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Summary. Let u, — p be a weakly converging sequence of Borel probability
measures on a topological space X. We prove the existence of an almost
surely converging sequence of random variables &, — £ which obey this laws,
if a certain y-dependent countability property of the topology holds. Especial-
ly this is the case if

(a) X is second countable,

(b) X is first countable and p has countable support,

(c) X is metrizable and u is t-smooth.
A final example disproves the existence of such random variables for (tight)
measures on a Lusin space.

0. Introduction

One of the classical marginal problems (see [7]) of probability theory can be
stated as follows. Let X be a topological space, let P,(X) be the space of Borel
probability measures endowed with the weak topology (see [14]) and u,— p
a converging sequence in P,(X). Do there exist a probability space (@2, <, IP)
and random variables &,, & such that Po¢; ' =pu,, Poé =y and &, — & almost
surely? It is well known, that this is the case if X is metrizable and y is T-smooth
or, equivalently, has separable support (see [2], [41, [12], [15]).

We extend this result in the following way. Looking at the proof of Dudley
in [2], one observes easily that the problem has a simple solution in case of
Dirac measures y on first countable spaces. The reduction of the general problem
to this case is obvious if there are kernels T,: X — P,(X) such that

§ T, ) p(d %)=,
and

T(x,.)— e,

for uy-almost all xe X. The existence of these kernels under weak countability
conditions on the topology of X will be proved by a previous result of the
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author which establishes the openness of convex addition in the cone P,(X)
(see [107).

In [5] Fernique proved a global realization theorem: Given a Polish space
X there exists a random variable X (v) for each Borel probability v on X such
that for each converging sequence u, — u the random variables X (u,) converge
to X (i) on a set of probability 1. Though this theorem may be straightforeward
extended to the case of 7-smooth measures on wider classes of metrizable spaces
(for instance those which are Borel subsets of a completition), it does not hold
in the non-metrizable setting of this paper: Consider a set C<[0, 1] of outer
Lebesgue measure 1 and inner Lebesgue measure 0. Let X =[0, 1] be endowed
with the topology generated by the Euclidean open sets and C. In this case,
open sets in X are of type G, u(G,n C) for Euclidean open sets G, and Borel
sets of type (B;\C)u (B, C) for Euclidean Borel sets B;. Define probabilities
on X by

vi(Bi\C)u (B, N C))=A(B),

where 4 denotes the Lebesgue measure (cf. [6], p. 71 (2)). Observe that for G;
as above

V1(G1 V(G20 O)=A(G)ZA(G1 v Gr)=v2(Gu(G,n (),

which implies that the constant sequence u,=v, converges to v,. Since X is
second countable, Theorem (2.6) yields a realizing sequence of random variables
¢, — £ However, the random variables £, may not be chosen identically since
this would imply &,=¢& almost surely and so v{=v,. In other words, we have
constructed a space X without global realization where each converging
sequence may be realized.

Applications of the realization theorem may be found in [1], [3] or [8].

1. Notations and Preliminary Results

Given a topological space X, denote by

%(X) the class of open sets in X,

2% (X) the class of Borel sets in X,

P.(X) the set of Borel probability measures on X.
Endow P,(X) with the weak or narrow topology, i.e. the weakest topology such
that the mapping

p— p(G)
is lower semi-continuous for each Ge 4 (X) (see e.g. [11], [14]). The Dirac meas-
ure in a point xeX will be abbreviated by ¢,. For the definition of special

properties of Borel measures we refer to [14]. Finally we call a map T: X - P.(X)
a kernel, if for each Be#(X) the function

x+—T(x, B)
is Borel measurable.
Next we cite a result, which is the crucial basis of this paper.
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(1.1) Theorem. Let A<[0, 1]. Then the mapping

F(X)x B(X)a(y, v)—Apu+(1—2A) veE(X)
is open.

Proof. See [10]. (T

The following corollary will be the main tool to get the above mentioned
decomposition lemma.

(1.2) Corollary. Let A0, 1]. Let u, v, pe P.(X) such that Au+(1—Av=p. If p
has a countable neighbourhood base in B,(X), then for each sequence (p,),en cON-
verging to p in B,(X), there exist sequences ({,)uen a0d (V) Such that

)"/'Ln‘*'(l_—l) Vo= P
and
U= p and v,—v.

