continuous additive 
functional ~b ~ and a kernel n(F,x) (i.e. n(.,x) is a positive measure on (S,Y) for 
each x~S and n(F,.) is a measurable function for each F ~ J )  characterized by 
the fact that for every positive measurable function fi: S x S ~ I R  + such that 
fi(x,x)=O for all xeS, 

t 

Ex ~, fl(x,,xs )=Ex~ Sfl(z, xs_)n(dz, xs_)d4 ~ 
s<=t 0 S 

X s 4 - X  s _ 

Let p be a metric on S, fix e>O and for F E J  define 

p~(t, F) = ~ I~p(~s,~_) > ~tlc~s~F). 
s<=t 

There exist sets F such that Exp~(t,F)< oo and for such sets the compensator of 
p~(t, f )  is 

t 

/~ (t, F ) :  S j" I(o(-',~,-)> ,)n(dz, Xs_ ) d@ 
O F  

i.e. q~(t,F) is a martingale, where 

q~(t, F)=p~(t, F)-~( t ,  F). 

Let ~o denote the set of measurable functions fl: S x l R  + x W-+R such that 
fl(z, .,) is measurable with respect to the predictable a-field on IR + x W for each 
zeS and 

t 

(14) E ~  ~ fl2(z,s,t)n(dz, x~ )dqS~ oo 
0 S  
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for all x~S and t>0 .  ~,Qw~~ then denotes those functions fi such that fiI(s<=~,)~Q 
for each n, for some sequence {~,} of stopping times such that z,,]'oo a.s. With 
each ~ l o c  P ~ e  it is possible to associate uniquely a locally square integrable 
martingale, denoted QP or 

Q~t =q~(t,F) 

in such a way that 

(i) 

where 

t 

~ fi(z,s,~)q(dz, ds) 
O S  

if fi(z,t,~) F Z =Z~(,X,_) 

)~[(z,x)=f l i f z e F  and p(z,x)>e 
lo otherwise 

(ii) Q"~+Q"'~'=aQ~+a'Q p' for a,a'eR, fi, fi 'e~( 2 
t 

(iii) (Q~, Q~'}t = ~ ~ fi(z, s, t) fl'(z, s, •) n(dz, xs_)dr ~ 
os 

We then have the following representation theorem for the space g.Rl~oc of locally 
square-integrable martingales orthogonal to all continuous martingales. 

(15) Theorem [8, Proposition 5.2]. 

~J~,"oo = {Q~ : /~  ~ } .  
Watanabe [16, Theorem3.1J shows that those elements of 9W which are 
additive functionals correspond to f ie~e  of the form 

(16) fi(z, t, t) = fi(z, Xs_ ) 

for some function /?: S x S ~ R  such that /~(z,z)=0 for all z~S and (14) is 
satisfied. Let ~o denote the set of such functions, with a corresponding de- 
finition for ~ r  

Let us now return to the local martingale M fd introduced in (4), (13) above. 
It is also an additive functional and hence has a stochastic integral repre- 
sentation with integrand in ~or We can identify this integrand precisely. t y Q  �9 

(17) Lemma. Let fs7~(A). Then 

(18) mfe  = QBf  

where j o B f ~  1~176 is given by 

(19) B f (x, z )= f (x ) - f ( z ) .  

Proof This fact is essentially established in the proof of Theorem 3.1 in [16]. 
There, the argument is given for f of the form f = ~ . g  (ge~(S),)~>0, ffi~ the 
resolvent operator) i.e. for f in the domain of the strong generator of ~, but the 
same argument applies for f e~ (A) .  In outline, it is as follows. Let {~,} be a 
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sequence of localizing times, fix n and define 

Uf(z, x) = (f(z) - f(z)) zF(z, x) 

for any set F such that Exp~(tAr,,F)<oo. Then QVr is a martingale whose 
jumps of size > 8 into F coincide with those of {M{A~.}, and one can show that 
Q~[r--, M{A~ as F'[S, e$O. The result follows. 

The next result is just a restatement of the fact that nJn ~s~e~lo~. 

(20) Corollary. I f  f eT~(A) and {z,,} is a sequence of localizing times, then 

E~ J ( f (~ l - / (~  ))~ n(d~, x~_l d~ ~ < o0 

0 

for all n, x~S, t>0 .  

