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Summary. Necessary and sufficient conditions are given for a 3 x 3 stochastic 
matrix to be embeddable by 6 elementary stochastic matrices (Poisson 
matrices). For  a 3 x 3 embeddable matrix, a structure of the minimal Bang- 
Bang representation, i.e. the one that contains the smallest number of 
elementary matrices, is obtained. Based on the minimal Bang-Bang repre- 
sentation an algorithm for determining the embeddability of a 3 x 3 stochas- 
tic matrix is given. 

1. Introduction, Survey of Results, and Summary 

We consider the embedding problem for Markov chains with three states. A 
nonsingular stochastic matrix P is called embeddable if there exists a two- 
parameter family of stochastic matrices 

{P(s,t) 0_<s_<t< +oo} 

satisfying P(s, t)=P(s,u)P(u,t) (O<_s<_u<_t), 

lim P(s, t)= lim P(s, t) = I (1.1) 
t i s  s~t 

and such that P(0, 1)=P.  
The embedding problem was reformulated by Goodman [-3] as a control 

problem for differential equations. Goodman showed that a nonsingular sto- 
chastic matrix P is embeddable if and only if there is a two-parameter family of 
absolutely continuous matrix functions {P(s, t), 0_< s < t < + oo} satisfying (1.1). 

0 
~-  P (s, t) = P (s, t) Q (t) (t q~ N), (1.2) 

* I would like to thank Soren Johansen for helpful comments  and stimulating discussions on the 
subject of this paper 
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3 ~ P ( s , t ) =  - Q ( s ) P ( s , t )  ( s ~ N )  (1.3) 

where N is a null set, and such that P(0, 1)=P.  
For each t _  0 

Q(t)~Q~ Q:qii~O'qiJ>=O'i=~j' j=l ~ qij=O} 
the class of intensity matrices. 

The embeddable matrices are thus the matrices that can be reached from the 
identity I via (1.2) and (1.3) using a suitable controller Q(.)eQ0. The intensity 
matrices form a convex cone and the extremal elements have at most one 
positive off-diagonal element. A stochastic matrix which can be reached via (1.2) 
or (1.3) using an extremal intensity matrix Q as a controller is called a Poisson 
matrix and is of the form eke, 2 > 0. 

Applying the chattering principle from control theory, see [8], to the control 
system specified by (1.1), (1.2) and (1.3), Johansen [4] formulated the following 
characterization of embeddable matrices: any embeddable matrix can be appro- 
ximated by a finite product of Poisson matrices. Johansen [5] further proved 
that any matrix in the interior of the set of embeddable matrices has a 
representation as a finite product of Poisson matrices, i.e., it has a Bang-Bang 
representation. 

Frydman and Singer [2] obtained the complete solution to the embedding 
problem for the birth and death processes. They showed that the class of 
transition matrices for birth and death processes coincides with the class of non- 
singular totally positive stochastic matrices and that all transition matrices of 
birth and death processes admit a Bang-Bang representation. 

For  3 x 3 stochastic matrices Johansen [5] proved, using geometric methods, 
that matrices on the boundary of the set of embeddable matrices admit a Bang- 
Bang representation, see also Frydman [1] for an algebraic proof. Characteri- 
zation of the boundary of the general embeddable matrices is an open problem. 

This paper relies heavily on methods and results in [1]. We will briefly 
summarize results in [1] needed here after we introduce the necessary notation. 

Notation. Throughout  this paper we will refer to a 3 • 3 stochastic matrix P as 
"a matrix P." We will denote by P > 0  a matrix with all elements positive, and 
by P => 0 a matrix with at least one off-diagonal element equal to zero. 

Let S = {(i,j,k)[(i,j, k) is a permutation of (1, 2, 3)} and let 

Tij=PJlPkk--PjkPki (i,j, k) ~ S. 
Til = PjjPkk -- PjkPkj 

Note that 
Ti ~ = ( _ 1)i +j-  1 Mi j 

Tii= Mii 
where M~j, M u are second order minors of P. Observe that for every (i,j, k) ~ S 

det P = p k k K k - - p ~ k - - p i ~ = p j ~ - - p j ~ - - p j ~ i .  
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Let E~j be a matrix with elements 

[Eij]mk={1 if re=i, k = j  
0 otherwise 

and A~j(u) denote the following Poisson matrix 

Ai j ( u ) =I - uEu+uEi j  , 0__<u<l. 

