Skip to main content
Log in

Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Formate dehydrogenase of Clostridium formicoaceticum used only methyl and benzyl viologen, but not NAD as electron acceptor. The S0.5 values were 0.9×10-4 M for formate and 5.8×10-3 M for methyl viologen. Using potassium phosphate buffer a pH-optimum of 7.9 was observed. The initial velocity of the formate dehydrogenase activity reached a maximum at 70°C, whereas the activity was stable only up to 50°C. The level of formate dehydrogenase in C. formicoaceticum was increased to its maximum when 10-6 M selenite and 10-7 M tungstate were added to a synthetic medium. Addition of molybdate instead of tungstate did not increase the level of formate dehydrogenase. 185W-tungsten was concentrated about 100-fold by C. formicoaceticum; molybdate had no major effect on the uptake of tungsten. 185W-tungsten was found almost exclusively in the soluble fluid and was predominantly recovered after chromatography in a protein of about 88000 molecular weight. Occasionally a labelled protein of low molecular weight was observed. Again molybdate added even in high molar excess did not influence the labelling pattern. No radioactivity peak could be obtained at the elution peak of formate dehydrogenase activity. The extreme instability of formate dehydrogenase prevented further purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FDH:

formate dehydrogenase

DTE:

dithioerythritol

HEPES:

hydroxyethylpiperazine N′-2-ethane sulconic acid

TEA:

triethylamine

DCPIP:

2,6-dichlorophenolindophenol

PMS:

phenazine methosulfate

TTC:

triphenyltetrazolium

References

  • Andreesen, J. R., El Ghazzawi, E., Gottschalk, G.: The effects of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation. Arch. Microbiol. 96, 103–118 (1974)

    Google Scholar 

  • Andreesen, J. R., Ljungdahl, L. G.: Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effect of selenite, molybdate, and tungstate on the enzyme. J. Bacteriol. 116, 867–873 (1973)

    Google Scholar 

  • Andreesen, J. R., Ljungdahl, L. G.: Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: purification and properties. J. Bacteriol. 120, 6–14 (1974)

    Google Scholar 

  • Barker, H. A., Beck, J. V.: The fermentative decomposition of purines by Clostridium acidi-urici and Clostridium cylindrosporum. J. Biol. Chem. 141, 3–27 (1941)

    Google Scholar 

  • Beisenherz, G., Bolze, H. J., Bücher, T., Czok R., Garbade, K. H., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8b, 555–577 (1953)

    Google Scholar 

  • Benemann, J. R., McKenna, C. E., Lie, R. F., Traylor, T. G., Kamen, M. D.: The vanadium effect in nitrogen fixation by Azotobacter. Biochim. Biophys. Acta 264, 25–38 (1972)

    Google Scholar 

  • Bray, R. C.: Molybdenum iron-sulfur flavin hydroxylases and related enzymes. In: The enzymes, 3rd ed., Vol. 12 (P. Boyer, ed.), pp. 299–419. New York-London: Academic Press 1975

    Google Scholar 

  • Chisholm, M. H., Extine, M.: Tris(dimethylaminato)tris(N,N-dimethylcarbamato)-tungsten(VI). The product of the remarkable reaction between hexakis(dimethylaminato)tungsten and carbon dioxide. J. Amer. Chem. Soc. 96, 6214–6216 (1974)

    Google Scholar 

  • Cleere, W. F., Coughlan, M. P.: Turkey liver xanthine dehydrogenase reactivation of the cyanide-inactivated enzyme by sulphide and by selenide. Biochem. J. 143, 331–340 (1974)

    Google Scholar 

  • Dilworth, G. L., Bandurski, R. S.: Activation of selenate by adenosine 5′-triphosphate sulphurylase from Saccharomyces cerevisiae. Biochem. J. 163, 521–529 (1977)

    Google Scholar 

  • Dobourdieu, M., Andrade, E., Puig, J.: Molybdenum and chlorate resistent mutants in Escherichia coli K12. Biochem. Biophys. Res. Commun. 70, 766–773 (1976)

    Google Scholar 

  • Elliott, B. B., Mortenson, L. E.: Transport of molybdate by Clostridium pasteurianum. J. Bacteriol. 124, 1295–1301 (1975)

    Google Scholar 

  • Ganther, H. E.: Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry 10, 4089–4098 (1971)

    Google Scholar 

  • Gottwald, M., Andreesen, J. R., LeGall, J., Ljungdahl, L. G.: Presence of cytochrome and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum. J. Bacteriol. 122, 325–328 (1975)

    Google Scholar 

  • Jones, J. B., Stadtman, T. C.: Methanococcus vannielii: Culture and effects of selenium and tungsten on growth. J. Bacteriol. 130, 1404–1406 (1977)

