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Summary. Let X={Xk} be an I.I.D. random sequence and Y= {Yk} be a 
symmetric independent random sequence which is also independent of X. 
Then X and X + Y= {Xk+ Yk} induce probability measures #x and #x+r 
on the sequence space, respectively. The problem is to characterize the abso- 
lute continuity of #x and #x + Y and give applications to the absolute contin- 
uity of stochastic processes; in particular we give a sufficient condition for 
the absolute continuity of the sum of Brownian motion and an independent 
process with respect to the Brownian motion. 

We assume that the distribution of X1 is equivalent to the Lebesgue 
measure and the density function f satisfies 

+~ f"(x)2 dx< +00. 
(C) I f (x)  

- - 0 0  

Under this condition we shall give some sufficient conditions and neces- 
sary conditions for #x,,~px+r. The critical condition is ~E[[Yk]2"[ Ykl 

k 
~ e ] 2 <  + OO for some e>0.  In particular in the case where X is Gaussian, 
we shall give finer results. Finally we shall compare the condition (C) with 
the Shepp's condition: 

(A) +f~ f '(x)2 dx< 
_~ f(x)  + oo. 

1. Introduction 

Let X = {Xk} be an I.LD. random sequence and Y= { Yk} be a random sequence 
which is independent of X. Then X and X + Y= {Xk+ Yk} induce probability 
measures #x and #x+Y on the sequence space, respectively. The problem is 
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to characterize the absolute continuity of #x and #x+r and give applications 
to the absolute continuity of stochastic processes. 

Throughout the paper we assume that the distribution of X1 is mutually 
absolutely continuous with respect to the Lebesgue measure and denote the 
density function by f 

When Y is a deterministic sequence {Yk}, the following theorem due to L.A. 
Shepp is wellknown. 

Theorem 1 (L.A. Shepp [9]). Let X =  {Xk} be an I.I.D. random sequence with 
the distribution which is equivalent to the Lebesgue measure and Y =  {Yk} be a 
deterministic sequence. Then the following statements are equivalent. 

(A) f is absolutely continuous with respect to the Lebesgue measure and the Radon- 
Nikodym derivative f '  satisfies 

+~o f , (x)2 
- ~  ~ - d x <  + ~ .  

(B) #x "" #x + r (mutually absolutely continuous) if and only if 

~[y~l~< +o0. 
k 

As a corollary of Theorem 1, it is easy to prove that if (A) is satisfied and 
~lYkl2< +oe ,  a.s., then we have # x ~ # x + r .  But the converse is not true. In 
k 

fact it is known that if both of X and Y are centered Gaussian and Yk'S are 
independent, then #x "~ #x + Y if and only if 

Y',I Yk 14 < + o0, a.s., (1) 
k 

(Yu.V. Rozanov [5] and X. Fernique [2]), and if X is centered Gaussian and 
Yk'S are independent and P(Yk=ak)=P(Yk=--ak)=�89  where {ak} is a real 
sequence, then (1) implies #x,,~#x+r (H. Sato [7]). Therefore, interesting is the 
role of (1) concerning #x ~#x+ r. 

In this paper we treat the case where Y= { Yk} is an independent random 
sequence and assume the symmetry of distributions of Yk'S unless the contrary 
is explicitly stated. We consider a condition similar to (A) as follows: 

(C) f is differentiable, the derivative f '  is absolutely continuous with respect to 
the Lebesgue measure, and the Radon-Nikodym derivativ e f "  satisfies 

+ oo f , ,  (x )2  

_S f ~ 7  -dx< +~176 
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In Sect. 2, under some additional contitions to (C) we prove that (1) implies 
#x ~ #x + Y (Theorem 3), and more generally 

and 

~]EEg~: I g l  __<e]= < + oo (2) 
k 

Y~P(I ~1 >e)< + oo, (3) 
k 

for some e > 0, which are slightly weaker than (1), imply #x ~ # x  + r (Theorem 4). 
Conversely i f f  is twice continuously differentiable and 

lim Yk=0, a.s., (4) 
k--* + oo 

then #x ~ #x + Y implies (2) for some e > 0 (Theorem 5). 
Section 3 is devoted to the case where X is standard Gaussian, that is, the 

distribution of X1 is Gaussian with mean zero and variance 1. In this case 
(1) implies # x ~ # x + r  (Theorem 7). More generally (2) and (3) for some e > 0  
imply #x ~ #x+ Y and conversely #x ~ #x + Y implies (2) and 

k 

for every e > 0  (Theorem 9). However neither (2) and (5), nor (2) and (3) are 
necessary and sufficient for # x ~ # x + Y .  We shall show two counter examples. 
It is remarkable that there exist examples such that #x ~ #x+ Y and lim [ Yk]= + oO, 
a.s. k 

In Sect. 4 we give some applications to the absolute continuity for stochastic 
processes. In particular we give a sufficient condition for the absolute continuity 
of the sum of the Brownian motion and an independent process (Theorem 11). 