U 
Let c =  1 - u "  We denote by Zzj(c) the inverse of A~j(u), i.e., 

U 
Zij(c)=I + c E u - c E i j ,  C=l_u=>0.  

Let the stochastic matrix P have columns (Pl,P2,P3) and let Pl=PZij(c). 
Then a simple calculation gives 

Pk if k:t:i,j 
p(gl> = p j _  cp i if k = j  

[p~(1 +c) if k=i  
(1.4) 

det P1 =(1 +c) det P. 

3 
Note that P1 = IlPI))[I satisfies ~ ~-ur~!l')= 1; 1_<i< 3 but may not be stochastic. 

j = l  in I It was shown by Goodman [3] that p ~ i > d e t P > 0  is a necessary con- 
i=1 

dition for embeddability of an n x n stochastic matrix P. For  n = 3 we proved in 
[13. 

3 

Theorem 1.1. I ]  Pu >=detP>O is a sufficient and necessary condition for em- 
i=1 5 

beddability of a matrix P > 0 and in this case P = H Am where (Am, 1 <m < 5) 
are Poisson matrices. ,,= 1 

and 

A similar result does not hold for n > 3, see Kingman and Williams [7]. 
For  P > 0 let 

Tom - - ,  n,m-- 1,2, 3, B(n, m)=P,nPm,, P~n 

B(P) = max B(n, m) 
(n, m) 

Fij=min(P~,PkJ, PJJ], ( i , j ,k)eS.  
\Pii Pki Pji ! 

The following two lemmas show the significance of the function B(P) for the 
embedding problem. 

l 
Lemma 1.1. Let P=  1~ Am>0 and assume that B(P)<detP.  Then also 
PAl -1 >0. ,.= 1 
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In what follows plp ) denotes the (i,j)'th element of a matrix Pro; 

rE.(m) 
T(m)--n(m)n(m)--n(m)n(m) and . . _  (m) (m) "ij Bm(t,J)--Pll Pjj p~) ~ij --V'j i  l~kk Vjk  Yki  

We call a matrix P regular if all its principal minors are positive, i.e., if T, >0  for 
all 1_<i_<3. 

Lemma 1.2. Suppose P > 0 ,  d e t P > 0 ,  and B(P)<de tP .  Let PI=PZi j (c )  where 
(i,j, k) ~ S and O<c <-~ij so that P1 >0. Then 

a) B l ( n , m ) < d e t P  1 for all (n,m)4:~, i); 

b) I f  P is regular, B ( P 0 < d e t  P1. 

These lemmas and Theorem 1.1 were used to prove 

Theorem 1.2. For a positive matrix P 

a) B(P)> det P > 0 is a sufficient condition for embeddability of P by at most 6 
Poisson matrices and the structure of the embedding product is one of the 
following: 

P = A k i A j k A k j A I k A j I A u ,  P =  A j i A j k A k j A i k A j i A k j  , o r  

P = AkiAjkAkjAikAjiAkj for some (i,j, k) ~ S. 

6 

b) I f  P is regular and P =  [I  Am then B(P)>=det P>O. 
m=l  

With this background we can summarize the main results of this paper. The 
main result of section 2 is the characterization of 3 • 3 stochastic matrices 
embeddable by at most 6 Poisson matrices. For  a positive 3 • 3 stochastic 
matrix P a necessary and sufficient condition to be embeddable by at most 6 
Poisson matrices is 

T~ > 
B ( i , j ) = p u p j j - - _ d e t P > O  for some i , j = 1 , 2 , 3  

Pji  - -  

or that 3(i,j, k)~ S and 0 < c < ~ i j  such that 

Bl(], i ) = d e t P  1 where P1 =PZij(c). (1.5) 

Equation (1.5) is equivalent to the following quadratic equation in c: 

PjfPu Tjj c2 + Pu( det P - Pjj Tjj - pji Tj~) c + PuPjj Tjf - pij det P = 0. 

Thus deciding whether a 3 • 3 stochastic matrix can be embedded by 6 
Poisson matrices amounts to at most checking 9 simple inequalities and solving 
6 quadratic equations. 

In general Poisson matrices of different types do not commute, i.e., Aij and 
Azp do not commute unless (l,p)=(k,j). The following concept of extended 
commutativity is crucial for the development of Sect. 3 and seems to be relevant 
for the embedding problem in general. 
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Definition 1.1. We say that Poisson matrices Aij and Alp commute in the extended 
sense if for any 0 < u l, u 2 < 1 there are constants 0 < wl,w2 < 1 such that 

Aij(ul)Alp(u2) = Alp(w OAij(w2). 