Equations (18), (19) above give a representation for M ja in the form of a 
stochastic integral. As regards the continuous part, we need the quadratic 
variation (M Ic, Mgc)~ and this can be calculated explicitly for those functions 
f , g ~ ( A )  such that the product f g ~? (A)  (fg(x)=f(x)g(x)). First, some no- 
tation. 

(21) Notation. Suppose G is any operator acting on a domain ~(G) of real- 
valued functions and that f, g, f g ~ ( G ) .  Then we denote 

A ~g = G(fg) - f G  g - g Gf. 

A simple calculation given by Jacod [6, Proposition 13.42] shows that if f, g, 
f g ~ ( A )  then 

( M~, MgSt = i A~g(x~)ds. 
0 

A similar line of reasoning gives the following result. 

(22) Lemma. Suppose f, g, f g ~ ( A ) .  Then 

(MJ'~,Mg~)t= i A~g(x~) d s -  i ~ As x~-) dd?~ 
0 O S  

Proof From (4) and Lemma(17) we have 

(23) 

and 

df(xs) = Af(xs) ds + dMf c + dQBs r 

(24) d f g(Xs) = A( f g)(xs) ds + dM f g. 

Now calculate the product f(xt)g(xt) using (23), the similar expression for dg(x s) 
and the differential formula of stochastic calculus. It is convenient, here and 
below, to use this in the explicit form given by Kunita and Watanabe [8, 
Theorem 5.1] (which will be valid, since, in the notation of [8], each f(0 will 
always be bounded) rather than in the general semimartingale form [6, 
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Theorem 2.52]. We obtain" 

t 

(25) fg  (x,) - f g  (Xo)= ~ g (Xs) d M f f +  ~ f ( x~)dMf f  
0 0 

+ 9- i S  (dz, ~ 
O S  

t 

+ j" ( g A f + f A g )  (x~) ds + ( M  ~, Mg~),. 
0 

The result follows from (24), (25), using the uniqueness of the special semi- 
martingale decomposition offg(x~). 

(26) Corollary. Suppose in addition that 4 ~ = t. Then 

t 

( M I~, Mg~)t = ~ Dfg(x~) ds 
0 where 

(27) D f  g(x) = A s - S A s x) n(dz, x). 
s 

The Case he ~ ( A )  

If he7~(A) then the multiplicative functional c~ of (8) is well-defined. It can 
be factored as follows: 

(28) Theorem. c~] = ? ,~  

where 7, 6 are multiplicative fimctionals with the following properties: 
(i) 7] is a local martingale and satisfies the equation (we write 7~ for 7 ~ 

t t 

(29) ~, = 1 - S 7s_y(s)dMhs c + ~ ~ ),~_(e-yBh _ 1) q(dz, ds). 
0 O S  

(ii) 6~ is a continuous process of  bounded variation and is given explicitly by 

(30) l n 3 t = i � 8 9  xs_)d+~ 
0 0 S  

t t 

- ~ y(s) Ah(xs) d s -  �89 ~ h2(x~) ds. 
0 0 

Proof This is a similar decomposition to that given by Kunita and Watanabe 
[8, Theorem 6.1]. In their formulation ~ was monotone decreasing; this occurs if 
Ex ,~  ~ < 1 which, as remarked earlier, is not generally the case here. From (4), (8), 
(18) we have 

t t 

In at = - ~ y(s) dh (Xs) - �89 ~ hZ(x,) ds 
0 0 

t t t 

= - ~ y(s) Ah (x~) ds - ~ y(s) dM hc - Q,Bh _ �89 ~ h2(xs)ds 
0 0 0 
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where 

Now define 
yBh(t ,  z, t) =y(t) Bh(z, xt_ ). 

Note that 

t t 
1 ~2 hc l n ? ' t = - ~ y ( s ) d M ~ - ~ b  ( s ) d ( m  )s 

0 0 
t 

Q y B h  e -  y B h  - - ~ (  - l + y B h ) n ( d z ,  x~ )dO ~ 
O S  

t A ~ n  

~ l e - Y B " - l + y B h l n ( d z ,  xs )dqS~ < oo, 
0 S 

from Corollary (20), since by the mean value theorem 

e-  y Bh _ 1 + y B h = �89 e ~ y 2(s)(f(z) - f ( x  s_ ))2 

for some 0se [0, - y B  h (s)], and B h is bounded. Applying the differential formula, 
we find that 7t satisfies (29) and hence is a local martingale. Defining 0 t -~ = c~,~(y,) ~ - 1 
gives (30). This completes the proof. 

