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A Note on Limit Theorems in Percolation

Gunnar Brénvall*
Uppsala University, Dept. of Mathematics, Thunbergsvagen 3, 75232 Uppsala, Sweden

Summary. Laws of large numbers and central limit theorems are proved for
some cluster functions, e.g. the number of points in a large box which are
(+) connected to its boundary or the number of (+) clusters in the box.

1. Introduction

We shall consider Bernoulli atom percolation in Z* and shall mainly adopt the
notation of Russo [7], which is briefly as follows:

Nearest neighbours in Z? are called adjacent and points which are nearest
peighbours or diagonal nearest neighbours are called * adjacent. A set A<Z? is
connected [* connected] if for all x,yeA there is a chain of adjacent [*
adjacent] points in 4 which has x and y as terminal points.

The configuration space is @={—1,1}* and +1 are sometimes called spins.
A maximal connected [* connected] component of w~*(1) is called a (+) cluster
[{+)* cluster] of weQ.

The measure is
P(p)=]] v,(x), where 0=p=1 and v, assigns weights p and 1 —p to 1 and —1.

xeZ2

For xeZ?2, let C(x)[ C*(x)] be those points which are (+) connected [(+)*
connected] to x. Let N(x)=|C{x)|. N(0) is denoted simply as N and the variable
NI(N < 0) is called N'.

Then some basic functions are:

The percolation function P, (p)=P(N = c0).

The mean size of finite clusters (susceptibility) S(p)=EN".
The number of clusters per site K(p)=EN ~' I(0<N).

The purpose of this note is to check some facts concerning the physical
interpretation of these quantities. In Sect.2 some ergodic properties are men-
tioned and Sect. 3 contains central limit theorems.
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We shall need some nice results concerning the moments of N’, which were
obtained independently by Russo [7], or Seymour and Welsh [8].

Let p.=inf{p: P >0}, n,=sup{p: P =0 and S(p)< oo} and define p* and n*
similarly.

Theorem 1.1 (Russo, Seymour, Welsh). a) 1 —p*=n_<p,=1—mr*

b) For p off the interval [x,,p.l, E(N'Y <oo for any r.
Especially b) will be repeatedly used in the sequel.

2. Ergodic Theorems

The following lemma is a well-known consequence of Birkhoff's ergodic theo-
rem. Cf. e.g. Pitt [6], Theorem 5, p. 337.

Lemma2.l. Let (Q,%,P) be a probability space. Let T and U be ergodic
transformations and suppose that feLl, r=1. Then

n—1n-—-1

n=* Y Y f(T'U*w)—Ef as.andin I! as n— 0.

i=0 k=0

Let TTU] be the translation of the spin configuration one step to the left
[downward]. Then T and U are ergodic and the lemma may be applied to
appropriate cluster functions to give alternative interpretations of the percola-
tion functions.

Notation. Let K, be the square {zeZ?:0<z,,z,<n—1} and let the (inner)
boundary 0K, ,={zeK,:z; or z,=0 or n—1}.

Theorem2.2. Let N, be the number of (+) clusters in K, which contain no
boundary point. Then

n~*N,—K(p) as.andinany I, as n— 0.

Remark. The convergence was shown by Grimmett [4], using a subadditive
argument. The limit was identified as K(p) by Smythe and Wierman, Theo-
rem 3.7 in [9], where they show that K(p) is differentiable a.e. We observe that
the derivative exists and is continuous except possibly at p}. This follows from
essentially the same arguments as Proposition4 in [7]:

Differentiating K(p)= Y |y|~* p""!(1 —p)’! term by term one formally gets

Oey

0
Z p7 =11 —pylerl — Z M

Oey Oey |V|

plvl(l _p)lﬁﬂ -1

Here the summation index y runs over all connected subsets of Z2? containing
the origin. Since |dy|/|y| £4 and

Y. 1 =p)"'=P(n<N<o0)

Ocy
Iylzn

! A slight elaboration of the argument shows that K'(p,) exists if P (p,)=0
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is an increasing function of p on [0,p,], where P _(p,)=0, the series above
converges uniformly on the interval [0,p,]. On an interval [p,,p,], where
P.<p,<p,<1, the uniform convergence follows from (4.4) of [7].

A similar argument using Theorem 1.1b shows that higher derivatives exist
for p<m, or p>p,.