Aij and Alp commute in the extended sense if (l,p)=(k,j), (i,k), or (j,i) (see 
Lemma 3.2). A~ and Ak~ do not commute even in the extended sense. However 
for any constants 0 < ul, Ue, u 3 < 1 we can find constants 0 < wa, w2, w3 < 1 such 
that 

Aij(ul) Aki(Uz) Aij(u3) = Aki(wl) Aij(wz) Aki(W3) 

Similarly for Aij and Ajk (see Lemma 3.5.). 
In Sect. 3 we study the structure of the Bang-Bang representation for a 3 x 3 

embeddable matrix P > 0  with B(P)<detP. Observe that the structure of the 
Bang-Bang representation for a matrix P > 0  with B(P)>detP>O is given in 
Theorem 1.2a). 

The main theorem of Sect. 3 is that the minimal Bang-Bang representation for 
an embeddable 3 x 3 stochastic matrix P > 0  with B(P)<detP, i.e., the one that 
contains the smallest number  of Poisson matrices among all possible Bang-Bang 
representations for P, has the following structure 

P = ( A k i A j k A i j A k i A j k ) ( A i j A k i A j k A i j . . .  ) for  some (i , j ,k)eS (1.6) 

where the product of Poisson matrices in the first parenthesis is a positive 
stochastic matrix, say P', with the property B'(j, i )= det P'. 

Notice that the representation (1.6) consists of only 3 types of Poisson 
matrices that repeat in cycles of size 3. This is in contrast to the Bang-Bang 
representation for a matrix P > 0  with B(P)>  det P > 0  which consists in general 
of 5 or all 6 types of Poisson matrices, see Theorem 1.2a). 

Johansen [-6] showed that the number  of Poisson matrices in the Bang-Bang 
representation for 3 x 3 embeddable matrix P is bounded by 6 times the smallest 
integer larger than or equal to (ln�89 -1 In det P. 

This bound together with the knowledge of the structure of the minimal 
Bang-Bang representation for a 3 x 3 stochastic matrix P > 0  with B ( P ) < d e t P  
allows in principle to determine whether a 3 x 3 stochastic matrix is embeddable 
or not. The algorithm is discussed in Sect. 3. 

2. Sufficient and Necessary Condition for a Positive Matrix 
to be Embeddable by 6 Poisson Matrices 

We first prove several lemmas. The first lemma is a special case of Theorem 1.1. 

3 
Lemma 2.1. Let P be a matrix such that pik=O for some (i,j,k)eS. I f  I-[ Pll 

i=a 
= d e t P > 0  then P is embeddable by 4 Poisson mattices in the following way: P 
= AkiAjkAijAki .  
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Proof. Since (Plk = 0 and PuPjjPkk = det P) ~ (T~j < 0) the proof of this lemma is the 
same as the proof of Theorem 1.1 for the case T~<0, see [1]. Observe that 

equality ~I P, = det P implies that one needs 4 rather than 5 Poisson matrices to 
i=1 

embed P. 

Lemma 2.2 Assume P > 0 and for some (i,j, k) ~ S B (i, i) <= det P and B (j, i) = det P. 
Then P is embeddable by 5 Poisson matrices as follows: P=Ak~AjkA~jAk~Aj~. 

Proof. Assume B( j , i )=de tP  and let PI=PZjk (Pik I Then we have 
\ P i j / "  

p ( 1 ) _  r j i  n(1)__ O r 1 
kk - - - - ,  vi~ --~, P) i )=- - (  - Tki) 

Pij  Pij  
and 

pllpj (i+ i ) (l+ tdetP det,1 
ii r j j  ~ i j - -  Pi j  ! 

where the second equality follows by assumption. 
Now O<detP=PuTii--pkiTkl--PjiTji and Tji>0 imply that Tki<0 since if 

Tki >= 0 then p~ T/i > det P contrary to the assumption. Hence p}~ > 0. Thus by 
Lemma 2.1 Pl=AkiAjkAijAki  and hence P=AkiAjkAijAkIAjk,  a s  we wished to 
show. 

