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Summary. Laws of large numbers and central limit theorems are proved for 
some cluster functions, e.g. the number of points in a large box which are 
(+)  connected to its boundary or the number of (+ )  clusters in the box. 

1. Introduction 

We shall consider Bernoulli atom percolation in Z 2 and shall mainly adopt the 
notation of Russo [7], which is briefly as follows: 

Nearest neighbours in Z 2 are called adjacent and points which are nearest 
neighbours or diagonal nearest neighbours are called * adjacent. A set A c Z 2 is 
connected [* connected] if for all x, yEA there is a chain of adjacent [* 
adjacent] points in A which has x and y as terminal points. 

The configuration space is #2 = { - 1, 1} z2 and _+ 1 are sometimes called spins. 
A maximal connected [* connected] component of co-1(1) is called a (+)  cluster 
[(+)* cluster] of o~f2. 

The measure is 
P(P)= ]-I vp(x), where 0__<p__< 1 and vp assigns weights p and 1 - p  to 1 and - 1 .  

x ~ Z  2 

For x s Z  2, let C(x)[C*(x)] be those points which are (+ )  connected [(+)* 
connected] to x. Let N(x)= [C(x)l. N(0) is denoted simply as N and the variable 
NI(N < oo) is called N'. 

Then some basic functions are: 
The percolation function Poo(P)=P(N = oo). 
The mean size of finite clusters (susceptibility) S(p)= EN'. 
The number of clusters per site K(p)= EN -~ 1(0 < N). 

The purpose of this note is to check some facts concerning the physical 
interpretation of these quantities. In Sect.2 some ergodic properties are men- 
tioned and Sect. 3 contains central limit theorems. 
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We shall need some nice results concerning the moments of N', which were 
obtained independently by Russo [7], or Seymour and Welsh [8]. 

Let p~=inf{p: P~>0}, n~=sup{p: P~=0  and S(p)< oo} and define p* and n* 
similarly. 

Theorem 1.1 (eusso, Seymour, Welsh). a) 1 - p* = n~ < p~ = 1 - ~z*. 

b) For p off the interval [rc~, pc], E(N')~< ov for any r. 
Especially b) will be repeatedly used in the sequel. 

2. Ergodic Theorems 

The following lemma is a well-known consequence of Birkhoffs ergodic theo- 
rem. Cf. e.g. Pitt [6], Theorem 5, p. 337. 

Lemma2.1. Let (f2,N,P) be a probability space. Let T and U be ergodic 
transformations and suppose that fEE ,  r> 1. Then 

n - 1  n - 1  

n -2 ~ ~ f ( r i u k c o ) - - ~ E f  a.s. andin E as n---~oo. 
i=0  k=O 

Let T[U] be the translation of the spin configuration one step to the left 
[downward]. Then T and U are ergodic and the lemma may be applied to 
appropriate cluster functions to give alternative interpretations of the percola- 
tion functions. 

Notation. Let K,  be the square {z•Z2: O<=zl, z2<=n--1 } and let the (inner) 
boundary OK,={zEK, :  z 1 or z2=0 or n - l } .  

Theorem2.2. Let N, be the number of (+)  clusters in K ,  which contain no 
boundary point. Then 

n-2Nn--~K(p) a.s. and in any K, as n--,oo. 

Remark. The convergence was shown by Grimmett [4], using a subadditive 
argument. The limit was identified as K(p) by Smythe and Wierman, Theo- 
rem 3.7 in [9], where they show that K(p) is differentiable a.e. We observe that 
the derivative exists and is continuous except possibly at p). This follows from 
essentially the same arguments as Proposition4 in [7]: 

Differentiating K(p)= ~ 171-1 pill(1 _p)10~l term by term one formally gets 
0~7 

2 1-p)l 'l- 2 I~ pl,l(l_p)l ,M-1. 
o~ o~ 171 

Here the summation index 7 runs over all connected subsets of Z 2 containing 
the origin. Since 1@1/171 ___<4 and 

pill(1 _p)l~,l = e ( n  <= N < oo) 
Oe,,, 

N>_--n 

1 A slight e laborat ion of the a rgument  shows that  K'(pc) exists if Po~(Pc)= 0 
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is an increasing function of p on [-0,p0], where P~(po)=0, the series above 
converges uniformly on the interval [,0,po ]. On an interval [Pl,P2], where 
Pc<P~ <P2 < 1, the uniform convergence follows from (4.4) of [7]. 

