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Summary. The equation 
x 

F(qx)=~(1 -F(u))du, 
0 

x > 0  (,) 

where F is a distribution function (d.f.), arises when the limiting d.f. of the 
residual-lifetime in a renewal process is a scaled version of the general- 
lifetime d.f.F. The equation 

x 

G(qx)=~uG(du), x>=O (**) 
0 

on the other hand arises when the limiting d.f. of the total-lifetime in a 
renewal process is a scaled version of the general-lifetime d.f.G. 

For  0 <q < 1 the class, Fq, of all d.f.'s satisfying (,) has been recently 
characterized and shown to include infinitely many d.f.'s. By explicitly 
exhibiting all the extreme points of Fq, we recharacterize Fq as the convex 
hull of its extreme points and use this characterization to show that for q 
close to one the d.f. solution to (,) is "nearly unique." For example, if q > 0.8 
then all the infinitely many d.f.'s in Fq agree to more than 15 decimal places. 

The class, Gq, of all d.f. solutions to (**) is studied here, apparently for 
the first time, and shown to be in a one-to-one correspondence with Fq; 
symbolically, 1-Fq(x) is the Laplace transform of Gq(qX). For 0 < q < l ,  we 
characterize Gq as the convex hull of its extreme points and obtain results 
analogous to those for Fq. For  q >1 we give a simple argument to show 
that neither (**) nor (*) has a d.f. solution. We present a complete, self- 
contained, unified treatment of the two dual families, Gq and Fq, and 
discuss previously known results. 

A further application of the theory to graphical comparisons of two 
samples ( Q -  Q plots) is described. 
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1. Introduction and Results 

Let Xz>__0, independent with mean # <  oe and common d.f. F, represent the 
lifetimes of a replaceable unit such as a lightbulb, and assume that lightbulbs 
are immediately replaced when they burn out. Denote by Y~, Yt' and Z t -  Y/+ Yt 
the residual lifetime, the age, and the total lifetime, respectively, of the lightbulb 
that is operating at time t. It is well known (see [2], for example) that as t Too 
suitably, Yt and Z t (also Yt' but this is not of importance here) converge 
stochastically to random variables Y and Z, respectively, the distributions of 
which are 

x 

P[Y<=x]=#-l~(1-F(u))du, x>O, (1.1) 
0 

x 

P[Z<=xJ=#-l~uF(du), x>=O. (1.2) 
0 

If in (1.1) F ( x ) = l - e  -x/u, so that X is exponential, then P[Y<x]=F(x) and Y 
has the same d.f. as X, Y~X.  To generalize we ask for which d.f.'s F is Y a 
multiple of X in law, Y~X/q? If Y~X/q then (1.1) becomes 

x 

F(qx)=~-lj(1 -F(u))du, x>=O. (1.3) 
0 

We note that without loss of generality we can take # =  1 in (1.3); indeed, 
replacing F(x) by F(t~x) reduces (1.3) to 

x 

F(qx)=~(1 -F(u))du, x>O (1.4) 
0 

where F is a d.f. which, as a consequence of (1.4) itself, has mean # =1 .  If 
instead of Y~X/q, we ask for which d.f. F, Z~X/q,  then (1.2) becomes 

which reduces to 

x 

V(qx)=~-l~uV(du), x>=O 
0 

x 

6(qx)=~uG(du), x>__O (1.5) 
0 

upon substituting G(x)=F(t~x). Note that G i s  a d.f. with unit mean. 
The quantity uG(du) is often called the probability density function corre- 

sponding to the length-biased-sampling of G [2, p. 65]. Its statistical interpre- 
tation is that we sample from a population in which the length of each 
individual is distributed according to G(u) and the probability of selecting any 
individual in the population is proportional to its length, u. This type of 
sampling bias appears often in statistical applications and is independent of the 

1 Note that here, and throughout the paper, we do not distinguish in our notation between a d.f. 
and the corresponding measure, so that F(du) and dF(u) have the same meaning 
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context of renewal theory. It is therefore of interest to know for which d.f.'s G 
the length-biased-sampling effect amounts to a change of scale in the original 
distribution. More on the motivation of these problems after a short discussion 
of the literature and statement of results (known and new). 