Lemma 2.3. Suppose P > 0 ,  d e t P > 0  and B(P)<detP.  Let Pl=PZij(c) where 
0<c<~i j .  Assume 3(i , j ,k)~S and 0 < c < ? i j  such that Bl(j , i)> detP 1. Then there 
exists 0 < c < ~ j  such that B l ( j , i )=de tP  ~ and P can be embedded as follows: P 
= A k i A j k A i j A k i A j k A i j .  

Proof. Assume Bl(j,i)=plli~p}} ~ ~ > d e t P  1 for some 0<c<~i j ,  that is 

f(c)=_pu(pjj-cpji)TJi-CTjJ>detP for some 0<c<~i j .  
Pij  - -  cPi l  

Then it follows by continuity of f(c), 0 < c < ~ij and the assumption f(0) < det P, 
that there exists 0 < c < ~ j ,  say c*, such that f (c*)=detP.  Thus if we let P1 
=PZij(c*), then B l ( j , i ) = d e t P  1. But by Lemma 1.2a) Bl(n ,m)<detP  1 for 
(n,m)~(j,i). Hence application of Lemma 2.2 to PI=PZ~j(c*) completes the 
proof. 

Lemma 2.4. Suppose P = [ I  Ai>0, B(k , j )>detP>O for some (j , i ,k)eS and 
i=1 

B(n,m)<detP for (n,m)*(k,j). Then P1 =PAn -1 _>0 if and only if A21 =Zk~ (P~J~I 
- -  \P jk  /" 

Proof. Assume A ; l = z k i  (Pji] then ~(1~-0 ' 4 n - ~ 1  ' - T / ) a n d  pll~= Tkj. By Vji --  ~ Vki - -  
\ P j k / '  Pjk Pjk 

assumption Tkj > 0 and pjj Tjj < det P, hence det P = pjj Tj.j-- Pkj Tkj -- Pij Tij ~ Pjj Tjj 
--p~jT~j implies T~j<0, showing that Vk~"(l~"a~ and thus /'1>_0._ Notice that the 

3 

condition B(k,j) >= det P > 0 ensures ~I PI~ ~ --> det P1. 
i=1 
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Now assume A21 #:Zki (P~Jl t but PI>0.  Then the condition B(n,m)<detP 
\Pdk] 

3 

for (n, m) :~ (k,j) implies that I !  vii-(1)< det P,1 which is impossible. This completes 
the proof. ~= 1 

Lemma 2.5. Assume P > 0 ,  B(k,j)> det P>O for some (i,j,k)~ S and B(n,m)< det P 
for (n, m)# (k,j). Then at least 5 Poisson matrices are needed to embed P. 

4 

Proof(by contradiction). Suppose P= I] A,,, B(k,j)>detP, and let P1 = P A 4  t. 
m = l  

Since 4 is the smallest number of Poisson matrices that can possibly embed a 

positive matrix we must have P1 >-- 0. Hence by Cemma 2.4 P1 = PZki (Pill and P1 
\ P j k  ] 

has only one element equal to zero, namely pji--(1). Now observe that the only way 
PI can be embedded by 3 Poisson matrices is for P2 =PIA~ 1 to have 3 dements 

(2) n(2) equal to zero and these elements in addition to P~i = 0 have to be Vik and p~2). 
1 1 (2) (2) We will now show that it is imposs'b e to get Pik =Pjk =0  thus deriving the 

[ 0 ) \  
P~" | contradiction. In order to get t'ik"(Z)=P~ 2)=0 we must have A~ -1 =Z~k or ) I 

AyI=Zjk  ~ ] .  However, notice that if we let P2=P1Zjk [P~)] , then 

p(2)_,,(1) ~ I1) = + Tk(il) < 0 ik - -  F ik - -  P 

since Tki > 0 and B(k, k)< det P imply that Tki < 0 and hence Tk(/1) = (1 + Pji ] Tk i < O. 
P j k  ! 

In(z)  \ 

Now if P2 =PiZJk \Plj Ivik~]l then l~ikn(1) =u," but 

n(1) 1 p(2)_,,O) elk _(1) ~ 
ik -v jk  - ~ p j j  =.~iT t -  T{i ~)) > 0. 

IJij l ) i j  

This completes the proof. 
We can now prove 

Theorem 2.1. A necessary and sufficient condition for a positive matrix P to be 
embeddable by at most 6 Poisson matrices is 

T U 
B(i,j)-PiiP~j~fji>detP>O for some i , j=1 ,2 ,3  (2.1) 

or that 3 (i,j, k) ~ S and 0 < c < clj such that 

Bl(j , i)=detPl>O where PI=PZu(c). (2.2) 

Equation (2.2) is equivalent to the following quadratic equation in c 

P~Pu Tjj c 2 + p~ (det P - pjj Tjj-- p~ Tj~) c + Pu PiJ Tj~ -- Pu det P = 0. 