Concerning the relation between (A) and (C), in Sect. 5 we prove that (C) 
implies (A) i f f = f ( x )  is monotone for large Ix [. 

In the proof of Theorem 1, where Y is deterministic, Shepp made use of 
Kakutani 's  criterion [4], which is based on the Hellinger integral, for the absolute 
continuity of infinite product  measures and the Fourier transform. But in our 
case, where Y is a random sequence, it is difficult to apply them. We make 
use of Sato's criterion E8] for the absolute continuity of infinite product  measures. 

2. General Case 

Let X =  {Xk} be an I.I.D. random sequence with density function f ( f > 0 ,  a.e. 
(dx)), and Y= { Yk} be an independent random sequence which is also independent 
of X. We assume that the distributions of Yk'S are symmetric in this section. 
For  every k denote the distribution of X k and X k + Yk by m k and Vk, respectively. 

Then Vk is absolutely continuous with respect to rn k and we have a_vk (X) 
amk 
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lE t[ f (  x + Yk)] 

f (x) 
every k 

where IEY[ ] is the expectation with respect to Y. Define for 

Our starting point is the following theorem. 

Theorem 2. In the above situation the following three statements are equivalent. 

(Q) m ~ ~ x + ~ .  
(S) ~,Z(Xk) converges almost surely. 

k 

(K) ~E[Z(Xk) :  Z(Xk) > 13 < + oo, ( K -  1) 
k 

~,~[Z(Xk)2: IZ(Xk)I < 1] < + oo. (K--2) 
k 

Proof. The equivalence of (Q) and (S) is derived from Theorem 3 of H. Sato 
[83, and that of (S) and (K) from Kolmogorov's three series theorem since 
Z(Xk)'S are independent, Z ( X k ) >  - 1 ,  a . s . ,  and we have 

ZEEz(x~) :  z(x~)~ 13 = -YJE[z (xk ) :  IZ(X~)l < I] 
k k 

=YE[Z(Xk) :  IZ(Xk)t<l]l. Q.E.D. 
k 

For every e>0  and k, decompose Z(Xk) as follows. 

z(x~) = K(x~) + w~(xk) 

= {1Er[f(Xk+ Yk): I Y~I >e]/f(Xk)--lP(I Ykl >e)} 

+ E y [ f (Xk  + Yk) --f(Xk):] Yk[ < e]/f(Xk). (7) 

Then we have the following lemma. 

Lemma 1. I f  (3) is satisfied for some e>0,  then ~ V~ (Xk) absolutely converges 
almost surely, k 

Proof Fubini's theorem implies 

EY[Y, I E(Xk)I] 
k 

+oa 

< E  ~ lE t [ f (  x +  Yk): l Ykl >e]  d x + E m ( ]  Yk[>e) 
k -oo  k 

< 2 E  ~ f(x+~)dx:lYk[>~ + IP(I~I>~) 
k -oo  

=2Y.IP(I ~l>a) ,  
k 

and (3) proves the lemma. Q.E.D. 

Our first result is the following. 

E ~ [ f ( x k  + Y~)] 
z(xk) = 1. (6) 

f(Xk) 
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Theorem 3. I f  f satisfies (C), 3 times differentiable, f(3) is absolutely continuous 
with respect to the Lebesgue measure and the Radon-Nikodym derivative f(4) 
satisfies 

-too 

j If(4)(x)ldx< +c~, (8) 
--00 

then (1) implies #x ~ #x + r. 

Proof (C) implies the integrability of f "  as 

~oo + oo ( * ~ ) 2 f,,(x)2 . 
~ [f"(x)[dx~ < ~ - a x  ~ f ( y )dy< +co, 

- -  - -  ( K )  - -  o o  

and by Theorem 2 of E.F. Beckenbach and R. Bellman [1], Chap. 5, Sect. 3, 
f '  is also integrable and we have 

-[-oo 

f ' ( + ~ ) =  ~ f"(x)dx=O. 
- o o  

On the other hand, by Kolmogorov's three series theorem, (1) implies (3) 
for e = 1 and 

F, IEEY2: I ~1 _-_ 1] < + oo. (9) 
k 

Then the almost sure convergence of ~ 1/1 (Xk) is derived from (3) by Lemma 1. 
k 