Proof of Theorem?2.2. Let X(x)=(N(x))~* I(N(x)>0). We then have the identity

Y X(x)=N,+ ) Y,(x) 2.1
xeK;, xedK,,
where
ki, . .
K if x belongs to a (+) cluster of size k
2

Y(x)={ . . . . .
) with k, points in K, and k, points in 0K,

0 otherwise.
Here ) Y,(x)<|0K,|=0(n?).
xe0Ky

By Lemma2.ln=? ) X(x)—=> EX(0)=K(p) and the theorem follows.

xeK,

Theorem2.3. Let the sizes of the (+) clusters in K, be dP,...,d% and let §,
N

=n"2 3 (d™)2. Then, if S(p)<o0, S,—S(p) as. and in any I’ as n— oo, if S(p)
=1

=00, S, as.

Remark. The result ES,— S(p) has sometimes been used as a definition of S(p).
Cf. Essam [3], p.221. A quantity much resembling S, has also been used in a
Monte Carlo study of S(p). See Dean [2].

Remark. The results of Russo show that S(p) is infinitely differentiable for p<n
or p>p,.

(4

Proof. Suppose S(p) < co and consider the identity

LN)=n*S,+ 3 Y, (),
xeKy xeK,
where Y, (x)=N'(x) I(C(x) " 0K, +0).
Since by Theorem 1.1 and Lemma2.l n=* ) N'(x)—S(p) as. and in L, it

xekK,,

suffices to check that n=2 > Y (x)—0 a.s. and in . Let £>0 and n, be given.
xek,

Then, if n is large enough
IR ACCEVELINED YRS ACO RTINS W AC)
xeKy, xeK\K(1- e)n xeK1-en

<n=? ) N®E+n? Y NIN(x)Zn).

xeKn\K(1-g)n xeK(1-eyn
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It follows from Lemma 3.1 that both of these terms converge a.s. and in I, the
first one towards (1—(1—¢)*)S(p) and the second one towards (1
—&)? EN'I(N'=n,). As ¢ and n, are arbitrary this ends the proof.

The case when S(p)= co follows by truncation.

Theorem 2.4. Let M, be the number of points in K, which are (+) connected to
0K,. Then

a) n"*M,—P,_ as. and in any I as n— 0.

b) For p<m,n~'M,—4puin any I’ as n— o,
where u=EY(0,0) and

k
—L if (i,0) belongs to a (+) cluster with k, points

Y(i,00=] ?
’ in the upper halfplane and k, points on the x,-axis,

0 otherwise.
Remark on b) We shall prove b) by referring to the onedimensional ergodic
theorem. This simple argument is insufficient to prove a.s. convergence. The
reason for this is that the transformation n—n+1 only adds one point to the
lower side of K, but changes all points in the upper side. Still, one may prove

a.s. convergence by showing that the fourth central moment of M, is O(n?). This
longer argument is omitted.

Proof of a) Write

M,= > I(Nx)=o00)+ Y I(N(x)<oo, C(x)noK,=+0)

xeKy xeKy
and repeat the argument in the proof of Theorem 2.3.

Proof of b) Write M,= ) Y,(x), where

xedK,,

ky
k2
k, points in K, and k, points in 0K,

if x belongs to a finite (+) cluster with
Y, ()=

0 otherwise.

n—1
By symmetry it suffices to check that n=* )’ Y,(;,0)— EY(i,0) in any L.

i=0
no—1

Y G0~ Y YG0+n S (36,0~ Y(5,0)
i=0 i=0 i=0

n—ng—1 n—1
+n7t Y (LGEO-YEO)+nt Y (Y,(,0)-Y(,0)).
i=ng i=n-—ng
As Y(i,0)=N(1,0) it follows from Theorem 1.1 that the Y’s have moments of all
orders. Thus by the onedimensional ergodic theorem the first term above tends
to £Y(0,0) in any L. In the third term
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1Y(i,0)— Y,(,0)| S2N(i, 0) I(N (i, 0) = ny)
and by the ergodic theorem

¥

lim sup |third term|, <2 | N(i,0) I(N(i,0)=ny)|
which is small for large n,. Clearly, the norms of the second and fourth terms
tend to zero.

3. Central Limit Theorems

3.1. Some Lemmas. Lemma3.1 is a special case of Theorem4.2, p.25 in [1].
Lemma 3.2 is Lemma 20.3, p. 172 in [1], adapted to the case of a twodimensional
index set. Its proof is immediate. Lemma 3.3 is a well-known result about m-
dependent variables. Cf. e.g. [5], Theorem 19.2.1, p. 370, where it is stated for the
case of a one-dimensional index set. For the sake of completeness a proof is
given, using Lemma 3.1 and 3.2.