Proof. 
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6 

Sufficiency: If B(P)>de tP  then P =  H Am by Theorem 1.2a). Next suppose 
m = l  

B(P)<de tP  and let P1 =PZ~j(c)>O be the matrix satisfying B~(j, i )=detP1.  By 
Lemma 1.2a) Bl(n ,m)<de tP  ~ for (n,m)+(j,i) and hence by Lemma 2.2 P1 is 
embeddable by 5 and P by 6 Poisson matrices. 

6 
Necessity (by contradiction). Let P = 1] Am, P1 = PA61 and suppose that P does 

m = l  

not satisfy (2.1) or (2.2). Then by Lemma 1.1 Pa>0 and by Lemma 2.3 
4 

B(P~)<detPa. Next, applying Lemma 1.1 to P1 we get 0 < P 2 =  I1 Am. Now 
m = l  

since 4 is the smallest number of Poisson matrices that can possibly embed a 
3 

positive matrix we must have P3= ]-[ Am>0. Hence by Lemmas 1.1 and 1.2a) 

Bz(k , j )>detP 2 for some (i , j ,k)~S and Ba(n,m)<detP 2 for all (n,m)+(k,j). But 
then by Lemma 2.5 at least 5 Poisson matrices are needed to embed P2, 

4- 

contradicting P2 = 1~ Am" 

3. The Structure of 3 x 3 Embeddable Matrices 

We will denote by P(J,O, (i , j ,k)eS, a positive matrix P which satisfies B(j,i) 
= det P > 0 and B (n, m) < det P for (n, m) 4= (j, i). 

Lemma 3.1. Suppose that P > 0  is an embeddable matrix but B(P)< det P. Then P 
can be represented as 

P=P(j,i)A1A2 ... A,  for some ( i , j ,k)eS and some 
Poisson matrices A1, A 2 . . . . .  A,,, n__> 1 (3.1) 

such that is we let P~=P~y,~)A1A 2 ... A . . . .  1 <_s<_n- 1 then Ps>0 and 

B(P~) < det P~ for l<_s<n-1 .  

Proof. Immediate from Lemma 1.1 and Lemma 2.3. 

The representation described in Lemma 3.1 is highly nonunique. First, there 
may be more than one permutation ( i , j ,k)eS for which P has representation 
(3.1). Two, for any (i,j, k)~ S for which P has representation (3.1), there are many 
choices of the matrix Pc j, 0, the Poisson matrices A 1 , A2, ..., A n, and their number 
n such that P=P{j, oA~A2 ... A,. 

Let P be as in Lemma 3.1. Let SeeS  denote the set of permutations for 
which P has representation described in Lemma 3.1. For ( i , j ,k)eS e let n2i 
=smallest n, i.e., smallest number of Poisson matrices A1, A2, . . . ,A, ,  such that 
(3.1) holds. Consider the set R of representations for P. 

R = {P{j,i)A1 Az . . .  A,,,l(i,j, k) ~ Sp}. 
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Let g = m i n  {nj~[(i,j, k)~ Sp}. We will call any representat ion in the set R for 
which nyi=~ , a minimal representation for P and write it as Po.oAIA2 ... A n. We 
will call A a A 2 ... A n a minimal product for P. 

The structure of  Po.o is given in L e m m a  2.2. In order to investigate the 
structure of  the minimal product  for P, we introduce the concept  of  extended 
commutat ivi ty,  see Definit ion 1.1. 

The following definition is identical in nature to Definition 1.1. 

Definition 3.1. We say that Z ~ - A ~  1 and Z~p-ATv I commute  in the extended 
sense if for any constants cl ,  c 2 > 0  we can find constants b l , b 2 > 0  such that 

Zij(C l ) Zip(C2) = Zzp(b l) Zi~(b 2). 

In all that  follows the word " ' commute"  is used in the extended sense. 
Clearly, A~j and Azp commute  if and only if Zij and Zzp commute.  

L e m m a  3.2. Ai~ and Alp commute if and only if (1,p)=(k,j), (i,k), (j,i), (i,j). 

