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Summary. Under certain regularity conditions products d o" of an experiment 
do can be locally approximated by homoschedastic Gaussian experiments 
N,. N, can be defined such that the square roots of the densities have nearly 
the same structure with respect to the LZ-geometry as in do". The main result 
of this paper is that this choice of ~ ,  is asymptotically optimal in the sense 
of minimizing the deficiency distance between do" and ~q if do is a one-dimen- 
sional exponential family. 

1. Introduction 

Families of product measures fulfilling certain regularity conditions can be local- 
ly approximated by Gaussian experiments. This result is due to Wald (1943) 
and was further studied for instance by LeCam (1956, 1960, 1968), and Michel 
and Pfanzagl (1970), Pfanzagl (1972). 

A natural statistical quantity for comparing two families of distributions 
is the deficiency distance due to LeCam (1964) which is based on the comparison 
of risk functions available in the two experiments. For  sufficiently regular experi- 
ments g = (P0:0 ~ O) and ~ - =  (Qo: 0 E O) the deficiency distance A (d ~ ~ )  can be 
calculated as follows. Let 

6(do, ~-) = in f  sup NKP0-- Qo II, (1.1) 
K 0 ~ O  

where the infimum is taken over all Markov kernels K between the measurable 
spaces on which (P0) and (Q0) respectively are defined. The deficiency distance 
is defined as 

A (do, ~ )  = ~(do, ~ )  v ~ (Y, do). 

In this paper we restrict ourselves to the special case of a one-dimensional 
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exponential family (P0) 

E. Mammen 

dP0 = exp (0 x -  ~p (0)) dP o. (1.2) 

We choose a point 0o in the interior of the natural parameter space and we 
consider the local experiment 

#. =(P0: 10-0ol <cJV~), (1.3) 

where (c,) is a sequence fulfilling for technical reasons: 

c. ~ m, c, = o (nl/6). (1.4) 

For convenience of notation we assume 

0o =0, 0'(0) = 0, ip"(0) = 1. (1.5) 

Furthermore, let 

V3 = ~'"(0), o . = ( - c . / V ~ ,  c./~//n). (1.6) 

Then functions # . ( ' ) :  O.--, P. can be chosen such that the Gaussian experiment 
~(n, #n)=(N(#~(0), 1): 0cOn) approximates ~ 

A(r if(n, #.))--*0 (for n--*0). (1.7) 

One possible choice of # . ( ' )  is based on the Hellinger distance H. We define 

#~n(0) = 2 sgn (0) V~H(Po, P0), (1.8) 
where 

H 2 (#, v)= 5 ( ~ / ~ -  V ~ )  2 (1.9) 

denotes the Hellinger distance between two measures # and v. This definition 
is motivated by the Hilbert space parametrized Gaussian aproximation 

- ( N ( ~ o , . ,  I): 0 �9 On), (1.10) 

where 40,. = 2 Vn ]//dP~/dPo eL2 (Po) and I is the identity operator (see Proposition 
4 in Mfiller (1979) and see Millar (1979)). (This definition of ~ is formally 
correct only in the case where On is finite. Then the Gaussian measures may 
be defined on the finite dimensional linear space spanned by {~0,. : 0eO.}.) ff~ 
is parametrized such that in g] and in ~H the square roots of the densities 
form nearly the same L2-structure 

H 2 (N (40,., I), N (4 .... I)) = 2(1 - exp (---~ I I ~0,n - {,, ~ II ~2r 
= 2(1 -- exp ( -- �89 2 (P0, P~)) 

= H 2 (Po ~, P,") + O(1/n) (1.11) 

uniformly in 0, zeO. .  For  a more detailed discussion of ~.~ see LeCam (1986). 
For  the case of an exponential family g it can be checked that 

[#n (0) - #n (*)l = 2 ] /~H (P. Po) + 0 (l/n) = II ~o,. - ~.,. I I L2 (Vo) + 0 (l/n) (1.12) 
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uniformly for 0, ~ ~ 6),. This implies 

A (~ , ,  (~n)= O(1/n) (1.13) 

with H_ O~ 0.). (q, - (N(#U, (O), 1): 
In this paper second order edgeworth expansions are used to compare differ- 

ent Gaussian approximations for an exponential family #.. The main result 
is that ~H (or ffH resp.) is asymptotically optimal in the sense of minimizing 

lira V~A(~(n, ~,,), Wff) 

(see Theorem 2). Initially the Hilbert-space parametrization has been introduced 
because of its clear mathematical structure which leads to a simplified statistical 
analysis of product experiments. This optimality result shows that the Hellinger 
distance has not only an asymptotic interpretation, but it has also a finite sample 
meaning. 