In the context of renewal theory, Eq. (1.4) was first considered by W. 
Harkness and R. Shantaram [5] and then by R. Shantaram and W. Harkness 
(SH) [7], and P. van Beek and J. Braat (vBB) [8]; the latter obtained the 
general d.f. solution of (1.4) for the case 0 < q < l  (Theorem 4.1 of vBB). Quite 
different than ours, the motivation of these authors in studying (1.4) was to 
characterize all the possible limiting laws of (suitably normalized) sequences of 
iterated residual-lifetime distributions. Nevertheless, from a probabilistic view- 
point Eq. (1.5) is of no less interest than (1.4). We note, in particular, that (1.5) 
characterizes all the possible limiting laws of (suitably normalized) sequences of 
iterated length-biased distributions; a result entirely parallel to that which 
motivated the work of these authors with (1.5) replaced by (1.4) and "length- 
biased distributions" replaced by "residual-lifetime distributions". (This state- 
ment is an easy consequence of vBB's result and Theorem 1 below.) 

Outside of renewal theory, the interest in (1.4) arose much earlier, and of 
particular importance is the work of N.G. De Bruijn [33 who solved the 
functional equation 

H'(x)=ePX+~ H ( x - 1 )  

which is equivalent to (1.4) upon substituting H(y)= 1 - F ( x ) ,  x = qY, fi = log q, e ~ 
= - f i e  -~. More explicit results are obtained, however, when attention is re- 
stricted to d.f. solutions of (1.4). 

Let Fq denote the set of all d.f.'s F satisfying (1.4) and Gq the set of all d.f.'s 
G satisfying (1.5), then we have 

Theorem 1. I f  F~Fq then O3 

F (x) = 1 - S e-  xy G (d q y) (1.6) 
0 

for some G~Gq; conversely, if GEGq then F, defined by (1.6), belongs to Fq. 

Theorem 4.1 of vBB, combined with Theorem 1, characterizes Fq and Gq, 
for 0 < q < l ;  the case q 71 is not treated in vBB and should be considered 
separately. For subsequent results, however, it is preferable to give the com- 
plete characterization of F~ and Gq separately, and because of (1.6) it is 
instructive to start with Gq and then deduce Fq. This is done in Theorems 2 
and 2' respectively. 

Theorem 2. 
(i) I f  q > 1, Gq is empty. 

(ii) I f  q = l ,  the unique member of G 1 is G(x)=l  for x >= l and 0 otherwise. 
(iii) I f  0 < q < 1, for any periodic measure v (defined on the Borel sets of the 

whole real line) satisfying 

v(A)=v(A+I)>=O for any set A 

v([0, 1))= 1, (1.7) 
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the d.f. G~ given by 

G~(du)=q~2/2v(dv) qS~/2v(ds), u-q~+l/2, - o o < v < o o  (1.8) 

belongs t o  Gq," conversely, if GsGq it is of the form (1.8) for some periodic 
measure v satisfying (1.7). 

(iv) The d.f.'s G belonging to Gq, 0< q<  1, all have the same moments which 
are: 

<70 

~x"G(dx )=q  n ( n - 1 ) / 2  n=0,  _+1, +2, ... VG6Gq. 
0 

Remark. It is interesting to note that the family Gq includes the family of C.C. 
Heyde [-6] which demonstrated, for the first time, the indeterminacy of the 
lognormal distribution by its moments. 

Corollary. I f  X is a r.v. having a d.f. Gv~G q then q/X has a d.f. G~Gq,  where 
the measure ~ is given by V ( A ) = v ( - A )  for any set A. In particular, if v is 
symmetric about O, X and q/X have the same d f  

With Theorem 1 at hand, Theorem 2 is equivalent to 

Theorem 2'. (Except (i), this is Theorem 4.1 of van Beek and Braat [-8].) 
(i) I f  q > 1, Fq is empty. 

(ii) I f  q = l ,  the unique member of F 1 is F ( x ) - - 1 - e  -x, x>0 .  
(iii) I f  0 < q < l ,  for any periodic measure v satisfying (1.7), the d f  F~ given 

by 

F v (x) = 1 - e-  xq" - 1/z qU2/2 V (d u) q,2/z v(d u), x > 0 
- o o  

(1.9) 

belongs to Fq" conversely, any d.f. FeFq is of the form (1.9) for some periodic 
measure v satisfying (1.7). 

(iv) The d.f.'s F belonging to Fq, 0 < q <  1, all have the same moments which 
are: 

co 

~ x " F ( d x ) = n ! q  -"~"-:)/2, n=0 ,1 ,2  .... .VF~Fq. 
0 

The class of measures satisfying (1.7) is convex and compact and its extreme 
points are the measures Vo, 0 <  0 < 1, where v o is a periodic train of unit point 
masses at {n+O;n=O, +1 .... }. It follows from Theorem2 (2') that Gq(Fq) is 
convex and compact with extreme points G o = Go, q (F o =_FO,q) given by 

Go(x)= ~ q(,+o)2/2 ~ q(n+o)2/2, x_>0, (1.10) 
n e A x , o  n =  -- 

A~ o=(n;  0 > l ~  , n+ =logo 1} 
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and 