On the other hand, by Taylor expansion, for every k we have 

W1 (Xk) = f@Xk) lEY I f '  (Xk) Yk + �89 f "  (X,) Yk 2 + ~- f(3)(Xk) yk 3 

t 

+~- S (1--sl3f(4)(Xk+SYk) ds Yk': [ Ykl < 1] 
0 

(10) 

and by the symmetricity of the distributions of Yk'S we have 

Wl(Xk)=l lErffYkZ: l Ykl ~ 13 f"(Xk~) 
f(Xk) 

~ '1--"3ds]E r[f(4)(Xk+s Yk) ] 
+~-~t s) [ f(Xk) ~ ' : lYkl<l  

= �89 Q (Xk) + ~ R (Xk). 

Since we have for every k 

-t-oo 

lE[Q(/k)l=Er[YkZ:lYkl~l] ~ f" (x)dx=O, 
- o o  
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and Q(Xk)'s are independent, in order to show the almost sure convergence 
o f ~  Q(Xk), it is enough to show ~]E[Q(Xk) 2] < + ~ .  In fact (9) implies 

k k 

~]E[Q(Xk) 2] <=A 2 ~ IE~' I-r~=: I ~ I =< 1] 2 
k k 

~A2~Y[Yk4: I Ykl~ 1] < +oo, 
k 

where A = 
-t-oo 

I f ' ( x ) l  dx. 
- c o  

Finally by Fubini's theorem we have 

EE~, IR(Xk)13 
k 

+co q 
~Z  I (l--s) 3dsEr[Ex[f(4)(Xk+sYk 1=<1] 

,, -co L L ~ ~'*:1~ 

< B y  ~Y [Y~4: [ Ykl < 13 < + ~ ,  
k 

-t-co 

where B =  ~ [f(4)(x)ldx. 
- c o  

Therefore ~ W1 (Xk) = �89 ~ Q (Xk) + ~ ~, R (Xk) converges almost surely so that 
k k k 

(S) of Theorem 2 is verified. Q.E.D. 

Remark, In the above theorem we did not assume the Shepp's condition (A) 
but (C). We shall show by the following example that (C) can not be replaced 
by (A). 

Let fo (x) be a C4-function on the real line such that 

sin 2 x, 

fo(x) =" exp - , 

positive, 

Ixl< 2 ,  

Ix[_>__2, 

otherwise, 

and define f(x)=cfo(x ) where c=E~fo(x)dx] -1. Then f satisfies (A) but not 
(C). Let X = {Xk) be an Ll.D. sequence with the density function f and Y= (Yk) 
be an independent sequence such that ]P(Yk=ak)=]P(Yk=--ak)=�89 where {ak} 
is a sequence of positive numbers such that sup ak<�89 and ~ a ~ <  + ~ .  Then 
we have ~ I ~14< + ~ ,  a.s. k k 

k 
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Assume that X and Y are independent and that #x+Y ~ #x- Then by Theo- 
rem 2, 

~ Z ( X k = ~ {  -IEY[f(Xk+Yk,] 1} 
k f (Xk)  

=El, -}[f(xk+ak)+ f(Xk-ak)] 1} 
k 1. f (Xk)  

converges almost surely. Since {Z(Xk) } is an independent sequence, by the Kol- 
mogorov's three series theorem, we have 

+ oo > ~ ( I z ( x ~ ) l  > 1) 
k 

= E ~'(z(x~) > 1) 
k 

> E ]P(Z(Xk)> 1, 1Xkl <-1) 
k 

=~k ]P(sin2 Xk < sin2 ak ) 
1 + 2 sin E a k ' ]Xk ] <= 1 

>=~lP(lXkl<~ak, IX~l<l)  
k 

for some positive constant less than 1 and 

Ka k 

= 2 I sin2 x dx > const. Z a3" 
k - r a g  k 

This is impossible if ~ a~ = + oo. 
k 

We give another sufficient condition for #x+ v ~ #x as follows. 

Theorem 4. I f  f satisfies (C) and moreover there exists e > 0 such that 

+0o f " ( x + z ) 2  
sup d x < + o o ,  (11) 

-oo I~1<~ f ( x )  

then (2) and (3) for this ~ are sufficient for P x ~  #x + r. 

Proof. We shall show (S) of Theorem 2. 