Another characterization of the Hilbert space parametrization has been given 
in LeCam (1985). There it has been pointed out that under mild conditions 
if a product can be approximated by some Gaussian experiment it must also 
be approximiable by ~,~. This has an interpretation which is related to this 
paper: For finite n the approximation ~n could be expected to be accurate 
- compared with other Gaussian approximations - because only relatively weak 
conditions are required. 

2. Results 

Our first theorem states some asymptotic bounds for the accuracy of Gaussian 
approximations. (oH will be compared with the common approximations based 
on the asymptotic normality of the derivative of the log likelihood function 
or of the maximum likelihood estimate, respectively 

~ 1): 060,) 

(qML =(N(~/n0, t): 060,). 

Theorem 1. Assume (1.4) and (1.5). Then 

~ e  i~,~ I ( ~ - l y  ~-o(1/]~)~A(~;, eT,)~ 1~,31 + o(1/~/n) 

for i=D, ML.  

l ~ e  e. Iv31 ~ +  o(1/~n) ~ A(r ~) 

(2.1) 

for i=D, ML.  (2.2) 

1~31+ ln(2) 1~31 
0.046 ~ o(1/[fn)< A (~ff, #;)_-< 3 [ / ~  ~/n + o(1/Vn ), 

where n n ~r =(N(#. (0), ]): 060.). (2.3) 
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Table 1. The asymptotic bounds of Theorem 1 calculated for a binomial experiment 
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n = 30 n = 50 n = 200 n = 1000 

A((r ~,") as. < 0.38 0.38 0.38 0.38 
(i=D, ML) as. > (2.1) 0.08 0.10 0.12 0.19 

as. > (2.2) 0.19 0.19 0.19 0.19 

A (f#n, g,) as. _-< 0,022 0.017 0.014 0.004 
as. _> 0.011 0.009 0.007 0.002 

ln(2) ~ . . . .  
Because 0i a - - ~  ~ ~ o.u~zz the asymptotic upper bound in (2.3) is approximately 

twice the lower bound. 
The asymptotic bounds of Theorem 1 are calculated in Table 1 for a binomial 

experiment with different numbers n of observations and parameter space 

O ,=  {0:1/8 < ~O'(0) < 3/8}. 

The expansions leading to the bounds in Theorem 1 use the fact that for large 
n the skewness 0'"(0) is nearly constant in O,. This is not the case in the 
example above where ~b'"(O) varies from 0.5 to 2.3. Therefore the numbers of 
Table 1 should rather be interpreted as indicating the order of the deficiencies 
than as being exact bounds. Here the lower bound of (2.1) is very poor  compared 
with the bound of (2.2). Furthermore,  the approximation fqn is much more 
accurate than fgo or N~L respectively. This is clear from (2.3) because only 

N n leads to an approximation of order 1/Vn, whereas in the other two cases 

one gets approximations of the slower order c,/l//n. The main result of this 
paper is that the approximation fgn is optimal in a general sense. 

Theorem 2. Assume (1.4) and (1.5). For an arbitrary function #, ('): O, ~ IR define 
the Gaussian experiment fg,=(N(/t,(0), 1): 0eN,) .  Then 

l ~min / l~A  (f#,, 6~:)> l i m  ~/nA (f#~ n, e•). (2.4) 

Our proof  of Theorem 2 is based on 

~r 6(~r 6(e~, ~ -  '~ g.")+o(1/]fn). (2.5) 

We will show that every replacement of fqn by a different Gaussian experiment 
will increase at least one of the two deficiencies in (2.5). 