A similar argument using Theorem 1.1b shows that higher derivatives exist 
for p < rc~ or p > p~. 

Proof of Theorem 2.2. Let X(x) = (N(x))- 1 l(N(x) > 0). We then have the identity 

X(x)=N.+ ~ Y.(x) (2.1) 
xEKn x~OKn 

where 

Ltx)  = 

k 1 
k ~  if x belongs to a (+)  cluster of size k 

with k I points in K,  and k 2 points in OK., 

0 otherwise. 

Here ~ Y,(x)~lbK, l=o(ne). 
xEOKn 

By Lemma2.1 n -z ~ X(x) a2~EX(O)=K(p) and the theorem follows. 
xffKn 

Theorem2.3. Let the sizes of the (+) clusters in K, be d] "), d {") and let S, � 9  ~ N n 
Nn 

=n  -2 ~ (dl")) 2. Then, if S(p)< oo, S,-+S(p) a.s. and in any g as n-~oo, if S(p) 
s 

=o% S -~ oo a.s. 

Remark. The result E S , ~  S(p) has sometimes been used as a definition of S(p). 
Cf. Essam [-3], p. 221�9 A quantity much resembling S, has also been used in a 
Monte Carlo study of S(p). See Dean [-2]. 

Remark. The results of Russo show that S(p) is infinitely differentiable for p < ~c 
or p > Pc. 

Proof. Suppose S(p)< Go and consider the identity 

~ N'(x)=n2S.+ ~ Y.(x), 
x~Kn xeKn 

where r,(x) = N'(x) I(C(x) c~ OK, # 0). 
Since by Theoreml.1  and Lemma2.1 n 2 ~ N'(x)---~S(p) a.s. and in E, it 

xeKn 

suffices to check that n -2 ~ Y,(x)~O a.s. and in E. Let ~>0 and n o be given. 
xffKn 

Then, if n is large enough 

n-2 2 Y.(x) =n-2 2 
xEKn xeKn\K(1 - e)n 

~ n - 2  2 g'(x) +n-z 
x~Kn\K(1 - e) n 

Y.(~)+. -~  Y~ Y.(x) 
x~K( l -~ )n  

2 N'(x)I(N'(x)>=no). 
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It follows from Lemma 3.1 that both of these terms converge a.s. and in/5, the 
first one towards ( 1 - ( l - e )  2) S(p) and the second one towards (1 
- e )  2 EN'I(N'>no).  As e and n o are arbitrary this ends the proof. 

The case when S(p)= oo follows by truncation. 

Theorem2.4. Let M,  be the number of points in K ,  which are (+) connected to 
8K,. Then 

a) n-2 M , ~ P ~  a.s. and in any E as n-*oo. 
b) For p<Tc~,n-l M --~4p in any E as n---~oo, 

where p = EY(O, 0) and 

[l~. if (i,O) belongs to a (+) cluster with k 1 points 
Y(i, O) =~ 2 

in the upper halfplane and k 2 points on the xl-axis , 

0 otherwise. 

Remark on b) We shall prove b) by referring to the onedimensional ergodic 
theorem. This simple argument is insufficient to prove a.s. convergence. The 
reason for this is that the transformation n ~ n +  1 only adds one point to the 
lower side of K,  but changes all points in the upper side. Still, one may prove 
a.s. convergence by showing that the fourth central moment of M,  is (9(n2). This 
longer argument is omitted. 

Proof of a) Write 

M~ = E I(N(x) = ~ )  + Z I ( f (x )  < oo, C(x) ~ aK. 4=r 
x ~ K n  x ~ K n  

and repeat the argument in the proof of Theorem 2.3. 