Proof. Observe first that y and v have countable neighbourhood bases too.
Let (4y)ren and (1), be decreasing neighbourhood bases of u and v respectively.
By Theorem (1.1) the sets 14, +(1 — ) I; are open in B,(X). So there are integers
N, such that for cach s> N,

Pl A+ (1= T

We may choose the N, increasing and converging to infinity. For each integer
n2 N, denote by k, the largest integer such that n= N, , choose u,e4d, , v,el;
such that p,==Au,+(1— 1) v, and the proof is complete. [

2. The Theorem

Since the existence of almost surely converging random variables which realize
a weak convergent sequence p,— u, depends mainly on the limiting measure
4, the following definition is adequate.

(2.1) Definition. We call pe P,(X) realizable iff for each sequence y, which con-
verges in P,(X) to y, there exist a probability space (2, s/, IP) and random variables
&, € such that

) Polt=p,, Pl l=y
and
(i) (¢, o Eed, PE,~E=1

To be able to handle three relevant cases simultaneously, we give the follow-
ing
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(2.2) Definition. Ler ue P.(X). X is called p-countable iff there is a Borel subset
X, in X and a countable class % of open sets, such that u(X,)=1 and 9 includes
a neighbourhood base of x for each xeX,,.

We state some simple facts.

(2.3) Remark. X is p-countable if
(a) X is second countable,
(b) X is first countable and p=" Ae,,
ieN
(¢) X is metrizable and u is t-smooth.

Proof. (a) and (b) are obvious. For (c) observe that 7-smooth measures in metriz-
able spaces have separable supports. []

(2.4) Remark. If X is y-countable then
(a) p has a countable neighbourhood base in E.(X),
(b) u is t-smooth.

Proof. The observation that the subspace X, in Definition (2.2) is second count-
able gives (b). The construction of a countable neighbourhood base of y from
the set % is straightforeward (see e.g. [14], Theorem 11.2.(iii)). [

Conditions (a) and (b) are not sufficient for X to be p-countable: Let X
=10, 1] endowed with the right half-open interval topology (counterexample
51 of [13]). Since for Ge¥%(X) there is a countable set C such that G\C is
open in the Euclidean topology on [0, 1], the Borel sets of X are the same
as in the Euclidean case and we may take u to be the Lebesgue measure on
X. Since a neighbourhood base of a point xe X consists of at least countably
many sets of the form [x, x +¢[, a neighbourhood base of an uncountable subset
of X is uncountable itself, which implies that X is not u-countable. (a) and
(b) are holding since, as mentioned above, each open sct in X includes an open
set of the Euclidean topology with same y-measure.

The following decomposition lemma enables us to reduce the realization
problem to limiting measures &,.

(2.5) Lemma. Let X be p-countable. Then for each sequence (u,),.n converging
to u there exist kernels T,: X — P,(X) and a Borel set X° such that n(X°) =1,

(iii) [ T.(x, By u(dx)=p,(B)  for each Be#(X)
and
(iv) T,(x,.)—¢, foreach xeX°.

Proof. Choose X, and %={G,,: meN} according to (2.2). Let B™, ..., B"™ be
those atoms of the algebra generated by G4, ..., G,, which possess positive
u-measure. By (1.2) and (2.4) there exist measures p7*e P,(X) such that

[T lgmapy, meN,kZr,,

b
p(B™*)
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and

m

Y, uB™ i =p,, neN.

k=1

Choose N, oo such that N; =1 and foreach n>N,,,m<mand k<r,

1 1
mk N> Bmk G.)——.
o) 2 WB™ 0 G =

Call m, the largest integer such that n= N, . Define

Uk if xeB™* 1<k<r,,
arbitrary  else.

T, .)={

Then T, is a kernel and (iii) follows by

[ Te By p(d)= 3¢ ot (B) w(B™) = 1, (B).
k=1

563

To get (iv) set X°=X,n (1} |J B™, which is obviously a Borel set of y-meas-

meN k=1
ure 1. For xeX? and x€G,,. we have to show
m

lim inf T,(x, G,,) = 1.