    Google Scholar 

  • Jungermann, K., Kirchniawy, H., Thauer, R. K.: Ferredoxin dependent CO2 reduction to formate in Clostridium pasteurianum. Biochem. Biophys. Res. Commun. 41, 682–689 (1970)

    Google Scholar 

  • Kearny, J. J., Sagers, R. D.: Formate dehydrogenase from Clostridium acidiurici. J. Bacteriol. 109, 152–161 (1972)

    Google Scholar 

  • Kröger, A.: Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. In: Microbial energetics. 27th Symp. Soc. Gen. Microbiol. (B. A. Haddock, W. A. Hamilton, eds.), pp. 61–93. Cambridge-London-New York-Melbourne: Cambridge University Press 1977

    Google Scholar 

  • Lester, R. L., DeMoss, J. A.: Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli. J. Bacteriol. 105, 1006–1014 (1971)

    Google Scholar 

  • Ljungdahl, L. G., Andreesen, J. R.: Tungsten, a component of active formate dehydrogenase of Clostridium thermoaceticum. FEBS Lett. 54, 279–282 (1975)

    Google Scholar 

  • Ljungdahl, L. G., Andreesen, J. R.: Reduction of CO2 to acetate in homoacetate fermenting clostridia and the involvement of tungsten in formate dehydrogenase. In: Symposium on microbial production and utilization of gases (H2, CH4, CO) (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp 163–172. Göttingen: Goltze 1976

    Google Scholar 

  • O'Brien, W. E., Brewer, J. M., Ljungdahl, L. G.: Chemical, physical and enzymatic comparisons of formyltetrahydrofolate synthetases from thermo- and mesophilic clostridia. Experientia Suppl. 26, 249–262 (1976)

    Google Scholar 

  • Schaupp, A., Ljungdahl, L. G.: Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch. Microbiol. 100, 121–129 (1974)

    Google Scholar 

  • Schulman, M., Parker, D., Ljungdahl, L. G., Wood, H. G.: Total synthesis of acetate from CO2. V. Determination by mass analysis of the different types of acetate formed from 13CO2 by heterotrophic bacteria. J. Bacteriol. 109, 633–644 (1972)

    Google Scholar 

  • Sperl, G. T., DeMoss, J. A.: chl D gene function in molybdate activation of nitrate reductase. J. Bacteriol. 122, 1230–1238 (1975)

    Google Scholar 

  • Stadtman, T. C.: Selenium biochemistry. Science 183, 915–922 (1974)

    Google Scholar 

  • Thauer, R. K.: CO2-reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO2 in Clostridium thermoaceticum. FEBS Lett. 27, 111–115 (1972)

    Google Scholar 

  • Thauer, R. K.: CO2-reduction to formate in Clostridium acidiurici. J. Bacteriol. 114, 443–444 (1973)

    Google Scholar 

  • Thauer, R. K., Fuchs, G., Jungermann, K.: Reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum: its role in formate metabolism. J. Bacteriol. 118, 758–760 (1974)

    Google Scholar 

  • Thauer, R. K., Fuchs, G., Jungermann, K.: Rore of iron-sulfur proteins in formate metabolism. In: Iron-sulfur proteins, Vol. 3 (W. Lovenberg, ed.), pp. 121–156. New York-London: Academic Press 1977

    Google Scholar 

  • Thauer, R. K., Fuchs, G., Schnitker, U., Jungermann, K.: CO2 reductase from Clostridium pasteurianum: molybdenum dependence of synthesis and inactivation by cyanide. FEBS Lett. 38, 45–48 (1973)

    Google Scholar 

  • Thauer, R. K., Käufer, B., Fuchs, G.: The active species of “CO2” utilized by reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum. Eur. J. Biochem. 55, 111–117 (1975)

    Google Scholar 

  • Thauer, R. K., Kirchniawy, F. H., Jungermann, K. A.: Properties and function of the pyruvate-formate-lyase reaction in clostridia. Eur. J. Biochem. 27, 282–290 (1972)

    Google Scholar 

  • Tzeng, S. F., Bryant, M. P., Wolfe, R. S.: Factor 420-dependent pyridine nucleotide-linked formate-metabolism of Methanobacterium ruminantium. J. Bacteriol. 121, 192–196 (1975)

    Google Scholar 

  • Wagner, R., Andreesen, J. R.: Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch. Microbiol. 114, 219–224 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonhardt, U., Andreesen, J.R. Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum . Arch. Microbiol. 115, 277–284 (1977). https://doi.org/10.1007/BF00446453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446453

Key words

Navigation