We now wish to calculate the "generator" of T ~' Since, however, this is not s , t"  

a Markovian semigroup, we cannot define its extended generator in precisely the 
way stated in the Introduction. The appropriate definition is as follows. 

(31) Definition. Let ~/~ be a multiplicative functional of :r (not necessarily 
normalized) and Vs, , be the corresponding semigroup: V~, t f ( x )  = Ex, ~[f(xt) q~]. 
Let .~I(IR+ x S) denote those functions in NOR + x S) which are C 1 in the first 
variable for each xeS .  Then (J, ~(J)) is the extended generator of V~, t if for each 
f e~3( J )c~ l ( lR  + xS) there exists JfEN(IR + xS) such that N f t>__s} is local s , t ,  a 

martingale, where 

N~t=rl~f(t, x 3 - f ( s , x , I -  q; U u + J  f (u,x~)du.  
$ 

This definition clearly coincides with that given in the Introduction if V is 
Markovian and attention is restricted to time-invariant functions f(i.e, f~3(S) ) .  
In fact attention can, and will be, restricted to f ~ ( S )  below except in the final 
section dealing with boundary conditions, where the time variation must be 
brought in. 

The factorization (28) splits the multiplicative functional transformation (9) 
into two stages. The second of these, corresponding to 6, just adds a "potential" 
term to the generator, so it remains to consider the effect of 7. Let 

~ s  

Now use the Kunita-Watanabe differential formula to compute the product 
f(x~)7~ from (4) and (29), for f e D ( A ) .  This gives 

t t 
is (32) f(x~)?~=f(x~)+~7~, Af (x~)du-~72_y(u)d(Mf~,Mh~)~ 

s s 
t 

+j-72_~Bf(z,x" )(e-,(,)~h( . . . . .  ) - l ) n ( d z ,  x ,  )dO~ 
s S 
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where N t is a local martingale. We can now formulate the main result concerning 
the extended generator A~' of the semigroup T~Yt 

(33) Theorem. Suppose ~ is a Hunt  process as defined in the Introduction, and 

(i) There is a kernel n(.,.) such that (n(.,.), t) is a L & y  system for ~ (i.e. it is 
possible to take r = t) 

(ii) !3 ~13(A) is a set such that he13 and hfe13(A) for all fe13.  

Then, for any y~C[0, T] and te[O, T], 13(AY,)~13 and 

(34) AVt f (x) = eym h~x) A(e -  y,)hf)(X) -- �89 h 2(x) f (x) 

for f ~13. A f  is given explicitly by 

(35) AY, f ( x ) = A f ( x ) - y ( t ) D h f ( x ) + ~ B f ( z , x ) ( e  YmBhC~,~)--I)n(dz, x) 
S 

+ [�89 D h h (x) - y (t) A h (x) - �89 h-'(x) 

+ ~ (e ,(t)Bh~=,~ _ 1 + y(t) Bh (z, x)) n(dz, x)] f ( x )  
S 

where D is defined by (21), (27) and B by (19). 

Proof  Under conditions (i) and (ii), Corollary (26) applies and (32) becomes 
t 

(36) f (xt))t - f (Xs) + ~ 7, [ A f  (x,) - y (u) D h f  (xu) 
s 

+ ~ B f (x , )  (e- y("~ Bh( . . . .  ) -- 1) n (dz, x,)] d u + N,. 
S 

This identifies the extended generator A ~ of TE 

Similarly, under the stated conditions the expression (30) for c5 becomes 

(37) a~=exp [ } ( �89  * z - T h  (x,_) 

+ j" (e-  s,(u) Uh _ 1 + B h) n (dz, x,  )) du] .  
S d 

This is a Feynman-Kac type transformation the effect of which is, by standard 
calculations, to add a potential term to A ~. Thus combining (36) and (37) gives 
the expression (35) for A~. Next, notice that throughout this calculation y is an 
arbitrary function from C[0, T] but the result depends only on y(t). Hence 
A ~ = A  y, where ~(s)=y(t)  for all se[0, T]. But 

cz~(y) = exp - y(t)(h (x,) - h (x~)) - �89 ~ h 2(x,) du 
s 

(38) 

and 

(39) Ex, s ( f  (xt) e x p [ -  y ( t ) (h (x t ) -  h(x~))]) 

= e,,~h(x, Tt - s(e-,~,~hf). 