Proof Clearly, Aij(Ul)  Ai j (u2)  = Aij(u2) Ai j ( u l )  = Ai j (u  ) where u = u 1 + u 2 - u lu  2. 
A~j and Aki commute  in the usual sense, i.e., for any 0 < u l , u 2 <  1 

Aij(Ul) Akj(U2) ---- Akj(U2) Aij(ul). 

N o w  it is easy to check that  

Aij(u 1) Aik(U2) ---- Aik(Wl) Aij(w 2) 

ul , while if w I = (1 - ul) u 2 and w 2 - 1 - u z + u 1 u 2 

Aij(ul) Aji(u2) = Aj i (Wl )  Ai j (w2)  

U2 and W2 =Ul (1 - -U2) .  if w I -- 1 - -u  1 At- UlU2 

It is clear that  Aij and Alp do not commute  if (l, p ) =  (j, k) or  (l, p ) =  (k, i). This 
completes the proof. 

L e m m a  3.3. For any 0 < ul,  u2, u3 < 1 we can find 0 < wl,  w2, w3 < 1 such that 

Ajk(Ul) Aij(u2) Ajk(U3) = Aid(w1) Ajk(W2) Aij(w3) (3.2) 

Proof It is a matter  of simple computa t ion  to check that if we let 

u2 u3 u, u2 ( 1 -  u3) 
W I =  Ul ~-U3 --UlU3' W2=Ul'JVU3--UlU3 a n d  W 3 = u l ( l _ u a ) + u 3 ( l _ U a  ) 

then (3.2) holds. Clearly 0 < wl, w2, w 3 < 1. 

L e m m a  3.4. Suppose P > 0 ,  B ( P ) < d e t P  and let P(;,oA1A2A3...Aa, n> l be a 
minimal representation for P. Then A 1 = Ai; and A 2 ---- Aki.  

Proof If  ~ =  1 then L e m m a  1.2a) together with the definition of  P(i,o show that 
A 1 =A/j .  Next  suppose ~ = 2 ,  that  is P=P(j, oA1A2. Clearly P(j, oA1 is then a 
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minimal representation for P A y  1 with ~ =  1. Hence A 1 =Aij. We will show that 
A 2 =Aki by elimination of all other possibilities. If A e =Aik, Aki or Ajl we have 
by Lemma  3.2 

P=P(j,i)Aij(Ul)Az(uz)=P(j,i)Ae(wa)Aij(Wa) for some 0 < w a ,  w 2 < l .  

But then P(j, oA2(wl)Aij(w2) is also a minimal representation for P which is 
impossible since Az@Aij. Hence Az=t=Aik, Akj, Aji and it remains to be shown 
that A 2 =[=Ajk. Suppose to the contrary that 

let 
P=P(j,i)Aij(ue)Ajk(Ul) for  some 0<Ul,  u 2 < l  

U i P2=PZjk(Cl)Zij(c2) where C i - l _ u l  , i=1 ,2 .  

We will show directly that Be(j, i)< det P2, thus contradicting P2 = P(J,0" We have 

�9 rj?  
B2(j,O=Pjj Pu n!2) 

rtJ 

- |T,i (T j j - c  t Tik)[ (1 + C0(1 +Ce). 
C2 Pii) PU L-- l + c a  

Plj 1 + c a 
~ J 

1 

If  Bz( j , i )>de tP  2 then clearly Tj]2)>0 and we must have Tj~2)=(l+c0(1 
"-~c2) r j k < 0  , and hence Tjk<0, since otherwise de tP2>0  would imply that 

c2 in p(2) jj Tff ) > d e t  P z, which by Lemma  1.2a) is impossible. Hence letting c =  
(3.3), using the fact that Tjk < 0  and defining P1 =PZii(c) we get 1 + c a 

B2(j,i) (Pjj-cpjl) p u [ T j i - c T j j + c . c l  T~k ] 
(l+cO0+c2) (pij-cpli) 

< (pjj-cpji)  pu[Tji-cTjj]  Bl(j ' i)  
(~ij-cpii) - l +c 

Now observe that B 1 (J, i) < det Pa or equivalently < det P since otherwise 

the minimal product for P would consist of 1 rather than 2 Poisson matrices. 
Hence B2(j , i )<detP 2 as we wanted to show. This concludes the proof  for ~=2 .  

If  P = P~j, 0 A a A 2 .-. A~, ~ > 2, is a minimal representation for P then P(j, i)A a A 2 
is a minimal representation for PA:# 1 A~11 ... A31. Hence A a = Aij and A 2 = Akl. 