We expect that the Hellinger parametrization is asymptotically optimal (in 
the sense of Theorem 2) for a broader  class of experiments than the relatively 
special case of taking i.i.d, observations of a one-dimensional exponential family. 
In a subsequent paper generalizations to experiments fulfilling Cram6r's type 
conditions will be studied. There the proof will make use of the fact that up 
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to second order (o(1/~fn)) such experiments are equivalent to mixtures of expo- 
nential families. Other generalizations can be proved straightforwardly. For  
instance the i.i.d, structure is not needed here. In the proof of Theorem 2 it 

has only been used that up to o(1/1~)d~, " can be approximated by exponential 
families which are asymptotically Gaussian. Another modification of Theorem 
2 would be to consider higher dimensional exponential families. In these two 
cases ffR has to be chosen as in the one dimensional case - as a homoschedastic 
Gaussian experiment such that the respective L2-geometries of the square roots 
of the densities (in fq~ and in the considered sequence of experiments) agree 

up to order o(1/1/-s ). Such a Gaussian experiment can easily be constructed, 
but in general a simple explicit form is not available as in the case of a one- 
dimensional parametric product experiment (see (1.8)). 

The deficiency distance is based on the comparison of the risk functions 
for all decision problems with bounded loss functions. It should be pointed 
out that the approximation fqn is also asymptotically optimal if the comparison 
of fqn and ~," is based only on certain subclasses of decision problems, for instance 
if the number of possible decisions is bounded by a fixed constant. We expect 
that it suffices that the class of decision problems is closed under shifts of the 
parameterspace in the Hellinger parametrization (see the 6th step of the proof 
of Theorem 2). Here we want to formulate only another modification of Theorem 
2 for binary experiments. 

Corollary. Let (On), (%) be two sequences in N, with 0n=O(1/~/-n), %=O(1/]//n), 

and ]//n(On-%)~const. for n ~  ~ .  Let ~n denote the binary experiment ~n 
=(N(0,  1), N (mn, 1)), where mn is an arbitrary sequence. Then 

lim inf]/nA(~,",  f#,)---- lim ~/-nA(~ n, f#~2), (2.6) 
n ~ c o  n --+ q- ~3 

where 

= (P0~ e~  

fCnu,2 =(N(0,  1), N(2 ~nH(P0.,  P~,), 1)). 

Before going into the proofs of Theorems 1 and 2 in the next section we 
now give a heuristic explanation of the optimality of ~ .  

Firstly let 

P0,.=~q 1/ XilP0 n for 0sO. .  (2.7) 
i 

In the case where P0 is a nonlattice distribution a first order Edgeworth expansion 
yields the following approximation for P0, n 

Here 2 denotes the Lebesgue measure. In the sense of deficiency distance this 
approximation is also valid in the lattice case: 
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Proposition.  Assume c. = o(n 1/6) and (1.5). Then 

sup [I LP0, . -  Qo,.H -- o (1/]/n) 
0~O~ 

sup I[L* Qo,.-Po,. II = o(1/]/n), 
O~On 

where for some fl with 1/3 < fi < 1/2 the kernel L is defined by 

L(x, dy) = n I~ r (n '~ (y-- x)) dy 

and L* is the dual kernel 

E. Mammen 

(2.9) 

(2.10) 

Here 

t = l~nn 0 and 
I "  

s(y)=(y 3 -3y )  q~(y), v(y)=(y 2 -  1) q~(y), m(y)=yqb(y). 

The term in the definition of Ro,., b which contains s ( x -  t) (or v (x--t) or re(x- t )  
resp.) can be interpreted as a small difference of Ro,.,b in the skewness (or 

where 

dRo, n,b 
d2 

- - = - - ( ~ ( x - t ) + ~ ( l  + 6 b ) s ( x - t ) + ~ n  (2b+�89 t v ( x - t )  

+ 73 (b+�89 t2m(x- t ) .  

L x Po,.-- LPo,. x L*. 

(For a measure  P and a kernel  K the measure K x P is defined by 

K x P(A x B)= S K(x, A) P(dx).) 
B 

The proposition entails that up to order o (1 / /n )  the experiments g." and 
(Qo,. : 0 ~ O.) are asymptotically equivalent (measured by the deficiency distance). 

We consider the following (deterministic) transformations T b of the smoothed 
data (or of the data in the experiment (Qo,. : 0~0.) resp.). 

b 
Y b (x) = x + ~3 ~ ( x2 -- 1). (2.11) 

The following lemma gives an approximation for 

Qo,.,b = ~(Tb(X) I Q0,.). 