1-Fo(x)= e-:'q"-'/~q "2/2 x~O, u=n+O. (1.11) 
n= - c o  I1 

The general d.f.'s in Gq and Fq are then given by 

1 1 

G(x)=Im(dO)6o(x), F(x)=Im(dO)Fo(x) (1.12) 
o o 

where re(dO) is a probability measure on 0__< 0<  1. 
Since F o are the extreme points of Fq we see that the maximum difference, 

at x, between any two d.f.'s in Fq, 

ev(x, q)= sup [F(x) -F(x) l  (1.13) 
F, FeFq 

is given by the supremum of F o - F  o over 0<0,  0 <  1, 

ev(x, q) = sup [Fo(x ) - Fo(x) l. (1.14) 
0,0 

A bound on ev(x, q) is given in 

Theorem 3. For q > e-  2~ ~ 0.001867, 

e ~s 7n 2 
8t(x,q)<=4 --,8e 8, ,  c t_ logq-  1. (1.15) 

( V  ~ -  1) sinh(zt2/a) 

In particular, it follows that for q close to 1 the family Fq is very "tight" and, 
from a numerical view point, it can be thought of as consisting of only one dr.; 
this is evident upon observing that if, for example, q>0.8 then (1.15) implies 
~F(x, q)< 10 -15 for all x (we have numerical evidence that the bound in (1.15) is 
conservative and the number 10 -~5 can be safely replaced by 10-2~ In 
Figs. 1-3 we give graphs of Fo(x)=Fo.q(X ) for various values of q and 0; it is 
apparent from the Figures that for q near 1 all the d.t.'s F satisfying (1.4) have 
their graphs lying in a narrow "cloud" and thus in a numerical sense F is 
"nearly unique". 

Though the family Gq 
in principle and for 

is not as "tight" as Fq, its behavior as q]'l  is similar 

e~(x,q)= sup IG(x)-G(x)[ 
we have ~,G~Gq 

Theorem 4. Let G(x)= supG(x), G(x)= inf G(x), then 
GeGq GeGq 

(1.16) 

supe~(x,q)=eG(]/~,q) = ~ e , a - l o g q  -1. (1.18) 
x n 

(2 )' 8G(X, q) = G(x ) -_G(x)  = q n2/2+nv , x = q  v+1/2  (1.17) 
n -  co 
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Fig, 1. The "cloud" of d.f?s belonging to Fo,o3~25, 1-Fo, o,o312~(x) for 0=<0<1 superimposed 
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Fig, 2. The "cloud" of d.f?s belonging to Fo,~2 s, 1 -Fo ,  o.12s(x) for 0 < 0 <  1 superimposed 

In fact, G(x)=H(v)  and G(x)=H(v+ I) where x = q  v+ 1/2 and 

H(y)= ~ q(~,+.)2/2 q(y+k)2/2. (1.19) 
n=O / k= - ~  

Relations to other families of d.f.'s are given in the following additional 
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Fig. 3. The "cloud" of d.f.'s belonging to F o 5 1 -Fo, o.~(x) for 0<0< 1 superimposed 

Properties. 
P1. I f  F~Fq then F has a decreasing failure rate, and 

r(x)- -fxlog(1-F(x))=q-~(1-F(q-ax))/(1-F(x)), x>O. 

P2. Denoting by N(~, r7 2) a normal r.v. with mean ~ and variance rr 2, the d.f. of 
Zq = exp {N(2-1 log q, log q)}, which is lognormal with unit mean, belongs to Gq. 
P3. (Shantaram and Harkness [7]) Denoting by V an exponential r.v. with unit 
mean, independent of Zq given above, the d f  of Zq V belongs to F~. 

Our  interest in this p rob lem arose in s tudying da ta  compr ised  of two 
samples,  X = ( X  1 .... ,X,) and Y=(Y1 .... ,Ym) say, for which there was a s t rong 
reason to believe that, due to the sampl ing method,  the Y~'s follow a d.f. H(y) 

y 

=#-~S(1-F(u))du where F denotes the c o m m o n  d.f. of  the Xi's. C o m p a r i n g  
0 

the two samples  by means  of a Q -  Q plot  [-9], we asked ourselves which are 
the possible candidates for F, if the Q - Q  plot is approximately a straight line 
(say, with slope q)? Since the graph of a Q - Q  plot  of  F vs. H is Q(x) 
=F-1H(x),  it follows tha t  F mus t  satisfy (1.3), so that  the only candidates for 
F are d.f.'s that after rescaling (to have # = 1 )  belong to Fq. Other  statistical 
questions related to the above  two-sample  p rob lem will be discussed in a 
separate  paper.  
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2. Proofs 

Proof of Theorem I. The implication in the first direction follows from the 
argument given in Eqs. (2)-(6) of Shantaram and Harkness [7]. It is short and 
elegant, and for the sake of completeness we repeat it here. If F satisfies (1.4), 
it is easy to prove by induction that F is infinitely differentiable and the n-th 
derivative of 1 -  F(x) is given by 

(-1)"~x,(1-V(x))=q-"("+l)/Z(1-F(q "x))>O, x>O, n=0,1 , . . . .  