The almost sure convergence of ~ V~(Xk) is derived from (3) and Lemma 1. 
k 

In order to show the almost sure convergence of ~ W~(Xk), since IE[W~(Xk)] 
k 

= 0  for every k and I/V,(Xk)'S are independent, it is sufficient to show 
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2]E,[We(Xk) 2"] < Jr-(30. In fact, by the symmetry of distributions of Yk'S, for every 
k 

k we have 

IV.. (Xk) = �89 IE r I f  (Xk -- I Yk l) + f (Xk + I Yk l) -- 2 f  (Xk) : I Yk I < e]/f ( Xk), 

and by Taylor's expansion 

IE [w~(xk) ~ ] 
+co 

1 =~ Y lEr[f(x -]Ykl)+ f ( x+ l  Ykl)--2f(x):rYkl<e]2/f(x)dx 
- c o  

r lEY l f  -~-1 j [ z j s d s  I f"(x--tslYkl)dtlyk[2:lYk[ < (x)dx 
- - c o  k 0 - - 1  

+co f"(x+z)2 
--<~ I sup dxlEY[Y~=:IY~I<e] =. 

-co i=1<~ f (x) = 

Therefore (2) implies 2~_.[Z2(Xk) 2] < -~- O0 and the theorem is proved. Q.E.D. 
k 

Corollary. I f  f satisfies the hypothesis of Theorem 4, then (1) implies #x ~ #x + Y. 

Proof. It is easy to show that (1) implies (2) and (3) for every e > 0, and Theorem 4 
proves the corollary. Q.E.D. 

Conversely we give a necessary condition for #x "~ #x + Y- 

Theorem 5. I f  f is twice continuously differentiable and (4) is satisfied, then #x 
#x + r implies (2) for some e > O. 

Proof. Since f "  is continuous, f (x)>0, a.e. (dx), and f is integrable, there exists 
7 > 0 such that {x; f "  (x)< -7}  includes an interval. Define for every h > 0 

F(h)={x; ~--f [ f ( x +  h)+ f ( x - h ) - 2 f ( x ) ] < - 7 } .  

Then, from the continuity of f " ,  there exist e>0,  and a compact interval 1I 
such that lI c F(h) for every 0 _  h <__ e. Define for every k 

ll~k= {X; lEY[f(x+lYkl)+f(x--I Ykl): [ Ykl ~ l  _--< 2f(x)}. 

Then for every x e l  and every O<h<_e we have [ f ( x + h ) + f ( x - h ) - 2 f ( x ) ]  < 
- T h  2 so that lEg[f (x+] Ykl)+f(x--I Ykl):[Ykl<el<2f(x). Therefore we have 
XelI~k for every k and l I c  0 ~k. 

k 
Let Z(Xk)= V~(Xk)+ W~(Xk) be the decomposition in (7). Then (4) implies 

(3) for the ~ and by Lemma 1, ~ V,(Xk) converges almost surely. On the other 
k 
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hand by Theorem 2, #x ~ #x+ r implies the almost sure convergence of ~ Z(Xk)  
k 

so that ~ W~(Xk)= ~, Z (Xk ) - -~  V~(Xk) converges almost surely. 
k k k 

Since IE[W~(Xk) ] = 0  and W~(Xk)>-1,  a.s., Theorem 2, (K) is applicable to 
{W~(Xk)} and by {1W~(Xk)t< 1}={W~(Xk)eNk} for every k, by Kolmogorov's  
three series theorem we have 

+ ~ >~E[W~(Xk)2:IW~(Xk)I ~ 13 
k 

d x  
= ~  ~ lEY[ f (x+l  ~ l ) - t - f ( x - I  Ykl)-2f(x) :  I ~ l ~ g l  2 

k a~,, f ( x )  

>= ~ ~ lEr|f (x + l Ykl)+ f (x-- I v  Ykl)-2f(x) 
~ t [Y~I ~ 

1 
>= max f (x)  ~ 2 ( n ) Y " ~  [ l ~  ~lz: I Y~l <e]z' 

x~ll 

2 dx 

f ( x )  

where 2 is the Lebesgue measure, and this proves the theorem. Q.E.D. 

Combining Theorems 4 and 5, we have the following theorem. 

Theorem 6. Assume that f is twice continuously differentiable, satisfies (C) and 
(11) for some e>0,  and assume (4)for g={Yk}.  Then (2)for  the e is a necessary 
and sufficient condition for #x ~ #x + r. 

3. Gaussian Case 

Let X = { X k }  be a standard Gaussian sequence, that is, an I.I.D. random 

sequence with density function g (x) = ] / ~ -  1 exp - , - oe < x < + oo, and 

Y= { Yk} be an independent (not necessarily symmetric) random sequence which 
is also independent of X. Then g satisfies (C), (8) and (11) so that all the above 
results are applicable. Furthermore, since we know the explicit form of the 
density function g, we have the following theorems. 