Theorem 3.1. The minimal representation for an embeddable matrix P > 0 such that 
B(P) < det P has the structure 

P = P(j, i ) (A i jAk iAjkAi j  "" .) = (Ak iA jkAi jAk iA jk )  ( A i j A k i A j k A i j "  .) (3.4) 
for some (i,j, k) ~ S 
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where the product of Poisson matrices in the first parenthesis represents P(j, ~) and 
the product in the second parenthesis is finite. 

Proof (by induction on g-size of the minimal product). 
The representation of P(j,~) is given in Lemma 2.2. The theorem was proved 

for g = 1 and g = 2 in Lemma  3.4. Assume that the theorem is true for g = N and 
suppose that a minimal product in a minimal representation for P is of size N 
+1,  i.e. 

P=P(j,i)A1A2 ...AN, AN+ 1 for some (i,j,k)~S. 

Clearly P(j,I)A1A2... A N is then a minimal representation for PA;~+I, hence by 
induction assumption we have 

A1 A 2 "" ANAN + 1 = AijAkiAjkAij... AkiAlp 
v 

N matrices 

for some (l, p, r)~ S. We will show that (l,p)=(j, k) by elimination of all other 
possibilities. Clearly (l,p):#(k, i) since by assumption a minimal product for P 
consists of N + I  Poisson matrices. Suppose (1,p)=(j,i), (k,j) or (i,k). Then 
applying Lemma 3.2 repeatedly we get 

P =P(j,i)Aij(ul) Aki(Uz) Ajk(U3)'" Aki(UN) Azp(UN+ 1) 

= P(i, i) Alp (w 1) Aij(w2) Aki(W3) Ajk (W4) �9 .. AIj(WN) Agi(WN+ 1) 

for s o m e  0 < W l , W 2 ,  ...,WN+I < l  

which implies that there is a minimal representation for P with the first matrix 
in the minimal product different from Ai~ which according to Lemma 3.4 is 
impossible. Hence (l, p)~ (j, i), (k,j), (i, k). Finally, suppose (l, p )=  (i,j), i.e. 

P = P(j, i)Aij(ul) Aki(U2) Ajk(U3)'" Aij(uN 1) Aki(UN) Aij(uN + 1) 
for some O<Ul,Uz,U3, . . . ,uN+~<l .  

Then repeated application of Lemma 3.3 gives 

P = P(j, i) Aki(Wl) Aij(w2) Aki(W3)... Aij(Wu) Aki(WN+ 1) (3.5) 

for s o m e  O~Wl,W2,W3, . . . ,WN+I<I if N is even 
and 

P = P(i, i)Aij(ul) A2k(ZO Aki(Z2)"" Aij(ZN- 1) Aki (ZN) (3.6) 

for some 0 < z l , z  2 .... ,ZN<I i f N  is odd. 

Thus when N is even (3.5) is a minimal representation for P with the first matrix 
in the minimal product different from Aij, while when N is odd (3.6) is a 
minimal representation for P with a second matrix in a minimal product 
different from Aki, which is impossible by Lemma 3.4. This completes the proof. 

Theorem 3.1 together with the bound on the number  of Poisson matrices in 
the Bang-Bang representation, see introduction, suggest the following algorithm 
for determining whether a given 3 x 3 stochastic matrix is embeddable or not. 
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We start by asking whether a given matrix P > 0, which is not embeddable 
by 6 Poisson matrices can be embedded by 7 Poisson matrices. Let P2 
= PZii(cl) Zjk(c2)-/'1Z~k (ca). By (3.4) the question becomes: are there (i,j, k) ~ S 
and constants 0 < c  a <cij, 0<c2  <~}1) such that B2(k,j)=det P2. If the answer 
is negative we ask about embeddability of P by 8 Poisson matrices. Let 

P3 = PZq(c 1) Z jk(C2) Zki (C3) ~ P1 Zjk(c2) Zki (c3) =- P2 Zki (c3) 

and ask are there ( i , j ,k)cS and constants 0<c~<~i j  , 0<c2 <~(1)~jk, 0 <  c3 <-(2)ck i 
such that B3(i, k)= de tP  a. We continue this way until we find the right number 
of Poisson matrices that embed a given matrix or reach one plus the upper 
bound, whichever is smaller. In the last case we conclude that the matrix is not 
embeddable. 
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