Since 1 - F ( 0 ) =  1, it follows from Bernstein's Theorem I-3, p. 439] that 1 - F ( x )  
is the Laplace transform of a probability measure, say M. Using this and (1.4), 
we get 

o9 CO o0 0O 

1-F(qx)=~e-qXYM(dy)=S(1-V(u))du=S ~e-"'M(dy)du, x>O 
0 x x 0 

so that 
co co 

~e-~'M(dq-ty)=~e-~'y-lM(dy), x>=O 
0 0 

and by the uniqueness of the Laplace transform, we have 

M(dq-~y)=y-l M(dy), y>=O. 

Setting G(y)=M(q-~y) above, it follows that G satisfies (1.5) and thus belongs 
to Gq. To prove the converse we note that if F is of the form (1.6) and G 
satisfies (1.5), then 

x x co co 

~(1-F(u))du=~du~e-UYG(dqy)= Sy-~ (1-e-XY)G(dqy) 
0 0 0 0 

co co 

= ~(1 -e-~Y) G(dy)--1 - ~e-qXYG(dqy)=F(qx) 
0 0 

so that F satisfies (1.4) and thus belongs to Fq. 

Proof of Theorem 2. (i), (iv). If G satisfies (1.5) then 

co co 

#G,n= ~ (q x),G(dq x)=q~ ~ x~+ 1 G(dx)=q~ l,t~,,+ l 
0 0 

so that so that 
# - - r ~ - - n ( n -  1 ) / 2  G,,--'~ , n=0 ,  _+1, +2  ... .  

For q > 1, however, q-,C,-1)/2 cannot be a moment sequence since t,, ~1/, ~-G,,~ must 
increase [4, p. 155] while q-C.-1)/2 decreases. 

(ii) For q = l ,  (1.5) implies G(dx)=xG(dx), x>O, and the only probability 
measure satisfying it is a unit mass at I. 
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(iii) (cf. proof of Theorem 4.1 in [8]) Denoting the denominator of (1.8) by 
C-  1 we have 

x oo o0 

oSUG*(du) = Cog J _ _  1/2 q~+ 1/2 qO=/2 v(dv)= Clog J__ 1/2 q(~+1~=/2 v(d v) 
logq logq 

o9 co 

= C l o g x !  q : / 2 v ( d v - 1 )  = C  ! q:/2v(dv)=G~(qx)' 
- -  1/2 l~ 1/2 
logq logq 

so  

satisfying (1.5) and u==-q 0+1/2, define a measure v (on the Borel 
whole real line) by 

2 
log u 

G(du)=cqV2/2v(dv)=cq (~- I /2 )  /2V ( d ~ - 1 / 2 ]  
\ logq / 

for c >0, a constant. Then 

c qtV+ 1:/2 v(d v + 1) = G(d q u) = u G(d u) = c q~+ l/2 + ~/2 v(d v) 
so that 

v(dv+ l)=v(dv)>O. 

Choosing the constant c to satisfy v([O, 1))= 1, the results follows. 

Proof of Theorem 3. Let 

that G v satisfies (1.5) and hence belongs to Gq. Conversely, if G is a d.f. 
sets of the 

s(2,0)= ~ e-Zq"+~ ("+~ 2>0,  0 < 0 < 1 ,  O < q < l  
?/=--09 

s(O) =_ s(O, o) 

Lemma 1. For q>e -2~, [Fo(R)-Fo(2)[<__2 - 1  max ]s(2,0)-s(2,0)[, 
.~_ o 

Proof. 
= s (ZO)  

[F~ 2)-F~ 2)l s(O) 

1 

s(O) s(O) 

s(O) 

- -  I s(O)(s(2, 0 ) -  s(2, 0)) + s(2, O)(s(O)-  s(0))l 

< 1 _  Is(,~, 0 ) -  s(,~, 0) 1 �9 s(~, 0) =s(0) + ~  s(O)-s(O)l 

1 +1!_ 
< .... IsGO)-s(~,O)[ Is(O)-s(O)l =s(O) s(O) 

2 
< max Is(2, 0) -s (2 ,  0)1. 
=s(0) ~ o  
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The  p roof  is completed  by observing that  

s (0)= e-~("+~ + 1-1__> e-~(x+~ - 1  >0.  
n = - o o  - ~ o  

2 e s~ 

L e m m a  2. [s(,~, 0 ) - s ( 2 ,  6)1 < sinh(~2/~). 

