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Summary. Let S,=~1 + ... +~, ,  n__> 1, be the partial sums of stationary, de- 
pendent random variables in IR". The probability space can be partitioned 
into I t w I r, where I t = { I IS, II--' oo) and 1~ = {each S, is limit point of (S,),>__ 1}. 
This result follows from the inclusion {llS.II >~ for n > 0 } c I ~  a.s., which is 
obtained by using Kac's inequality. 

1. Introduction and Results 

Let (Sn),_> o be a process with values in the m-dimensional Euclidean space IR m. 
We assume that So=0  and that the increments ~ , = S , - S n _ I ,  n>__l, form a 
stationary sequence. The process (S,),> o will be called a random walk with sta- 
tionary increments. We discuss a technique to investigate transience of (S,)n>=O 
and use it to prove a result that justifies the subdivision into transient and 
recurrent random walks, for the generalization of the class of random walks 
given above. 

This class of processes was studied earlier in [5] and [7]. [1] discusses 
renewal theory for these random walks. Also in ergodic theory the process 

(S,),>_o is studied. For  example the limit behavior o f - t S ,  is described by the 
4 

n 

individual ergodic theorem. The results below were discussed earlier in [1] for 
random walks on the real line. The present approach is not only simpler but 
is also suitable for random walks on IR m, m > 1. 

The technique that enables us to investigate transience of a random walk, is 
presented in Sect. 3. Using this technique we obtain the following theorem. Let 
II. II be the Euclidean norm on IR m. 

Theorem 1. For any positive e 

{[]S.II>~ for n > 0 } c { l i m  ] lS.II=~} a.s. 
n ~ o o  
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Theorem 2 below is a consequence of this result. To formulate it, define the 
sets of transience I t and of recurrence I r by 

I t= { lim IlSnll = oo}, 
n ~ o o  

It= {each Sn, n>0 ,  is a limit point of (Sn)~_>0}. 

These definitions are justified by 

Theorem 2. P(I t w It) = 1. 

Obviously this result implies the following recurrence criterion: 

{0 is a limit point of (S~)~o} = l r  a.s. 

Note that in case the increments of the random walk are independent, (~n),->l 
is ergodic (compare I-2]). So then we have, because I~ is invariant for (~)~=>-l, 
that Ir has probability 0 or 1. 

Suppose P(Ir )= 1. Define the random set 

L =  {x~lRm: x is a limit point of (S,)~__>0}. 

If the increments of the random walk are independent, it is well-known that L 
coincides a.s. with a (non random) lattice on IR m. However without this inde- 
pendence assumption, the behavior of L is much more irregular. 

Example. Let (X,)~>=o consist of independent random variables, uniformly dis- 
tributed on (0,1). Define ~ = X ~ - X ~ _ ~ ,  n>=l, and note that S n = X ~ - X o ,  
n>0.  One easily proves that L is a random set, given by L = [ - X o ,  - X o + l  ] 
a.s.  

Any stationary sequence (~,),__>1 can be extended to a stationary sequence 
(~),~z (compare [2]). An important role in our discussions is played by the 
extended random walk (S,)~z, defined by requiring 

So=O, ~n=S~-S~_~,  n~2~. 

n 0 

Note that S n = ~ ~i, n > 1, and S, = - ~ ~i, n < - 1. 
1 n + l  

The lemma in Sect. 3 is our main tool in the proof of the results above. To 
discuss it, we first have to introduce the concept of a return set. 

2. Return Sets 

In the theory of random walks with stationary, independent increments, re- 
generation epochs are frequently used. If only stationary is imposed, it is possi- 
ble to make use of the so-called return times, that have weaker, but still useful 
properties.  [6] shows that the class of return times is basic for the much larger 
class of stopping times. Below we introduce the narrowly related concept of a 
return set. By well-known arguments (see [2], Sect. 6.10), we prove a simple 
result for return sets. 