Proof of b) Write M , =  ~ Y,(x), where 
xe~K~ 

kl 
k2 if x belongs to a finite (+ )  cluster with 

Y,(x) = 
k~ points in K~ and k 2 points in 8Kn, 

t 0 otherwise. 

n - - 1  

By symmetry it suffices to check that n -1 ~ Y.(i,O)---,EY(i,O) in any E. 
i = 0  

n - - 1  n - - 1  n o - - 1  

n -~ ~ Y.(i, Ol=n -~ ~ Y(i, Ol+n -1 ~ (Y.(i ,O)-Y(i ,  Ol) 
i = 0  i=O i=O 

n - -no - -1  n - -1  

+n -1 ~ (Y.(i,O)--Y(i,O))+n -1 ~ (Yn(i,O)--Y(i,O)) �9 
i=1~ 0 i ~ n - - n  0 

As Y(i,O)<N(i,O) it follows from Theorem 1.1 that the Y's have moments of all 
orders. Thus by the onedimensional ergodic theorem the first term above tends 
to EY(O, O) in any E. In the third term 
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I Y(i, 0 ) -  Y,,(i, 0)l =< 2N(i, 0) I(N(i, O) > no) 

and by the ergodic theorem 

lim sup [I third te rm I]~ < 2 I] N(i, O) I(N(i, 0) > no)II. 

which is small for large n o . Clearly, the norms  of the second and fourth terms 
tend to zero. 

3. Central Limit Theorems 

3.1. Some Lemmas. Lemma3 .1  is a special case of  Theorem4.2 ,  p. 25 in 1-1]. 
L e m m a  3.2 is Lemma20 .3 ,  p. 172 in [1], adap ted  to the case of a twodimens ional  
index set. Its p roof  is immediate .  L e m m a 3 . 3  is a wel l -known result abou t  m- 
dependent  variables. Cf. e.g. [5], Theo rem 19.2.1, p. 370, where it is stated for the 
case of  a one-dimensional  index set. Fo r  the sake of completeness  a p roof  is 
given, using Lemma3 .1  and 3.2. 

Lemma3 .1 .  Let {Y,}~ be r.v. such that for any integer u there is a partition Y, 
= Xu, + c~u, , such that 

(i) X , .  d > X , ,  as n ~ oo for u fixed. 
(ii) Xu d > X ,  as  u ~ o o .  

(iii) lira l im sup E ,5,2, = 0. 
u ~ o o n ~ o o  

Then I1, ~ > X,  as n ~ oo. 

Lemma3 .2 .  Let {X(X)}x~Z2 be a stationary process in L 2. Suppose that E X ( 0 ) = 0  
and ~ IE(X(O) X(x))l = 62 < oo. For a finite subset A of Z 2, let S(A)= ~ X(x). 

x E Z  2 x E A  

~ [ h e n  

a) IAI 1 E(S(A))2 <62, 
b) n-Z E(S(K,))z---~a2= ~ E(X(O)X(x)), as n-+oo. 

x e Z  2 

Notation. For  x , y ~ Z  z, let Ilxll=lxd+lx2l and d(x,y)=llx-yLI. Let  A,(x) 
= {y: d(x,y)=n}.  

A process {X(x)}~z2 is called m-dependent  if for all finite subsets A and B of 
Z 2 such that  d(A,B)>m, the families {X(x)}~ A and {X(x)}~B are independent .  

Lemma 3.3. Let {X(x)}~z~ be a stationary, m-dependent process and assume that 
E X ( 0 ) = 0 ,  E(X(0)) 2 < 0o. 77wn 

n -1 ~ X(x) e ,N(0,  az), as n--+o% where 
x ~ K n  

~ =~E(x(o) X(x)). 
x 

Remark. a z <  ~ since the sum of covariances contains finitely m a n y  terms. In 
general, however,  it m a y  happen  that  a2 =0 .  In this case the assert ion of the 
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1emma could be sharpened. For example one may check that in this case 
lim E(S(K,))2/n exists. In the applications of the lemma which are to follow, 

unfortunately, I have been unable to prove that this pathological case does not 
happen. 

Proof Divide K,  into smaller squares (side u) separated by channels of width m. 
Write for u fixed n--k(u + m)+ s, 0 <s < u + m, and let the union of the k 2 smaller 
squares be A,= B ,  x B,, where 

B,={z:  i(u+m)<=z<i(u+m)+u,i=0,1 . . . .  , k - l } .  