The expression (34) follows from (38) and (39). 
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L6vy Generators 

In order to use the preceding results to construct recursive filtering algorithms 
along the lines suggested in the Introduction, we need to be assured that the set 

of functions on which the extended generator A~ is defined is sufficiently large 
to determine the semi-group T~Yt. This is the case, in particular, when t is an IR a- 
valued process governed by a L6vy generator [14]. Denote ~ = C2(IR e) and for 
fE!3 define an operator ]i by 

1 a2f c f  
(40) ]If(x)  = ~ au(x ) 7 ~  + ~ mi(x) c~x, 

i , j  UX i UXj  i 

+ ~ f ( x + z ) - f ( x )  M(dz ;x ) .  
R~ l+lz la]  

Suppose the following conditions are satisfied: 

(41) (i) au(. ). mi(. ) are bounded and continuous for all i,j 

(ii) [aij(x)] > rlI for some t/> 0 not depending on x 

(iii) M(dz ;x )  is a a-finite measure on IR d -  {0} such that 

lzl2  M(dz;x) 
is bounded and continuous for all Borel sets B of lRa\{0}. 

Under these conditions, the martingale problem associated with ]i acting on 
functions in C~(IR e) is well posed and the corresponding Markov process �9 is 
strongly Feller; see [14, Theorem4.3]. Thus if A denotes the extended generator 
of ~ then ~ c ~ ( A )  and A = : ]  on ~. From Theorem4.3 of [16] (or by a similar 
argument given by Meyer [11, pp. 159-160] it is easy to see that the L6vy 
system of x is ~)~ n ( F , x ) = M ( F - x ; x ) .  Thus the conditions of Theorem (33) 
are satisfied if he ca(IRe). From (27) we find, using an obvious notation, that 

D h f = ~ a u ( x )  OJ' Oh ( B h B f ) o n  
i,j Ox~ Oxj 

and hence that the extended generator of T~ t is given for ) ' ~  by 

0h 0f 
(42) At ' f= A f -  y (t) ~ air ~ 7 - -  + B f (eyCt) Bh _ 1 -- y (t) B h) o n 

i , j  OX i OXj  

+ O ( t , x ) f  
where 

x ) = g y  (t) *,JaijzT-" Ox (Bh)2~ 

!h2 - y ( t )Ah + (e -y(t)Bh- 1 q-y(t)Bh) o n -  2 �9 

Thus 0(t, x) is bounded and continuous. 
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(43) Theorem. The martingale problem associated with (42) is well posed. 

Proof This is an application of Stroock's results [143 and the details will be 
found in [33. One shows that ~]~ =A r -  ~ is a L6vy generator satisfying con- 
ditions similar to (41) and hence that the martingale problem associated with ~]~ 
is well-posed. One now constructs the measure corresponding to A~' by Feyn- 
man-Kac transformation as before, and it is easy to see that the uniqueness is 
not destroyed by this transformation. 

(44) Remark. Consider the diffusion case (M=0). Then, from (42), A~' is a 
diffusion-type operator whose second-order part is the same as that of A. Thus 
essentially the same conditions required for existence of a solution to the 
forward equation for A also assure existence of a solution to the forward 
equation for A N. This has been studied by Pardoux [13] who states conditions 
under which the equation 

(45) ~ t  =(A~) * q(t), q(O)=PoeL2(1R d) 

has a unique solution in L 2 ([-0, TJ, H 1) ~ C([-0, T], L2(IRa)). Here P0 is the density 
of the initial distribution re. It then follows from the preceding results that 

G(f)  = ~ f(x)  ey(')h(~) q(t, x)dx 
IRa 

and hence that the conditional density of x~ given Yt is 

(46) p~(x) = [ ~ e y")h(z) q(t, z) dzJ 1 eY(Oh(~) q(t, X). 
R a 

Now (45), (46) constitute a recursive filter in the sense of (1), (2) and thus the 
programme for recursive filtering outlined in the Introduction is competely 
substantiated in this case. 

Reflecting Diffusions 

The results outlined above in Remark (44) extend to diffusions with boundary 
conditions, with the interesting feature that the observation sample path y now 
appears in the boundary conditions specifying ~3(A~') as well as in the coefficients 
of A~'. Here we consider a class of reflecting diffusions, using results of Stroock 
and Varadhan [16] and Friedman [5J. Of course the results of preceding 
sections apply directly if hE~(A), but it is highly artificial to assume that h 
satisfies the relevant boundary conditions, nor is this necessary for our basic 
stipulation that h(xt) be a semimartingale. 