Proof Let  (o(z)=exp{-2e-=~-c~z2/2} and let C be a counter  clockwise circuit 
defined by 

= , lyl<rc/2~ 
x + i y ,  o o < x <  

We then have 

i 
s()~, 0) = ~ ~ q5 (z) tan re (z -  0 - 1/2) d z, 

Z C  

Is(2, 0 ) - s ( 2 ,  0)l <�89 14(z)Iltan r e ( z - 0 -  1 / 2 ) - t a n r ~ ( z -  0 -  1/2)11 dzl 
C 

= I, 

say. 
Now for x, ff and y real, it is not  hard  to show 

2 
[ tan(x+iy)- tan( ,~+iy)[  <__ [sinh 2y[ ' 

[d?(z)[<e -~(x2-:)/2 if [y[ ~ z / 2 ~ ,  

so that  by setting y = re/2 ~, we obtain 

as asserted. 

I < [ e-a(x2.y2)/2 dx  

= 5  ]sinh 2zcy] 

~2 

2 e ~-~ 

sinh(rc2/~) ' 

Lemmas  1 and 2 combine  to prove Theorem 3. 

Proof of Theorem 4. Since Go, 0__< 0-_< 1, are the extreme points of Gq we have 
G(x )=  sup Go(x ) and _G(x)= inf Go(x ) . F r o m  (1.10) we have G(qV+l/2) 

0_<0_<1 0 _ < 0 < 1  

= sup H(y) and G(qV +1/2)= inf H(y), where H is defined in (1.19). 
v<=y<=v+ l v<=y<=v+ l 

Claim: H' (y) < O, - oe < y < oo. 
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Proof 

H'(y) q(Y +k)2/2 =(logq) ~ (n--k)q(y+n)2/2+(Y+k)2/2 
k = - - m  n = 0  k=- -oo  

=(log q) ~ ~ j q,y+,,2/Z(q(,+,_ j,2/2 _q(y+,+j?/2) 
n = 0 j = l  

=(logq) ~, ~ jq({+,)2+j2/2(q_(,+,)jq,,+,)j). 
n = O j = l  

It follows that for y_>0, H ' (y )<0 .  But from (1.19), H(1-y)+H(y)=l so that 
H ' ( 1 - y ) = - H ' ( y ) ,  and H ' ( y ) > 0  for all y which proves the claim. 

It follows that H(y) is decreasing, so that G(qV+l/2)=H(v), _G(qV+l/Z)=H(v 
+ 1) and the results of Theorem 4 follow immediately. 

Proof of "Properties" 

P1. From Theorem 1, if FeFq then F is a mixture of exponential d.f.'s and as 
such has a decreasing failure rate [1, p. 103] (A.M. Odlyzko proved, however, 
that the failure rate functions of the extreme d.f.'s Fo, 0_< 0 < 1, are not convex). 
P2. By choosing, in Theorem 2, the measure v to be Lebesgue measure the 
result follows. 
P3. From Theorem 1, the distribution of qV/Zq belongs to Fq whenever the 
distribution of Zq belongs to Gq. The result now follows from P2 upon 
observing that q/Zq has the same d.f. as Zq itself. 

As a comment  we note that properties P2 and P3 may be useful in 
designing a simulation study of processes with the discussed invariance proper- 
ties and also that the extreme d.f.'s G o and F o, 0 < 0 < 1  are very easy to 
compute due to the fact that only a few terms dominate the value of the 
infinite sums involved. 

Final Remark. Our results raise some additional interesting problems of more 
abstract nature: The set Mq, of all d.f.'s with moments  as in Theorem 2' (iv), 
can be shown to strictly include Fq; a complete description of Mq (which is 
convex and compact) would be of interest. In particular, we hope to show that 
as q approaches 1, M s also becomes "tight" in the sense of Theorem 3 (i.e., 
sup sup }F(x)-F(x)]-+O as q ~ l ) .  If  this is true, then the (nonunique) moment  

x F, FeMq 

problem of Theorem 2' (iv) would be "nearly unique" in a numerical sense for 
q close to 1. 

Acknowledgement. We are grateful to C.L. Mallows, A.M. Odlyzko and W. Vervaat for several 
helpful remarks and references. 
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