Lemma 3.1. Let {Y,}?° be r.v. such that for any integer u there is a partition Y,
=X, +9,,, such that

(i) Xun—d>Xu, as n— oo for u fixed.
(i) X,—% X, as u— co.
(iii) lina lim supEé2 =0.

u—>00n—00

uns

Then Yn——>X, as n— oo.

Lemma 3.2. Let {X(x)},_, be a stationary process in IZ?. Suppose that EX(0)=0
and Y |E(X(0)X(x))|=6%<o0. For a finite subset A of Z?, let S(A)= ) X(x).

xeZ? xeA

Then

a) |4~ (S(A)) éf»"
—>O'

b) n=? E(S(K,)) = > E(X(0)X(x)), as n— 0.

xeZ?
Notation. For x,yeZ? let |x|=|x,|+|x,| and d(x,y)=|x—y|. Let A4,(x)
={y:d(x,y)=n}.
A process {X(x)},.z is called m-dependent if for all finite subsets A and B of
Z? such that d(4, B)>m, the families {X(x)},., and {X(x)},_ are independent.

Lemma3.3. Let {X(x)}, ., be a stationary, m-dependent process and assume that
EX(0)=0, E(X(0))*>< co. Then

nt Y X(x)—9 N(0,6%), as n—oo, where
xekK,, '

c —ZE(X ) X (x)).

Remark. 02 < oo since the sum of covariances contains finitely many terms. In
general, however, it may happen that ¢?=0. In this case the assertion of the
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lemma could be sharpened. For example one may check that in this case
lim E(S(K,))*/n exists. In the applications of the lemma which are to follow,

unfortunately, I have been unable to prove that this pathological case does not
happen.

Proof. Divide K, into smaller squares (side u) separated by channels of width m.
Write for u fixed n=k(u+m)+s, 0<s<u+m, and let the union of the k? smaller
squares be A,=B, x B,, where

B,={z:iu+m)Zz<i(u+m)+u,i=0,1,... k—1}.

Consider the partition n='S(K,)=n"" Y X(x)+9d,,=X,,+9,,. It is easy to
xed,
verify conditions (i)-(iii) in Lemma 3.1. By m-dependence ) X(x)is a sum of k?
x€dn

independent sums, each distributed as S(K,). It follows that

k=1 Y X(x)—4> N(0, E(S(K,)?)
xcAyn
as n—oo. Thus X,,—%> N(0,02), as n— oo, where o2=ES(K,)?/(u+m)?. This
verifies (i).
Secondly, it follows from Lemma3.2b, that lim 6?=¢?, which verifies (ii).

n-—» 00

Thirdly, by Lemma 3.2a),

Es,=nE( Y X@pstodd

=2
— Y 0.
xeKn\Ayn IKnl

Thus lim supE 62, < (1 - (

n— 0

2
))&2, which tends to zero, as u— co. This
ut+m

verifies (iii) and by Lemma 3.1 n=*' S(K,)—%> N(0, 6%) as n— co.

3.2. Bounded Clusters. Lemma 3.3 leads immediately to limit theorems for cluster
functions, which depend only on the spins in a bounded part of the plane. As an
example one has

Theorem 3.4. Let N, (k) be the number of (+) clusters in K, of size k which contain
no point in 0K,. Then

n=H(N,(k)—n? py/k)—4> N(= i, 03),
as n— oo, where
p=P(N=k), oi=k=? ) (P(N(O)=N(x)=k)—p})

xeZ?

and the edge effect p, =4 EX, where

k
ﬁ if 0 belongs to a (+) cluster of size k with k, points
. 2

in the upper halfplane and k, points on the x,-axis,

0  otherwise.
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Remark. The edge effect y, may be eliminated by assuming toroidal boundary
conditions. This remark applies also in the sequel.

Proof. Letting X(x)=k~' I (x belongs to a (+) cluster of size k),

Y X(x)=Nx+ X Y,x),

xekK;, xecdK,,
where
kl

if x belongs to a (+) cluster of size k
Y(x)={ .2

" with k, points in K, and k, points in 0K,
0 otherwise.

By Lemma 3.3 the left hand side converges (after norming) towards N(0, a7). By
symmetry it then suffices to show

n—1
n=t Y Y,,00—>EX, asn—o0.
i=0

This is clearly true since {Y,(i,0)}/=F are 2 k-dependent r.v. distributed as X.
Example. For k=3,
ps/3=2p°q"(2+q),

p=12pq’2+9),

c2=2pq"2+q)+4p°q' (1 +27q+57¢*—85¢> —123¢* —354°).