Let G be a bounded domain in 1R d defined by G={x:O(x)>O} for some C 2 
function qS, with boundary ~G= (x:~(x)=O}. We denote G=Gw~G. 9(x) is the 
inward normal at x~?G. The operator ~] is given by (40) where M = 0  and aij(.), 
m(.) are defined on G and satisfy (41) (i), (ii). The conormal vector field v is now 
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defined by 

(49) 

where 

vi(x ) = ~, aij(x ) ~j(x), xeOG. 
J 

According to [151, under these conditions there is, for each xed ,  one and only 
one probability measure P~ on C([0, T];G) such that Px[xo=X] =1 and such 
that 

t 

(47) f ( x , ) - f ( X o ) -  ~ ]tf(Xs) ds 
0 

is a P~-submartingale for all smooth functions f satisfying 3 

v(x) Vf(x)>O xe~G. 

The corresponding process t = {xt} is a strong Markov process. Further, there 
exists a local time, i.e. an increasing continuous additive functional {~,}, increas- 
ing only when xteOG, such that for any function f e  CZ(G) 

(48) M[ = f(x,) - f (Xo)  - ~ f4f(xs) ds v Vf(x=) d~= 
o o 

is a continuous martingale. Calculations as in the proof of Lemma (22) show 
that 

( M r ,  M g ) t  = i Dfg (x=) ds 
0 

0g 
Df g(x)=~a~j(x) 00@i c?x;" 

Now suppose 

(50) he C2(d). 

Then h(xt) is (from (48)) a semimartingale, so that the m.f. c~ of (8) is well- 
defined. Using (48) and (49), we find that c~t= ~o satisfies 

( 5 1 )  d~=c~(�89189 d~ f -~y ( t )dM h. 

For yeC[O,T], let ~Y be the set of real-valued continuous functions f on 
E = [0, T] x G such that f is C 1 in t and C 2 in x in the interior of ~ and 

(52) v Vf(t, x) = [v Vh (x) y(t)] f(t ,  x) 

for (t,x)e]0, T[ x ~?G. Now calculate f(t, xt)~ ~ for fe~Y, using (48) and (51). This 
gives 

s _  = + A ~  (U, Xu)du (53) f(t, xt)c~ t - f(s, Xs) + ~ % 
s 

+ i c~ (dM[ - f (u ,  x=) y (u) dM h) 
s 

~f 
3 Juxtaposit ion denotes inner product, so that v Vf  = ~ vi{x ) ~--(x) 

i O X i  
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where Af is given by (42) with M = 0. According to Definition (31) this says that  
A~ is the extended generator  of Z y acting on ~Y, and is enough to establish the 5;,y~ 

connect ion between the filtering problem and the following parabolic  equat ion 
with mixed boundary  condit ions:  

(54) 

0 
~su(s, x) + A~'u(s, x) = O, 

u(t, x) = g(x), 

v(x) Ux(S, x) + b (s, x) u(s, x) = O, 

(s,x)e[O,t[ x G 

(s,x)6[O, t [x  •G. 

Here, b(s, x)= -y(s)  v(x) Vh(x). 

(55) Theorem. Suppose the coefficients of A satisfy conditions (41) (i), (ii) and in 
addition aij is continuously differentiable, for each i, j. Then (54) has a unique 
continuously differentiable solution tt for any g~ C2(G), and 

(56) u(0, x) = T~,,g(x) 

where T~Yt is defined by (9) above. 

Proof Equat ion (54) is, in the terminology of  Fr iedman [5], a second initial- 
boundary  problem and the existence and uniqueness follow, under the stated 
conditions, from Theorem 5.2 (and corollaries) of  [5]. Now, u(s,x) satisfies (52) 
and hence from formula (53) we see that  

u(0, x) = Ex [~o gtx~)]. 

But this is equivalent to (56). 

(57) Remark. Suppose the initial distribution 7c has a density function P0. Then 
from (10) and (56) 

at(f) = ~ u(O, X) Po(X)dx 
G 

where u is the solution of  (54) with g (x )=  eY(tlh~x)f(x). Under  addit ional smooth-  
ness conditions on the coefficients of  A we can derive the corresponding forward 
equation, as in Remark(44)  above. 
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