Lemma. Assume c. = o (nl /6). Then 

sup IlQo,..b-Ro,.,bll = o(1/~/n), (2.12) 
OeOn 
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in the variance or in the mean resp.) compared with N(]/-s 1). If t is of order 
c. (which according to (1.4) is supposed to tend to oo) then the skewness term 

is of order 1 / ~  (if b + - 1/6) and the variance term is of order c./~/n (if b + - 1/4) 

and the term related to the mean is of order c 2 / ~  (if b 4= - 1/2). 
The proposition and the lemma imply that 

A(g~,, (Ro,., b" 0eO.) )=o(1/ l /n  ) for b e N .  (2.13) 
After these preparatory calculations we turn now to the problem of determing 
the parametrization g.(0) of the optimal Gaussian approximation if(n, #.). Sup- 
pose that (the optimal) #. (-) is a smooth function 

73 t2 +o(1/l/~) u . ( 0 ) = t + c ~  

uniformly in t=] /nOe[-c . ,  cn] for a fixed constant c~. Then 

sup IIN(m(0), 1)-So .... II =o(1/]fn) 
OeOn 

where 

dSo n �9 + ~73 t2m(x_t). =r 

With (2.13) this gives for b end,. 

A(g~,, if(n, #.))= A((Ro,.,b : 060.), (So .... " 0cO.)) + o(1/1/n) 

< sup 1[ Ro,., b -  So,., �9 l] + o (l/]//n). 
OeOn 

(2.14) 

(2.15) 

For the special choice b=b(e)=c~-l/2 the term related to the change of the 
mean coincide in dSo, n,o]d2 and dRo,.,Jd2. Especially the upper bound of (2.15) 

is then of order c./]/n (instead of c2/]/n as for other choices of b). Furthermore 
- as stated in the following theorem - for b=b(c~) the upper and lower bound 

in (2.15) differ only by a term of order o(c./]/n). 

Theorem 3. Assume (1.4), (1.5) and (2.14). Then 

A (d~, if (n, #.)) = sup I I Ro,., b(~) -- So .... I I + o (c./]/n) 
OeOn 

73 cn 2 
= [4~- l l ~ ~ e  + O(C./]fn). 

Especially for the Hellinger parametrization one can easily check that 

#ff(O)=2]/nH(Po, Po)=t+ 73 t2+o(1/]/~). 4V; 
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That means ct = 1/4. According to Theorem 3 only for ~= 1/4 the accuracy of 

the Gaussian approximation is of order o(c,]l/~ ) - given that the Gaussian 
approximation is smoothly parametrized. The reason is that only for b=b(1/4) 
= - 1/4 the transformation T b is asymptotically variance stabilizing (the variance 
term in dRo,., b/d2 vanishes). Heuristically this connection between variance sta- 
bilization and Hellinger parametrization may be explained by the fact that the 
parametrization 40,, of the Gaussian approximation ~ff (see (1.10)) does not 
depend on 0o and the local neighborhood O,. Or - more explicitly - consider 
a binomial experiment (B(n, p): ps(0, 1)). Then the arc sin transformation is 
known to be asymptotically variance stabilizing 

5e(2 s i n - l ( ~ - l n  x) B(n,p))~N(2sin-l(~/p),l). 

The asymptotic mean is closely related to the Hellinger parametrization. 

2 sin-1 ( r  2 s in '  (V~)-- 2 cos-' (V~)- 2 cos ' ( ~ )  

--2 cos ' (v~v~+ 1/~-~ ~/rCq-qt 
= 2 c o s - t ( 1 -  �89 H z (B(1, p), B(1, q))) 

---2H(B(1, p), B(1, q))+o(H(B(1, p), B(1, q))) 

for 0 < q < p < l .  

3. Proofs 

Proof of the proposition. Because of [LLQo,.-Qo,.][ =o(1/]//n) it is enough to 
prove for (2.9) 

sup II LQo,. - LPo,. II = o (1/]//n). (3.1) 
O~On 

Let Zo,.(t), po,.(t) be the characteristic functions of P0,. and Qo,. respectively. 
If co.(t)=exp ( -  1/2 n -2p t2), then co. Zo,., co. Po,. are the characteristic functions 
of LP0,. and LQo,. respectively. 

c9. Zo,. is an element of L' (IR). Therefore LPo,. is absolutely continuous with 
respect to the Lebesgue measure. The density may be called fo,.. 