It is of course a difficult combinatorial problem to compute these parameters
for large values of k.

3.3. Unbounded Cluster Functions. In order to prove central limit theorems for
the quantities treated in Sect.2 one needs to combine Theorem 1.1 and Lem-
ma 3.3 using some truncation argument.

Theorem 3.5. Let N, be as in Theorem 2.2 and assume that p<m_ or p>p,. Then

n~!(N,—n* K(p)) > N(—p,07),

as n— oo, where
c?=) C(N"'I(N>0), (N(x)) " I(N(x)>0))
and p=4EX,

kl
k-k,
in the upper halfplane and k, points on the x-axis,

if 0 belongs to a (+) cluster of size k with k, points

0 otherwise.
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Remark. The condition on p looks unnatural in this context.

Remark. Here and in the following theorems it will be clear from the proofs that
* < 0.

Theorem 3.6. Let S, be as in Theorem 2.3 and assume that p<m, or p>p,. Then
n(S,—S(p) —4> N(—p, 0?),

where

O_2

2. C(N'(0), N'(x))
and pn=4EX

kik
71— if 0 belongs to a (+) cluster of size k with k, points
2

in the upper halfplane and k, points on the x-axis,

0 otherwise.
Remark. For p<mz,_, one may check rigorously that ¢?>0. In this case one may
replace N'(x) by N(x) which is an increasing function of the (+) spins. Thus by
the F.K.G. inequalities (cf. [7] Lemma 1, p.42) each covariance in the sum is
nonnegative and at least one term is positive.

Theorem 3.7. Let M, be as in Theorem 2.4 and let Y be the process defined there.
Then a) For p>p,

n=1(M,~n? B)—4> N(d , 0%),
as n— oo, where u=EY(0,0) and ¢>=) (P(0,x belong to the infinite cluster)
— P,
b) For p<m,
n=12(M,—4np)— N(0,47%),

where y2=Y C(Y(0,0), Y (i,0)).

Remark. In a) one may check that ¢?>0 by noting that I(N(x)=o0) is an
increasing function of the (+) spins.
In the proofs of Theorems 3.5 and 3.6 we need the following:

Lemma 3.8. Suppose E(N')’ < co. Then for any £>0 there exists n, such that

2. ICgCO), g(Cl<e

[IxIl Zno
Sor all functions g(C(x)) such that 0 g(C(x)) < N'(x).
Proof. Applying the elementary inequality
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|C(U, +V,, U, + V)| £|CU, U +VEUZ EVZ +EUZ EVZ +YEVZEV?

to
Uy =g(CO)I1(C( 0)0/1 ](0) 0).
U, =g(CNI(C(x) ﬂ/l[J%L](x )=0),
Vi=g(CO)-U,
V,=g(C(x)—-U.
using that
a) U, and U, are independent.
b) EU?=EU<E(N')*< o and
o e =evz=E|orr (vz[5H)|=oux-
one gets

Y. C(g(C(0), g(C(x)) Z 4k(0+ const-k~3/?+const -k )

[l ][ Zno ko
which is less than ¢ if n, is large.

Proof of Theorem3.5. Consider (2.1). As in the proof of Theorem 2.4b) it is easy

to see that n=! 3 Y, (x)—L>p, as n— 0.
xedKy
It remains to show

!t Y (X(x)—K(p))—>N(0,0%), as n—co. (3.1

xekK,
Write X (x)—EX(x)=N(x)"' I(C(x) +0)— K(p) as Y/(x)+Y,(x), where

V() =(NE)H HC) 0, Cx)nA,(x)=0)
—ENX)"TI(C(x)*0, C(x)n A,(x)=0).
The rest of the proof is to apply Lemma 3.1 to the partition
nt Y (X(x)-K@)=X,,+0,..
xekK,
where

X,o=n"1Y Y/(x).

xekK,,

Since {Y/(x)} are 2u-dependent it follows from Lemma3.3 that
X,,—% N(0,07), as n— co, where

52 =Y CLY(0). Y,(x). (32)
This verifies (i). y
Secondly, lim 62=0?, since we have termwise convergence in (3.2) and the

u—0o00

sum (3.2) converges uniformly in u by Lemma 3.8. This verifies (ii).
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To verify (iii} it suffices by Lemma 3.2a) to show that

lim 3 |C(Y,"(0), ¥, (x))| =O.