Recurrence and Transience for Random Walks 533 

Let T be the shift transformation on (lRm) Z, defined by T(xi)i~z=(Xi+l)iez. 
Write ~ for the stationary sequence (~,),~z. Let ~3 m be the Borel a-field on IR m 
and take Be 1-[ ~3". The return set M of B is defined as 

n~7/ 

M =  {n~2g: T ' ~ B } .  

An example of a return set is the set of ascending record times 

with B given by 

{nET7. S ,>S k for k<n}, 

B = {  (x~)i~z:0>-k+l ~ xi'k<Ot" 

Let M be a return set. Using Poincar6's recurrence principle (see [2] and 
[-3]) one deduces easily that on {M#0} 

#Mc~ {..., - 2 ,  - 1} = #mc~ {1, 2, ...} = oo a.s. 

and hence the elements of M can be written on this set as 

. . . <z_  l < 0 < z o < z  a < . . .  

Define on {M#0} the process ~ by ~=(~,),~z, where 

~ = ( ~  +j)~=+~-~~ n~TZ. 

These random vectors have their values in the space U (IRa) k- 
k>__l 

Proposition 3. Let M be a return set that is non-empty with positive probability. 
Then {0eM} has positive probability and, given {0eM}, the process ~ is sta- 
tionary. 

Proof The event {0~M} has positive probability, for otherwise, by stationarity, 
{k~M} would be a P-null set for all k, thus contradicting P ( M + 0 ) > 0 .  Choose 
A r I-I ~B" arbitrary. Splitting up {4 ~A, z o =0} by considering the occurrences of 

n~7/ 

z l = - n , n > l ,  weget  

P(~6A, -c0=0 ) 

= ~. P ( ~ A ,  ~ B ,  T-I~r  ..., T-"+I~(IB, T - " ~ B )  
n>=l 

= ~ P(T'~6A, T " ~ B ,  T "-~ ~r r~(~S, ~ S )  
n > l  

= ~ P((~+k)k~z~A, "r 1 =n, "%=0) 
n > l  

= P((~,~ +k)k~z ~A, ZO = 0). 

Divide by the probability of (%=0}={0~M}.  It follows that, given {O~M}, 
the processes (~,),~z and (~,+~,),~z have the same distribution. This implies the 
assertion. To see this write ~',=~,+~, n ~ .  If v', is defined from ~,-t~,~_t ,~,~z just 
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as z n is from ~=(~,),~e, then z ' ,=z ,+ 1 - ~ 1 .  Let ~', be defined from ~' just as ~n 
is from ~. Then 

~' --t~' v;~ + ~ - ~;~ . . . .  ~ . . . .  ~ -- 

It was proved that r and ~' are equally distributed, given {0eM}. Hence this 
holds also for ~ and ~' and so (~,),~e is distributed as (~,+l),~e, given 
{OeM}. [] 

3. Inheritance of  Transience 

Let s~c = (Sk)k~ K be a sequence of elements of ]R '~, indexed by K c 2g. We say that 
this sequence is transient if each bounded set V~3 m contains only finitely many 
elements of the sequence. 

Main Lemma. Let  M be a return set. I f  on {M:#0} the subsequence (S,)n~ M is 
transient a.s., then also on { M  ~ 0} the sequence (S,),~zz is transient a.s. 

Proof. We may suppose that P (M:#0)>0 .  Define z~ and ( ,  as above. Each 
increment S . . . .  --ST, of the process (S~,),~z equals the sum of the components 
of ~n. Hence by Proposition 3, given {0eM}, the process (S~,),~z is a random 
walk with stationary increments. By the assumption of the lemma, this random 
walk is transient a.s. 