Theorem 7. Let X =  {Xk} be a standard Gaussian sequence and Y =  {Yk} be an 
independent (not necessary symmetric) random sequence which is also independent 
of X,  and satisfies 

~IEYI-~:  I ~ l < e ] z  < + oc, (13) 
k 

for some e>0.  Then (1) implies # x ~ # x  + r. 
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Proof Since g satisfies (8), the arguments in the proof of Theorem 3 are applicable 
and we have only to show the almost sure convergence of 

and 

~ ~ X  ~ IEr [g' ( Xk) Yk:I Ykl--<el, 

in the Taylor expansion (10) where "] ~[  < 1 " is replaced by "1 Yk[ ----< e ". In fact 
for every k we have g'(Xk)/g(Xk)=--Xk and g(a)(Xk)/g(Xk)=3Xk--X ~, which 
form mean zero, square integrable independent sequences. Then it is enough 
to show the convergences of the sums of the square of coefficients of them. 
Since (1) implies (9), where "[ Yk]----< 1 " is replaced by "] Yk[<e ", we have by 
H61der's inequality 3 

~ EY [Yk3 : [ Y~ I <~l 2 < ~ E  Y [~4: i Ykl _~<83 2 
k k 2 

___ {ZE'[~4: i ~1 =<el#< + oo, 
k 

and (9) and (13) proves the theorem. Q.E.D. 

In the same idea with that of Theorem 7, we can prove: 

Theorem 8. Let X= {Xk} be a standard Gaussian sequence and Y= {Yk} be an 
independent (not necessary symmetric) random sequence which is also independent 
of X, and satisfies 

IEY [ Yk exp ( -- �89 Yk2)] 2 .< -I- 0 0 .  (1 4) 
k 

Then (1) implies #x ~ #x + r. 

Proof The Taylor expansion 

Z(Xk)=IEr[exp(--�89 Yk2){exp(Xk Yk)--exp Y~--~}: [ Yk]<I] 

= lEr[exp(-- �89 yR2){Xk Yk +Y2(x2--2 1)+~(Xk Yk) a 

+ i (16t)~exp(tXk Yk) dt(Xk Yk) 4 
0 

~ (l_t)exp [ t yk2\_ (y~)2 

and the similar estimations in the proofs of Theorems 3 and 7 prove the theor- 
em. Q.E.D. 
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Theorem 9. Let X={Xk}  be a standard Gaussian sequence and Y= {Yk} be an 
independent symmetric random sequence which is also independent of X. Then 
(2) and (3) for some e > 0  imply #x~#x+Y. Conversely #x~#x+y implies (2) and 
(5) for every ~ > O. 

Proof Since the Gaussian density function g satisfies (C) and (11) for every 
e > 0, the first part of the theorem is derived immediately from Theorem 4. 

We shall prove the remaining part of the theorem. In fact by the symmetry 
of the distributions of Yk'S, for every k we have 

Z (Xk) = lE r [exp (-- �89 Yk 2) cosh (X k I Ykl)] -- 1. 

Assume #x~#x+Y. Then by Theorem 2 two series ( K - 1 )  and ( K - 2 )  converge. 
For every k, since the function 

~k (U) = IE Y [exp ( -- �89 Yk z) cosh (u I Yk I)] (15) 

is continuous, strictly increasing for 0 < u < + o o ,  0 < O k ( 1 ) < l f e < 2  
lim 0k(U)= + oe, there exists unique ek> 1 such that Ok(C~k)=2. 

On the other hand, since we have for every 0 __< u <__ �89 and 0 __< t < + oo 

and 

1 - e x p ( - 1  t 2) cosh �89 u > �89 - e x p ( - 1  t2)} >0, 

(K - 2) implies 

+ oo >ZlE[Z(XO~.IZ(XOI ~ 13 
k 

= ~IE [IEY [exp(-  �89 Yk a) cosh(Xk I~1)-- 112: IXkl <~k], 
k 

and since c~ k > 1, 
1 

> 2 ~  S 1EY [exp( - 1  Yk 2) cosh(t I Ykl)-- 1] 2 g(t)dt  
k 0 

_->�89 ~ 1E~ [-1 - e x p ( - � 8 9  Yk2)] 2 g(t) dt 
k 0 

= C~IEY[1 - e x p ( -  �89 YkZ)] 2, 
k 

where C is a constant independent of Y and k. Therefore we have 

~EY[1 --exp(-�89 ~2)]2 < + oo 
k 

(16) 

and it is easy to show that this implies (2) and (5) for every e>0.  Q.E.D. 
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In the above theorem neither (2) and (3) are necessary nor (2) and (5) are 
sufficient for I~x~lax+ y. Furthermore it is interesting that (4) is not necessary. 
We shall give illuminating examples as follows. 