Put 

ho,.(x)= xZ (fo,.(x) dLQo,.d2 (x)). 
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Then 
rio,. (t) = ~ ho, n (X) exp (i t x) d x  

= _ ~2 [~o. (t) (Zo,. ( t ) -  Po,. (t))] 

= - co n (t) (Zo, n (t) -- PO, n (t)) -- 2co' n (t) (Z'O, n (t) -- P'O,. (t)) 
_ _  c o  tt  tt . (t) (Zo, . ( t ) - -  Po,.(t)).  

Theorem 9.9 in Bhattacharya and Ranga Rao (1976) entails that there exist 
constants cl,  c2 such that for 0~O. and Y=0, i, 2: 

a e , ( Z o , . ( t ) - p o , . ( t ) ) < ~ ( I t l 4 - e  + l t l 6 + e ) e x p ( - t z / 4 )  for Itl~c21~. 

This gives with some constants c3, c4 for 0EO. 

[ho,.(x)l = 1(2n)-1 ~ exp (-- i tx)  [[o,.(t) dr[ 

=l(2rO-*( j" --.+ J" ..-I 
I t l<=c2Vn I t l > c 2 V n  

<=cJn+c4  ~ e x p ( - - 1 / 2 n - 2 P t 2 ) = o ( 1 / ] / n ) .  
It[ > c2 V n  

Analogous arguments show 

fo , . (x )  dLQ~ (x) =o(1/1/~). 

This entails (3.1). 
We show now (2.10). According to the definition of L* one has: 

n # 4 9 ( n a ( y - x ) ) P o , . ( d y )  n a 4 9 ( n P ( y - x + O n l / 2 - 2 a ) ) P o , . ( d y )  

L* (x, dy) = S n~ 49 (np ( z -  x)) Po,. (dz) ~ n a 49 (n # (z - x + 0 n 1/2 - 2 r Po,. (dz)" 

Therefore 

where 

Because of 

L o x Po, .=LoPo, .  x L* 

L o (x, dy) = n p 49 (n p (y - x + 0 n l /Z -  2#)) dy .  

0 n 1/2 - 2# = o (n 1/6- 1/2 + 1/2 - 2/3) = o(n- 1/2) 

it follows from the first part of the proof that 

sup II Lo Po,. -- Qo,. J[ = o (1/~/n). 
OEOn 

But this shows (2.10) because of 

liE* Qo, . -Po , . l l  = IlL* Q o , . - Z *  ZoPo,.H < I lLoPo, . -Oo, . r l .  

P r o o f  o f  Theorem I. The upper bound in (2.1) can be proved as indicated in 
the previous section. To prove the lower bound in (2.1) consider the following 



1 t 2 E. Mammen 

1 
Bayes decision problem. Given the uniform distribution on ~ n  ( c , - 2  ~ , ,  c.) 

i / - -  

a s  a priori measure construct a confidence interval of length 2/~/~. The loss 
function is _+ 1 according to a true or false decision. The difference 6, D of the 
minimal Bayes risks in ff~ and gff is 

D 73 1 %-1 x + l  ~ O(x-t)3t((x-tl2-1ldtdx+o(1/Vn) 
8 , - - 2  6]//n 2[/-~,c,,-2Vc,+1 x-x 

273 1 c.-1 1 dx+o(1/]//n) - 

2 V~C,~ c.-2vc~+ i 

= ~ e  ~nn ( l / ~ -  1)2 + ~ �9 

Because of eg) this shows the lower bound in (2.1) for i=D. The 
proof for i=  ML is similar. The lower bound in (2.2) is based on the comparison 
of binary Bayes risks. The lower bound in (2.3) can be obtained in the context 
of the following Bayes decision problem: The a priori measure is the uniform 
distribution on O,. For a, b >0 the loss function f,(0, d) is defined by 

I-iifO--a/~/~<-d<O 
f,(0, d)= if O<d<=O+b/]fn 

elsewhere. 

It can be proved, that a suitable choice of a, b leads to the lower bound in 
(2.3). 

To prove the upper bound in (2.3) we show that for b = - 1 / 4  and e. 