We consider the random walk (S,)~ z on {M+r We associate to each 
point S, a point of (S,),~M, or better, we associate to each neTZ an element of 
M, given by 

a(n)=inf{zk: IIS.-S~k[I =infllS.-S~,ll, ke~}. 
i 

So a(n) is the smallest element in M for which the distance of S n to S M is 
minimized. Because S M is transient a.s., a(n) is properly defined on {M40}.  
We consider for any k the number ~ r - ~ { z k }  of elements n~2g associated to 
zk~M.  Using Proposi t ion3 one easily observes that (#a- I { zk} )k~Z  is sta- 
tionary, given {0~M}. We calculate the expected value of the random variables 
of this sequence. Write Po and E 0 for probability and expectation, given 
{0~M}. Using Proposition 3 in the third equality below, we get 

Eo#~-l{O} = Z Eof{n: ~(n)=O, ~<n=<zk+~} 
keZ 

= Y~ Eo4~ {j" G(j+~k)=0, 0<j_--<~k§ 
keT] 

= Y~ Eo:~ {j: ~(])=~_~, 0<j_-<~l} 
k~Z 

= E  o ~ ~ I~o(j)=~ k~ 
j = l  k~Z 

= Eo T 1 = 1/P(O~MI M :# O). 
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The last equality is due to Kac (compare [-2]). Hence # G-1 {0} < co Po-a.s. and 
by stationarity # ~r-~{zk} < oo Po-a.s. for all integers k. 

Let V~B "~ be a bounded set. Consider, given {0~M}, the random variable 

N(V)= #{ne7/ :  S,,eV}<= ~ #a-l{Zk} 
k e K  

where 

K={k~2~: cr(n)=zk, S, eV for some integer n}. 

If keK we have for some S,eV that a(n)=%. So then for a n y j  

d(S,~, r)< [l&,~-S,,ll-< II&~-S,,ll, 
where d(x, V) denotes the distance of x~lR '~ to V. Because S, EV 

d(S~, V)<diam V+d(S w V) 

for any j, if keK. Hence 

K c { keTZ : d(S~, V)<diam V + inf d(Sv, V)}. 
J 

Because S M is transient a.s. on {0eM}, it follows that K is finite a.s. on {0eM}. 
Hence N(V) is finite a.s. on {0eM}, for any bounded Ve~3 m. It follows that 
(S~),~ z is transient a.s. on {0eM}, and, by stationarity, on {keM} for any k. 
This proves the assertion. []  

Note. Part of the argument above can be found in a proof of a result in [-4] on 
transience of random walks. 

4. Proofs of the Theorems 

Proof of Theorem 1. Define a return set M by 

M = { k ~ :  lIS,,-Sk[] >~ for n>k}. 

All points Sn, n~M, are separated by distances at least 8, so (S,)n~ M is transient. 
By the main lemma also the full sequence (Sn)~ z is transient a.s. on {O~M}, so 
we have 

{llS, l i > ~ f o r n > 0 } ~ {  lira TIS~[1=oo} a.s. []  (1) 
,~ •  

Proof of Theorem 2. Let e~0 in (1). We obtain 

{0 is not a limit point of (S~)~o}C{ lim [FS, F[ =oo} a.s. (2) 
n ~  +--. o o  

and so, by stationarity for any k 

Ag= {Sg is not a limit point of (S~)~>=o } c { lim IIS~ = ~ }  a.s. 



536 H. Berbee 

The  asser t ion  is ob t a ined  by using tha t  

(U Ak) c= {each S k is a l imit  po in t  of  (S,)n__>0}. [ ]  
k 

As a side resul t  we ob t a in  

Proposition 4. {lim IISoll - -  o o }  - -  { lim IIS~ll = o o }  a . s .  

Proof. By (2) we have  

{lim IIS, II=oo}~{ l im I I S ~ l l - - o v }  a.s .  
n ~ o o  n ~ _ + o o  

Obvious ly  equa l i ty  holds.  Toge the r  with the co r re spond ing  resul t  for (S_n) in- 
s tead  of (S,), this yields the assert ion.  [ ]  

Note .  The  connec t ions  be tween  (S,),>=0 and  (S ,),_> 0 are  not  a lways obvious  or  
s imple  to derive. F o r  ins tance  in [1]  a r a n d o m  walk  is cons t ruc ted  with sta- 
t i ona ry  increments  on the real  l ine for which 

P ( l i m  S , = ~ ) = I ,  P ( l i m  S ,  ex i s t s )=0 .  
n ~ o ~  n ~ o o  
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