Let X = {Xk} be a standard Gaussian sequence and Y= { Yk} be an indepen- 
dent symmetric random sequence, which is also independent of X, with the 
distribution 

P ( ~  = ak) = P(Yk = -- ak) = �89 Pk, 

P(Yk = 0) = 1 --Pk, (17) 

for every k, where {ak} and {Pk} are sequences of positive numbers such that 
lim ak = + o0 and 

k 

2 p k = + O e ,  and 2 p Z < + o e .  (18) 
k k 

Then Y satisfies (2) and (5) but not (3) and (4), and we have 

~Pk(U) = let  [exp(-- �89 Yk 2) cosh(u I ~l)]  

= Pk exp ( -- �89 at) cosh (a k u) + (1 -- Pk)" 

The root c~ k of the equation @ k ( U ) ~ - 2  is given by 

Define 

ek = - - l o g  p(~ak)+ exp(ag) - 1 . 
ak Pk 

7 k = l l o g {  2(l~+pk) 

 log{  1 
Pk ~ +~ak" 

Then simple estimations show I ~)k - -  0~k] ~-~ P ~  exp ( -  at). By reformulating Theo- 
rem 2, it is not difficult to show the following lemma. 

Lemma 2. In the above situation, # x ~ P x + r  if  and only if the following two 
series are convergent. 

7 k  

~Pk S exp(--�89 d u < + ~  (G-I) 
k ~k  - a k  

Yk -- 2 a k 

ZP~ I exp(a~--�89 du< +~176 (G-2) 
k - 2 a k  
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Proof We have Z(Xk)=pk{exp(--�89 and, using I~k--~kl 
2 2 Pk exp(--ak) , (K-l) and (K-2) of Theorem 2 are reformulated as 

+cO 

Z i  
k )'k 

pk{exp(--�89189 +oo, (K'-I) 

Z ~ P~ {exp(--�89 cosh(aku ) -  1} 2 exp(--�89 2) du< + oo. 
k 0 

(K'-2) 

Then we have 

+o0 

S {exp(- �89 a2) c~ 1} e x p ( - � 8 9  2) du 

- - 1 (  +oo +oo 
f + f  

yk--G k 2)kWak 

+ oo"~ 2 -2  I  exp(-�89 

( Yk ~k + ak) 
= 2 ~'-Ykl fak --  Ykl .-'~ e x p ( - - l u  2) dr,/. 

On the other hand we have 

Yk 
{exp( 1 2 ~ak) cosh(akU ) -- 1} 2 exp(--�89 u 2) du 

0 

I yk--2ak 7k+ 2ak) 
=�88 ~ + ~ ~exp(-�89 

-2ak 2ak .J 

~k- -ak  Yk + ak~ ~k 

"+ " - !k  + akf . . ~ e x p ( - - ) u 2 ) d u + { l  + e x p ( - - a 2 ) }  of e x p ( - k u 2 )  du- 

Using these estimations, it is not difficult to show that (K'-I) and (K'-2) 
are equivalent to (G-I) and (G-2) under the condition (18). Q.E.D. 

Now we shall show the examples. 

Example 1. In (17) define ak = lo]//i~ and Pk = (�89 k--1)-1 for k > 5. Then we have 

Yk 9 
•Pk S exp(--�89 1~ k<+~176 
k Yk -- atr k 

and 
Yk -- 2 ak 9 

~p~ ~ exp(aZ-1u2)du<54~k-g/logk< +or. 
k - 2an k 

Therefore by Lemma 2 we have iZx,,,#x+r but Ydoes not satisfy (3). 
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Example 2. In (17) define a k = l ~ k  and pk=(�89 ~+~- 1)-1 for some fixed 6 > 0  

where k > 16. Then we have 7k = (1 + 6 ) 1 0 ~ ,  and using the inequality 

t+l 
1 

5 exp(-�89189 t2) 
t 

for t __> 1, we have 

~k 

ZPk ~ exp(-�89 k-(}+a) 
k ~ k - - a k  k 

1 
+ 6 _ ~ ) V  l~  exp(--k 6 2 logk) 

(1 

1 
k 2/ logkg k - +0o,  

for 6=<~/2--1. Therefore Y satisfies (2) and (5) but by Lemma 2 #x and #x+Y 
are singular. 