Consider the partition n - l S ( K , ) = n  -1 ~ X(x)+Su = X , , + 6 , , .  It is easy to 
xEAn 

verify conditions (i)-(iii) in Lemma 3.1. By m-dependence ~ X(x) is a sum of k 2 
x ~ A n  

independent sums, each distributed as S(K,). It follows that 

k-1 F~ X(x) d, N(0, E(S(K.)) 2) 
x ~ A n  

as n ~ o e .  Thus X, .  d ,N(0, a~), as n---~cc, where azu-=ES(K,)2/(u+m) 2. This 
verifies (i). 

2 Secondly, it follows from Lemma3.2b, that lira o-,----0 "2, which verifies (ii). 
n~oo 

Thirdly, by Lemma 3.2a), 

Ec~Z,=n-ZE( Z X(x)) a<IKn\An[-2 
x~, \a ,  = IK.[ a .  

which tonds to z ro, as Thus This 
\ \ u  ~- rrt l l 

verifies (iii) and by Lemma3.1 n -1S(K,) d ~ N(0, a2) as n ~  oo. 

3.2. Bounded Clusters. Lemma 3.3 leads immediately to limit theorems for cluster 
functions, which depend only on the spins in a bounded part of the plane. As an 
example one has 

Theorem3.4. Let N~(k) be the number of (+) clusters in K,  of size k which contain 
no point in OK,. Then 

n-l(N,(k)_n2pk/k) d , N(_l~k,a~), 
as n--~ oo, where 

2 ~ k - 2  Pk=P(N=k), Crk 2 (P(N(O)=N(x)=k)-p~) 
x ~ Z  2 

and the edge effect #k = 4 EX, where 

I k~2 k if 0 belongs to a (+)  cluster of size k with k 1 points 

X = t o  in the upper halfplane and k 2 points on the xl-axis , 

otherwise. 
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Remark. The edge effect /z k may be eliminated by assuming toroidal boundary 
conditions. This remark applies also in the sequel. 

Proof. Letting X(x)  = k - 1 1 (x belongs to a (+)  cluster of size k), 

y~ X(x)=~, (x)+  5[ Y,(x), 
x~Kn xGOKn 

where 

[ , . ~ .  if x belongs to a (+)  cluster of size k 
Y.(x)= j " 2  

with k 1 points in K11 and k 2 points in 8K11, 

0 otherwise. 

By Lemma 3.3 the left hand side converges (after norming) towards N(0, o-2). By 
symmetry it then suffices to show 

I1--1 

n- :  ~ Y~(i,O) P , E X ,  as n ~ o o .  
i=o 

This is clearly true since {Y11(i, n-k 0)}i= k are 2 k-dependent r.v. distributed as X. 

Example. For k = 3, 

P3/3 = 2 p  a q7 (2 + q), 

,u 3 = 12p 3 q7(2 +q), 

o-2=2p3 qT(2 +q)+4p6 q l l ( l  + 27 q+ 57 q 2 - 8 5 q 3 - 1 2 3 q 4 -  35qS). 

It is of course a difficult combinatorial problem to compute these parameters 
for large values of k. 

3.3. Unbounded Cluster Functions. In order to prove central limit theorems for 
the quantities treated in Sect.2 one needs to combine Theorem 1.1 and Lem- 
ma 3.3 using some truncation argument. 

Theorem3.5. Let N11 be as in Theorem2.2 and assume that p<7: c or P > Pc. Then 

n -  ~ (N .  - n ~ K ( p ) )  ~ , N ( -  ~, o-~), 

as n ~ o o ,  where 

o.2 = ~ C(N-1  I (N  > 0), (N(x))-I I(N(x) > 0)) 
X 

and lz = 4 EX, 

[, is o belo.gs to a ( + ) ol  ,i e k with points 
X = [  " 2 

in the upper halfplane and k 2 points on the x:-axis, 

0 otherwise. 
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Remark. The condition on p looks unnatural in this context. 

Remark. Here and in the following theorems it will be clear from the proofs that 
G 2 < ~ .  

Theorem3.6. Let Sn be as in Theorem2.3 and assume that p < n c or P > Pc Then 

n(~n_S(p) ) a ,N(_# ,~2) ,  

where 

t7 2 --- ~ C(N'(0), N'(x)) 
X 

and # = 4 EX  

k l k  
~ .  if 0 belongs to a (+)  cluster of size k with k 1 points 

X = [  2 
in the upper halfplane and k 2 points on the xl-axis, 

0 otherwise. 