=00 x

Here again termwise convergence is immediate and the sum converges uni-
formly in # by Lemma 3.8.

Hence Lemma 3.1 applies and (3.1) is proved.

The proof of Theorem 3.6 is omitted since it is almost the same as that of
Theorem 3.5.

In the proof of Theorem 3.7 one needs to replace Lemma 3.8 by the following

Lemma3.9. Let I(x)=I(N(x)= o), I,(x)=I(C(x)nA,(x)*+0). Then, for p>p,,
CI(0), I(x))
0= C(I(O),Iu(x))§2E(I[ﬂ%u_](0)—1(0))éO(HXII")
C{I,(0),1,(x))
uniformly in u for any r.
Proof. The right relation follows from Theorem 1.1. as
E(I,(0)—(0) <P(N'2u).

The left inequalities follow from the F.K.G. inequality since I(x) and I, (x) are
increasing functions.

Concerning the middle inequalities, suppose first that u= [@] Then

E(1,0)1,(x)) §E(I[J%u_](0) Tz 4 (x))=(E I[ﬂ%L] 0)?

by independence and

C(LO), I,(x)=(E IEH%L](O))Z —(E1,0) §2E(I[J%L] (0)—1(0)).

The same relation holds for C(I(0),I,(x)) and C(I(0),I(x)). If u<[m] the

lower covariance is 0 while 2
E(I,,(O)I(X))éE(Iu(O)-IE%L](X)PEI“(O)EI[%U_](X)
and
C(Iu(0)71(x))§EIu(O)'EI[_U%JJ_](O)_EIu(O)EI(O)éE(I[j_%LI_](O)_I(O))'

This shows the middle inequality.
Proof of Theorem 3.7a). Start from the partition

M,= ) I+ Y Y(),

xeK, xedk,,
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where I(x)=I(N(x)=o00) and Y,(x) was defined in the proof of Theorem2.4.

Since it is easy to check that n=" Y ¥, (x)—2>4y, it remains to show that
xe0Ky,

n=t Y (I(x)—P)—% N(0,6%).
xeKn,
Write I(x)— P_=Y,(x)+ Y, (x), where Y, (x)=1I,(x)— EI,(x) and I (x) was defined
in Lemma 3.9.
From here on, the arguments in the proof of Theorem 3.5 may be repeated
almost literally, referring to Lemma 3.9 concerning the uniform convergence.

Proof of Theorem3.7b). In this case we are to show that

nt Y (Y,(0-0)—N(©0,47%), as n—oo. (3.3)
xedK,

Extend the definition of Y(x) in Theorem 2.4 in the natural way to all x in 0K,,.
Then, one may drop the indices of the Y’s in (3.3), as

;3]
Eln~t Y (%) -Y()<8n~* Y EIY,(,0)— Y (0
i=0

n
xedK,

<16n=% ) EN(i,0)I(N(i,0)=1),
i=0

which tends to zero since EN? < co.
Introduce Y (x)=Y(x) [(C(x) nA4,(x)=0) and Y"(x) by

Y(x)=Y/(x)+ Y, (x).

Let further J_, be those points in 0K, which are at a distance no less than 2u

nu

from any corner of K, and consider the partition

nt Y (Yx)—pw=n% Y (Y(x)—EY,0)+n* Y (Y(x)—p)

xedK, xeJn,u xe0Kn\Jn,u
SRV CACEI A AICIED SIS R

xeJn,u

We shall apply Lemma 3.1 to this partition.
X can be split into four independent terms and the one-dimensional

un

analogue of Lemma 3.3 may be applied to each part. Thus
X,,—> N(0,492),
where
va =2, C(¥.(0,0), ¥, (i, 0)).

This verifies (i). The sum further converges uniformly in # by Lemma 3.8 and it
follows that

lim y; =3 C(Y(0,0),Y(;,0)=7",

u—00
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which verifies (ii). To verify (iii) it remains to check that

lim limsupE 8’ =0 for v=1,2.

U—=00 H—00

For v=1 this is immediate. For v=2 it suffices by Lemma3.2a) to show that

lim 1im Y']C(¥;'(0,0), ¥;/(,0)|=0

U—00 R0 |

and this follows as before since the sum converges uniformly in u by Lem-
ma 3.8.
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and advice during the preparation of this manuscript,

Note. Results similar to ours have independently been obtained by G.R.
Grimmett (preprints: “On the differentiability of the number of clusters per
vertex in the percolation model” and “Central limit theorems in percolation
theory”) and T. Cox (personal communication).
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