4. Applications to Stochastic Processes 

Let iN = {X (t)}t~ T and v/f = { Y(t)}t~ T be mutually independent stochastic pro- 
cesses, and Px and Px+Y be probability measures on the function space induced 
by iN and X + v/f = {X(t)+ Y(t)}t~ r, respectively. In the information theory they 
treat the absolute continuity of Px+v with respect to Px (denoted by Px+Y ~ Px) 
and the estimation of the entropy 

 log ], 
drx arx J 

where IE [ ] is the expectation with respect to Px (S. Ihara [3]). However, unless 
both of iN and Y are Gaussian, there are few tools in analysing them. 

On the other hand, let Y" and q/ be Polish spaces (i.e. complete separable 
metric" spaces), # and v be probability measures on Y', and q) be an injective 
map of Y" into q/ defined #-almost surely. Then v ~ #  implies ~o(v)~ ~0(#) and 

the Radon-Nikodym derivative is given by do(v) dv do(#) - d# (p- 1, ~0 (#)-a.s. Converse- 

ly, let P be a probability measure on q/ such that P~cp(#). Then we have 
dcp-l(P) dP 

q ) - l ( p ) ~ #  and - -  - - -  d# drp(#) ocp, #-a.s. 

The typical examples of the above scheme are stochastic processes given 
by random Fourier series. In particular we define a class of stochastic processes 
which have similar properties with Gaussian processes (H. Sato [6]) as follows. 

Let :/K be the Banach space of all continuous functions on [0, 1] which 
vanish at 0, P a probability measure on 3r We call a stochastic process iN 
= {X(t)}t~Eo, 11 an g-process if there exist a sequence {xk} in ~/K and a sequence 
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{~k} in ~K*, the topological dual space of ~K, such that (Xk, ~ j )=Sk j  , k,j 
= 1, 2, 3, ..., and for which 

X ( t ) = ~  (x, ~,5 Xk(t), tE[O, 1] (19) 
k 

converges uniformly P-almost surely. Then the random sequence X =  {(x, ~k)} 
on (~#r, p) induces a probability measure #x on the sequence space. On the 
other hand let Q be another probability measure on ~ .  Then the random 
sequence 2g={(x,  ~k)} on (~K, Q) induces a probability measure #z and we 
have the following theorem. 

Theorem 10. In the above situation, we have Q ~ P  if and only if #z~#x  and 
the Radon-Nikodym derivative is given by 

dP (x)= ({(x, ~kS}), P-a.s. (20) 

The most illuminating example of the above theorem is the Brownian motion. 

Example 3. Let PB be the Wiener measure on ~ and define Oo(t )=l ,  Ok(t) 
t 

=l/-2cosrc kt, k = l ,  2, 3 . . . .  , Xk(t)= ~ Ok(S) ds, k=0 ,  1, 2, ..., and a sequence of 
0 

Radon measure on (0, 1] by d~o(t)=61, d~k(t)=l/2rc k sinT~ kt dt+]/2(-1)k61,  
k----1, 2, 3 . . . .  , where 61 is the Dirac measure concentrated on t =  1. Then the 
Brownian motion ~3={B(t)}t~Eo.11 is expanded in an almost surely uniformly 
convergent sequence 

+co 

B(t) = ~ (x, ~k) Xk(t), (21) 
k=O 

where (X ,~k)=  j x(s)d~k(S) is also written as the stochastic integral 
(o,1] 

1 

j Ok(s)dB(s), k=0 ,  1, 2 . . . . .  
0 

On the other hand, let Y =  {Yk} be a symmetric independent random 
sequence which is also independent of I13 and satisfy (2) and (3) for some e > 0. 
Then by Theorem 7 

+co 

Y(t)= ~ YkXk(t), (22) 
k=O 

converges uniformly almost surely, ~ 3 + Y =  {B(t)+ Y(t)}t~to. 1~ induces a proba- 
bility measure P~+v~ P~, and the Radon-Nikodym derivative is given by 

d e ~ +  y + ~ 
d ~ -  (x) = H EY[exp( - } Yk 2+ Yk(x, Ck))], PIB-a.s., (23) 

k=O 
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or equally 

 fiex_/_�89 1 )] 
+ Yk ~ CPk(S) dB(s) , PB-a.s. (24) 

0 

In particular, let {ak} be a sequence of numbers such that ~ a 4 < + oe and 
k 

assume that P(Yk = ak) = P(Yk = -- ak) = �89 for every k. Then, using the inequality 
log(cosh t)=<�89 2 for t>__0, we have 

H(P~+ylP~)~ �89 ~ a4 < + oo. 
k 

We formulate the above example as a theorem. 

Theorem 11. Let Y = {Yk} be an independent symmetric random sequence indepen- 
dent of a Brownian motion ~3={B(t)}t~to, q and satisfy (2) and (3)for some e>0.  