=(2 In (2)-3) 73 

ll6~.*Ro,.,b--N(s, 1)11 = 

This shows (see (2.13)): 

ln(2) h,~l ~-o(1 / ]~) .  (3.2) 

6(g,",, ~ f ) <  ln(2)[731 ~-o(1/]fn). (3.3) 

Proof of (3.2). 

ll6~* Ro,~,b--N(s, 1)11 

= ~ r { -  l ; ~  ((x- s)3- 3(x- s)) + l ~  (21n 2- 3) (x- s)} dx 

+ o ( 1 / ~ )  

=~ q~(x) 12~n(X3--2 In (2)x) dx+o(1/V~)- 3 [ / ~  ~ n l n ( 2 )  1731 ~_o(1/V~). 
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Similarly it can be seen that (3.3) holds for b ( i ,  n, E"). This proves the upper 
bound in (2.3). 

Proof of Theorem 2. For the present we assume c , >  In I/In(n). We devide the 
proof in several steps: 

In the first step we will show that do" is second order equivalent to an experi- 
ment which is a translation experiment after the parameter transformation s 
= #"n(0). This reduces the asymptotic comparison of do," and i ,  n to the comparison 
of two translation experiments. If the parameter space of these two translation 
experiments is enlarged to I1 the deficiency distance changes only by an amount  

of order o(1/[//n). This will be proved in the second step. Then results of Torger- 
sen (1972) for the comparison of translation experiments can be applied to 
prove 

6(do,,", F/ n do")+o(1/]/n) i.)=6(t., 
(see (2.5)) (third step). The deficiency distance between two experiments is equiva- 
lent to the maximal difference between (minimal) Bayes risks in these two experi- 
ments (see LeCam (1964)). In the 4th and 5th step it will be shown that for 
an asymptotic calculation of 6 (d~ if n) and 6 ( t ,  n, 6~ ") it suffices to consider one 
fixed Bayes decision problem respectively which is formulated in the Hellinger 
parametrization s = #,n(0). This simplifies essentially the treatment of error terms. 
In the 6th step all Bayes decision problems are considered which are generated 
by these two Bayes decision problems by a shift of the parameter space. It 
will be shown that every replacement of i"n by another Gaussian experiment 
would increase the difference of (minimal) Bayes risks for at least one of these 
decision problems. This proves then the statement of the theorem. 

1. Step. We show 

where 

A (W", ~n)= o(1/~-s 

g. =(Ms, . :  s = #f(0), 0~ O.), 

dM~"=r 1 ~ ) ' 12 ]/n ( ( x - -  s)  3 - -  3 ( x  - -  s ) )  d2. 

This can be seen by the lemma using 

2. Step. We prove 

sup I g, n (0)-- I/n01 = O (c~/]/n). 

(~n, ~ )  = ~ (~n, ~) + 0 (1/lf~), 

(*~, ~n) = ~ (~, &) + o (1/lf~), 
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where 
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~, =(M~,, : s ~ )  

fq=(N(s, 1): s ~ ) .  

To prove this statement we use the following slightly changed version of Theo- 
rem 3 in M a m m e n  (1983). 

Proposition. Let ~ = ( Q ~ :  0~0) be two experiments with O c t .  Assume that 
for two positive constants a and e there exist in ~1 resp. ~2 two estimates 01,0z 
with 

Q~(itOi-Oii>a)<e for i = 1 , 2  and 0~0 .  

Then for b > (9/2) a and (i, j) = (1, 2) or (2, 1) the following holds: 

8a 
6b(~' ~)<=6(~' ~ ) < ' ~ ( ~ '  ~ ) +  2~SS-a A ( ~ ,  ~ ) +  12e 

where 

fib(g, ~ j )=sup  6((Q~: ll0--Tll <b/2), (Q~: II0-~rl < b/2)). 
zEO 

In #, resp. f~ there exist the following estimates 

N (s, 1)(llx-sll  >Vln (n))=o(1/Vn), 

M~,.(llx- sll > lfln (n))=o(1/1/~). 

Furthermore  ~, and f# are translation experiments. Therefore: 

5b(~7., f#)=6((M~,,: Ilsll < b/2), (N(s, 1): Ilsll < b/2)) 

5b(~#, ~,)=6((N(s,  1): IIslI <b/2);  (Ms,.: Ilsll <b/2)). 