Remark. For p < no, one may check rigorously that a2>0.  In this case one may 
replace N'(x) by N(x) which is an increasing function of the (+)  spins. Thus by 
the F.K.G. inequalities (cf. [-7] Lemma 1, p. 42) each covariance in the sum is 
nonnegative and at least one term is positive. 

Theorem 3.7. Let M,  be as in Theorem 2.4 and let Y be the process defined there. 
Then a) For P > Pc 

n - l ( M  _n2p~) d ,N(4#,a2),  

as n-+oo, where #=EY(0,0) and 62=~(P(O,x  belong to the infinite cluster) 
x 

b) For p < 7rc 

n-X/2(Mn_4n#) a , N(0,472), 

where 72 -- ~ C(Y(O, 0), Y(i, 0)). 

Remark. In a) one may check that ~2>0 by noting that I(N(x)= ~ )  is an 
increasing function of the (+)  spins. 

In the proofs of Theorems 3.5 and 3.6 we need the following: 

Lemma3.8. Suppose E(N')7 < oo. Then for any e > 0  there exists n o such that 

I C(g(C(0)), g(C(x)))l <e  
Ilxll _>-no 

for all functions g( C(x)) such that 0 < g( C(x)) < N'(x). 

Proof Applying the elementary inequality 
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[C(Ux + 1/'1, U2 + V2)l <-_lC(U> u2)l + 1/E U( EV~ + I/EU~ EV? + 1/EV? E~ 2 
to 

325 

where 

x~Kn 

Since {Y,'(x)} are 2u-dependent  it follows from Lemma3 .3  that  
X~ n a ) N(O, ~2), as n---> 0% where 

2 t i a,  = ~, C(Y~ (0), Y~ (x)). (3.2) 
x 

This verifies (i). 
Secondly, lira a 2 = o -2 ,  since we have termwise convergence in (3.2) and the 

u~oo 
sum (3.2) converges uniformly in u by L e m m a  3.8. This verifies (ii). 

us = g(C(O)) I ( c (0 )  ~ A [ ~ _  3 (0) = 0), 
l 

u2 = g(C(x)) I(C(x) ~ A [ ~ _  3 (x) = 0), 

V 1 = R ( C ( O ) ) - -  U1, 

= g ( c ( ~ ) ) -  (:2, 

using that  

a) U s and U 2 are independent.  
b) EU~ =EU~_-<E(N') 2 < ~ and 

one gets 

C(g(C(O)),g(C(x)))<= ~ 4k(O+const.k-S/2 +const.k 5) 
Ilxl[ >no k=no 

which is less than ~ if n o is large. 

Proof of Theorem 3.5. Consider (2.1). As in the proof  of  Theorem2.4b)  it is easy 
to see that n -1 ~ Yn(x) P )#, as n--,oo. 

xeOKn 
It remains to show 

gt 1 Z ( X ( x ) - g ( p ) )  d )N(O,o.2), as n ~ o o .  (3.1) 
xEK~ 

Write X(x) - EX(x) = N ( x ) -  1 I(C(x) 4= 0) -  K(p) as Y'(x) + Y"(x), where 

y ~ ( X ) = ( N ( x ) )  l i(C(x)=~=O ' C ( x ) ( . . i A u ( X ) = O  ) 

-EN(x)  1 I(C(x)=i=O, C(x)~A,(x)=O). 

The rest of  the p roof  is to apply L e m m a  3.1 to the part i t ion 

n 1 ~, (X(x)_K(p))=X~,+6u,, 
x~Kn 
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To verify (iii) it suffices by Lemma 3.2a) to show that 

lira ~, [ C(Y,"(0), Y,~'(x))[ = 0. 

Here again termwise convergence is immediate and the sum converges uni- 
formly in u by Lemma 3.8. 

Hence Lemma 3.1 applies and (3.1) is proved. 
The proof of Theorem 3.6 is omitted since it is almost the same as that of 

Theorem 3.5. 
In the proof of Theorem 3.7 one needs to replace Lemma 3.8 by the following 

Lemma 3.9. Let I(x) = I(N(x) = ~),  I,  (x) = I(C(x) c~ A~ (x) 4= 0). Then, for p > Pc, 

C(I(O), I(x)) 

0 < C(I(0), I,  (x)) < 2 E(I [L~LL_] (0) -- I(0)) = O ([Ix [[ - r) 

c(x.(0), I.(x)) 

uniformly in u for any r. 