Then Y(t)= ~, YkXk(t), 0 < t < l ,  uniformly converges almost surely and N + Y  
k = 0  

={B(t)+ Y(t)}t~o,11 induces a probability measure P~+Y~PB on ~K with the 
Radon-Nikodym derivative (24). 

5. Does (C) Imply (A)? 

The aim of this section is to study the relation between the condition (C) and 
(A) and prove the following theorem. 

Theorem 12. I f  f satisfies (C) and is monotone for large Ix I, then f satisfies 
(A). 

Proof Assume that f satisfies (C). Then, since f is continuously differentiable 
and monotone for large ]x[, there are real numbers S, T ( - o e < S < T <  +o e) 
and sequences of disjoint open finite intervals {(a,, b,)} and {(c,, d,)} such that 

: +  = {x: f(x) > 0} = { ~ (a., b.)} u ( -  oo, S), 
n 

~ _  = {x: f(x) < 0} = { U (c., d.)} w (T, + oe), 
n 

and 
if(a.)--f '(b.) =f ' ( c . ) - - f ' ( d . ) - - i f (S )  - - i f (T)--0 ,  

for every n. 
On every (a., b.), we have 

,, f,(x)2 dx b,~ dx ft. 2 
f(x)  =:. 

f"(y) dy 

b, dx 

an an ~ -  
dy, 
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and, since f = f ( z )  is monotone increasing in (a., b.), 

b. b,, f , , (  "12 
<= I (x--a,) dx  I ~ d y  

. . . .  JtY) 

bn f , t ( x ] 2  
<(b a ~2 r a t J = , , - -  . :  j ~ d x  

a. f (~ l  

b. f , , ( x ) Z  . <_5(T-S)2 ~ ~ - a x .  

In a similar manner on every (c,, d,) we have 

d~(x) ~ f "  (y) d y 
}" f '(x)2 d x =  d,~ a,~ 2 
cJ f (x) ~. :, 

a. dx  d. a. f,,(y)2 

=~. f (  ) 

and, since f = f ( z )  is monotone decreasing in (c., d.), 

a. f,,(x)2 . 
=<(T--S) 2 I 7 ~  -ax" 

r 

On the other hand, define h = f " - f  Then as a solution of the differential 
equation with the boundary condition f(_+ ~ )  --0, f is expressed in the form 

{ i } f ( x ) = - � 8 9  e -x eYh(y)dy +ex S e -Yh(y)dy  , 
--o9 X 

- 0 0  < x <  q- 00. 

h 2 f ,2 ( f + f , ) 2  
Evidently we have f ~ - <  + 0o, and I ~ - <  + oo if either I f 

( f  _ f,)2 < + 00. 
f 

On ( - 0 0 ,  S), f = f ( y )  is monotone increasing and we have 

- - < + o o  or 

- o 9  

( f ( x ) - f ' ( x ) ) 2 d x =  i dx  e_X ( dy 2 
f (x) _ o9 ~ ( ~  e r h (y) 

<= ~ dx  h(y) 2 
-o9 7 ~ - o o  e~-Xf(~)dz  -o9 ~, -x  f(y) 

< S e-X x . r h ( y ) 2  ) 
_o9  _ ~ 7( .y;dx, 

dy 
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and by partial integration 

= i { _ e  x-sh(x)2 4_h(x)2\d x 
-oo f (x) f (x) J 

i h(x) <= - ~ - ~  a x < + oo . 
- o o  

Similarly on (T, + oo), f = f ( x )  is monotone decreasing and we have 

+~o (f(x)+f,(x))2 dx= +~ dx e x +oo dy 2 
i f (x) ~ I e-Y h(y) 

T T x 

=< +re h(x)2 
T ~ d x < + o o .  

Summing up the above estimations we have 

+ oo f,(x)2 f,(x)2 f,(x)2 . 
I 7 ~  - d x =  f 7 ~  - d x +  I 7 ~  -ax 

- m  ~ ' +  o ~ - 

bn f , (  ~2 S a ~Xy = Z  I ~ ,  , dx+ I f '(x)2" 
, , .  f (x) -o~ ~ - a x  

a. if(x)2 +too f,(x)2 �9 

b.c,,ty~2 ~ f , , (x )2  

n a .  J ( X )  - o o  f ~ )  ax 

a " ~ d x +  +~~176 f "  (X) 2 + (T- S) 2 ~ j ~ dx 
n T 

<[1+(T_S)2 ].•+ 7~-ax+~_f (x) , . f 7 ~ - a x f  

<=[I+(T--S) z] +f ~f''(x)2 dx< + m .  Q.E.D. 
-oo f (x) 

K. Kitada and H. Sato 
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