3. Step. We show now that 

5(#.% u u #n.)+O(1/~/~). ~r ~(~r 

According to the second step it suffices to prove 

6 (#., N) = 6 (f#, ~.) + o (1/V~). (3.4) 

~. and f# are translation experiments. By Theorem 1 of Torgersen 0972) this 
implies the existence of a measure v. with: 

5(~., N)=sup  l I i s , .*v . - -N(s ,  1)el = Hio, .*v.--N(O, 1)el. 
s ~R  

We will show, that for v* (A)= v. ( - A )  the following holds" 

5(~., f#)= IIN(0, 1)* v * - / o , . H  + o(1/]/~). (3.5) 
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(3.6) 

Proof of (3.5). Firstly 

1IN(0, 1).v ,-g(o,  1)11 = ItMo,.*vn-g(o, 1)ll + O ( 1 / V ~ )  = O(1/~/n)  

because of A (g,", f fn)= O (1/l/~) (see Theorem 1). This shows 

vn(llXII >d)=o(1) for d > 0  
and therefore 

Ila* v,-a[I =o(1), 

where G is the measure which has the density x3-3x with respect to N(0, 1). 
With this we get 

O(g,, fr IIMo,,,*v,,-N(O, 1)11 

1) 73 * = N(0, 1 ) * v . - N ( 0 ,  - 1 2 ~  G v. § ) 

= N(0, 1 ) . v . - N ( 0 ,  1 ) - 1 ; ~ n n  G +o(1/~/n) 

= N(0, 1)*v*--N(0, 1)+ 1 2 ~ n  G +o(1/~//n) 

- IIN(0, 1) * v* - Mo,, [I + o (1/~/n). 

The inequality reversed to (3.6) can be shown similarly. 

4. Step. There exists a constant d with 

n H ]/nA(#,,,fg,,)--..d for n ~ o o .  

Put N the set of all Bayes decision problems b consisting of a a priori measure 
rc with finite support {s , : i=  1, ..., k}, of a finite decision space {1, ..., ~}, and 
of a loss function L, absolutely bounded by 1" IL(i,j)[ < 1 for i=  1 . . . .  , k, and 
j = l . . . . .  ~o. Furthermore set 

A.(b)=~ inf ~, niL(i,j) r dx 
l < j < d  l < i<  k 

--~ inf ~ rc i L ( i , j ) r  1 ) g(x-si) dx 

where 

3)3 3 g(y) = ~  (y -- 3y). 
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Then An(b) is the difference of the minimal Bayes risk to the Bayes decision 
problem b in ff and gn. 

According to LeCam (1964), Torgersen (1970) therefore 

A (gn, if H) = sup IAn(b)l + o(n- 1/2). 
bEN 

For An (b) a simple inequality holds: 

An(b)>d(b)/~/n (3.7) 
where 

d(b)= ~ ~hL(i,J) S g(x-si) c~(x-si)dx 
l <-i<-k,l <=j<~ Aj  

Ajo--{x: hjo(x)Nhj(x ) for j = l ,  ...,• and 

hjo(X)<~j(x) for every j =  1, . . . ,  f with hjo(x)=hj(x)} 

hj(x)= ~ zhL(i,j)r 
l<_i<_k 

~j(x)= ~ rhL(i,j) g(x--si) r 
l <=i<=k 

The 3. Step and (3.7) imply: 

A (&~, fill) = ~(~;, f#H) + 0 (1/~n) 

= sup (-- An(b)) + o (1 / I f  n) 
b e ~  

_-< 1/]/n sup(--  d (b))+ o (1/~/n). (3.8) 
beN' 

Furthermore, using the dominated convergence theorem, one gets 

~/-nAn(b)~d(b ) . for n ~ o o .  

This and (3.8) shows 

]//nA(g~,, f# ,n )~sup( -d(b) )  for n---, oo. 
b e n  

5. Step. For every e > 0  there exists Bayes decision problems b and b* which 
differ only by s~ = - s *  with 

An (b) + ~/]/n => A (•2, (6~) 

- An(b*) + e/]/~>= A (&~, ~ )  (3.9) 

for n large enough. 
This follows immediately from d ( b ) = - d ( b * )  for all b and b* which differ 

only by sl = -- s* and from the considerations of the last step. 
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Furthermore the statement of this step is also valid if we drip the assumption 

taken at the beginning of the proof that c, > ln~n~,  because it suffices to look 
at Bayes decision problems which are fixed and which do not depend on n. 