Proof The right relation follows from Theorem 1.1. as 

E(I,(O) -- I(0)) < P(N' >= u). 

The left inequalities follow from the F.K.G. inequality since I(x) and Iu(X ) are 
increasing functions. 

inequalities, suppose J Then 

E(I,(O) I,(x)) < E (I [L~] (0 )  I[L~_] (x)) = (E I [ x ~ ]  (0/t 2 

by independence and 

C(I,(O), I,(x)) < (E I [L~_] (0)) 2 - (E Iu(0)) 2 < 2 E(I[L~_ ] (0 ) -  I(0)). 

The same relation holds for C(I(O),Iu(x))and C(I(O),I(x)). If u <  [ ~ ]  the 
lower covariance is 0 while 

E(Iu(O ) I (x)) < E(I"(O)" I[ ~L]z- (x)) = E I,(0) E I [  xLL~LL_]2 (x) 

and 

c ( L  (o),/(x)) < E i,,(o). E i E~_~  (o) - /~  i,(o) H(o)  < E(I i_~_~_ ] (o) - i(o)). 

This shows the middle inequality. 

Proof of  Theorem 3.7a). Start from the partition 

M.= E I(,,)+ ~ r.(x), 
x~Kn xcOK. 
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where I(x)=I(N(x)=oe) and Y,(x) was defined in the proof  of Theorem2.4. 
Since it is easy to check that n -1 ~ �9 Y,(x) P ~4#, it remains to show that 

xE O K~ 

n -1 ~ (I(x)-P~) a ,N(O, trz). 
x E K n  

Write I (x ) -  P~ = Y~,(x)+ Y~,' (x), where Y~(x)= I u ( x ) -E  I, (x) and I ,  (x) was defined 
in Lemma 3.9. 

From here on, the arguments in the proof of Theorem 3.5 may be repeated 
almost literally, referring to Lemma 3.9 concerning the uniform convergence. 

Proof of Tneorem3.7b). In this case we are to show that 

n -~ ~ (Y,(x)-#) a ,N(0,472), as n ~ o o .  (3.3) 
x ~ O K n  

Extend the definition of Y(x) in Theorem 2.4 in the natural way to all x in 8K,.  
Then, one may drop the indices of the Y's in (3.3), as 

Eln -~ ~ (Y,(x)-Y(x)) l<Sn-~ ~ EIY,(i,O)-Y(i,O)[ 
xeO  Kn  i = 0 

< 16n -~ ~ Eg(i, O) I(g(i, O) >= i), 
i = 0  

which tends to zero since EN2< o~. 
Introduce Y'(x) = Y(x) I(C(x) c~ A,,(x) = 0) and Y"(x) by 

Y(x) = Yd(x) + Y;'(x). 

Let further J,,,. be those points in OK. which are at a distance no less than 2u 
from any corner of K .  and consider the partition 

n -~ ~ (Y(x)--p)=n -~ ~ (Y2(x)-EY2(x))+n ~ ~ (Y(x)-#)  
x e S K n  x e J n ,  u x e O K n \ J n ,  u 

E + 
LPun . 

X ~ J n ,  u 

We shall apply Lemma 3.1 to this partition. 
X , ,  can be split into four independent terms and the one-dimensional 

analogue of Lemma 3.3 may be applied to each part. Thus 

where 

X. .  e ,N(0,42~), 

2 / t �9 y, - y '  C(Y~ (0, 0), Ys (t,0)). 
i 

This verifies (i). The sum further converges uniformly in u by Lemma 3.8 and it 
follows that 

lim 72 = ~ C(Y(O, O),Y(i, 0)) = y2, 
U ~ 0 0  i 
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which verifies (ii). To verify (iii) it remains  to check that  

lim lim ~)-" s u p E a . .  = 0  for v = 1 , 2 .  
u ~ o o  n ~ O 0  

For  v = l  this is immediate .  For  v - - 2  it suffices by Lemma3 .2a )  to show that  

l im lira ~IC(Y~"(0,0), Y."(i,0))[=0 
U ~ O 0  n ~ O O  i 

and  this follows as before since the sum converges uni formly in u by Lem- 
ma  3.8. 
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