6. Step. We show now, that the assumption 

lira inf I ~ A  (fq ., g2)< Jim ]//nA (N H, g:)--  2~ (3.10) 

for a e > 0 leads to a contradiction. 

Firstly (3.10) implies A (N,, Nff)= O (1/]/n), and therefore: 

sup {lfnl~.(0 + ~)-/~.(0)-m~(0 + ~)+ m~(0)l: 0, 0 + z e o , ,  n e N } < +  oo 

for every z > 0 .  (3.11) 

Now take s=#ff(O) in ~ ,  and (r as new parameters. Call the new experiments 
9 ,  and - as above - ft. Choose b and b* according to the 5. Step. For  haP,, 

bh and b~' are the Bayes decision problems which differ from b and b* only 
by sl, h = Sl + h and s* h = S* + h respectively. Put 

6 . ( s )  = 

where 0 is chosen such that s=#.H(O). Denote the minimal Bayes risk in an 
experiment ~ according to a Bayes decision problem b by p(b, ~). 

Then the following holds: 

p(bh, ~.)=p(bh, f f ) + l / V n  Z ei6.(si+h)+~ 
l < i < k  (3.12) 

p(b*, ~ ) = p ( b ~ ,  ~ ) - l / l / / ~  ~ e, 6~(-s,§247 
l <=i<=k 

where 
el= ~, niL(i,j) ~ (x-s l )~(x-s l )dx .  

1 <=j<=d Aj  

(3.12) can be followed by 

2 e i = O  
l <_i<k 

6, (si + h)-  Ch,. = O (1) (3.13) 

fi.(-si+h)--c~,.=O(1) 

for i<k and for a Ch,., C~,.eP. (because of (3.11)). 
(3.9), (3.10), and (3.12) imply that for every h e R :  

l iminf  ~ eie.(si+h)<-e 
n~oo  l<i<_k 

l iminf  ~ e iS . ( - s i+h)<-e .  (3.14) 
n ~oo l<=i<=k 
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Without loss of generality we assume si+l--si=const.=6 for i<k-1. Put f~ 
=ei+ek_i+ 1 for i<k and xe,.=b.(sl + ( / -  1) 6) for #e7l,: 

l iminf  ~ f i x e + i , . < - 2 e .  (3.15) 
n~oo 1<_i<_ k 

Because of ~ f/=O, and f /=fk_i  for i<k, there exist (~i)i~z with 
l_<i_<k 

fi=o~i-l--2Oti-FOti+l for l <i<k 
~i=0 for i < 1  or i>k. 

With this notation one gets: 

Z A  x e + i , . = Z ~ i -  1 x~+ , , . -2  Zcq Xe+i , .+Z~i+ a XE+i,.=Yl+l,n--2y<~+y~-l,~ 
i i i i 

for y&n=ZO~i Xi+~,  n. 
i 

Putting this into (3.15) one gets 

lim infy~+l,,-2yt,,+ye_L,< - 2 e  (3,16) 
n ~ o o  

for feTl. 
But according to (3.11) the slope of Ye,. (as a function of Y) is bounded 

(uniformly in n). This contradicts (3.16). 

Proof of Theorem 3. Firstly 

[iRo, n,b(~)--So . . . .  II =~nn j" 6~6-2 s(x)+c.(2c~-�89 dx +o(1/]/~) s?p 

= ~ 3  Cn (2 a - �89 ~ Iv (x) l dx + o (c./]//n) 

=14~- l ] ~ ~ e  + O(C./Vn). 

Because of (2.15) it remains to prove 

~3 c. _ /2-2  
A (g.", fC(n, ~.)) > 1 4 a -  11 ~ V ~ e  + o(c.t]fn). 

But this can be done as in the proof of the first inequality of (2.1) of Theorem 1. 

Proof of the corollary. Using Proposition 1 one yields: 

a (~.", ~ -  f#. ) - c5 (f#., o~") + o (1/]/~). (3.17) 
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Furthermore, because the deficiency is determined by the difference of Bayes 
risks, the following holds: 

6 (~,", ~,) > ~ (~", ~ )  and 
(<) 

(3.18) and (3.17) show (2.6). 

6 (fr ~")  < 6 (fr ~,") if m, => 2 ~ H (P0., P~.). 
(>--) ~=<) (3.18) 
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