Since for each n such that m,>=m’ there exists an integer k, such that

xeB™* < G,,, we have
lim inf T, (x, G,,) =lim inf y™*(G,,)
.. 1
2liminf ———
H ntn

=1.
This finishes the proof. [

It is worth mentioning that the kernels appearing in Lemma (2.5) may be
chosen continuous under certain conditions (for instance if X is compact and

metrizable), which can be derived by application of Corollary (2.2) of [9].

The main result can now be established.

(2.6) Theorem. If ueP.(X) and X is u-countable then y is realizable.

Proof. Choose X , and 4= {G,,: me N} according to (2.2). We may and do assume

that each Ge¥ appears infinitely often in the sequence (G,,)men-
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(1) The Case p=¢, for xeX,. Let (v,),cn be a sequence in P(X) converging
to ¢, and U, =G,,, a decreasing neighbourhood base of x. Choose integers N1 co
such that N; =1 and for each n= N,

1
z1l——
AARIESS

Call again k, the largest integer such that n > N, . Denoting by Z the complement
of aset Zc X, we set

R=X"xX,
A =(@nB(X)) @ B(X),
1

— 1y v, if t=2v,(G,)
]P — Vn(U;cn) Ukn ( k)
nt ™ 1

———1g—v, clse,

vo(G,)
]Pt=(®]N]Pnt)®£x:
P= j" P, A(d¢t),

10,1

(<7, IP)=completion of (<, IP)

{(the completition is necessary since we have to guarantee the measurability
of the set {&, &} n{E¢X,}). As random variables £, and ¢ we choose the
projections. Then (i) follows by

Poé™ =g,
Posy =B, idH)=v,.

To get (ii) we observe first that {¢,— x}esZ For t<1 we get that B-almost
surely holds &,e U, eventually, since v, (U, ) = 1. So

E(,—x)=1
and

P, —-x)=1,
which completes the proof of (1).

(2) The General Case. Let p, — u. Choose T,, neN and X° according to (2.5).
For xeX,n X° set v,=T,(x) in (1) and choose the m, as measurable functions
of x (Define increasing sequences [, (x) such that

{meN: xeG,}={l,(x), L(x), ...}
and set by recurrence

m, (x)=1,(x),

My (x)=min{n>m(x): x€G, <Gy (y " Gy, ,0})-
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In this case N,, k, and P are measurable functions or kernels. Define
PA)=[P(x, A u(dv), Aed,

where PP(x, .) can be chosen arbitrarily for x¢ X, N X°. Complete for the same
reasons as above (<7, IP) to (<7 IP). We get (i) by an application of part (1):

P&, Y (B)=[P(x, & (B) u(dx)
= [ T,(x, B) u(d x)
= 1, (B),
Pt (B)=[ B(x, £ *(B) u(dx)
= [ &.(B) p(d).
= pu(B).
For (ii) observe first that {&, — £} equals up to a PP-negligible set
A={¢eG,=¢,eG, eventually} e .
We compute finally, using again part (1)

P~ )=PA)=[P(x, Hu(dx=1 O

We conclude with two examples showing the assumption in (2.6) to be essen-
tial but not necessary.

(2.7) Example. There exist (tight ) measures on Lusin spaces which are not realiz-
able.

Proof. We use counterexample 98 of [13]. Let X =N u {00} and define a topolo-
gy on X such that every subset of IN is open and for oceGc X

Ge?(X)c»%l{l, B} G[ 1

Y &. Obviously u,— p while there is no sequence
=1

1

Choose p=¢,, and p,=—

n;
in N converging to oo: If x,—c0 there is a subsequence (x, ), such that
X, > 10* for each keN. But then the set {x, : keIN} is closed in contradiction
to x,, —oo. [

(2.8) Example. There exist (tight) measures p on Lusin spaces X, such that u
is realizable, though X is not u-countable.

Proof. We use counterexample 26 of [13]. Let X =IN x N U {c0}. Define a topolo-
gy on X such that each subset of IN x N is open and for cweGa X

Ge¥9(X)<|{meN: |{neN: (n,m)¢G}| < c0}|< co.
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(1) Let (u,),n be a sequence in P.(X) converging to &,. We will show
ts({00}) — 1. Assuming the contrary and, if necessary, considering a subsequence,
there is a real «>0 such that for each neN holds u,({c0})>a. Denoting the
projections on Nx NN by =, and =,, we proceed by recursion (n; =1, m; =0)
for keN:

Choose x%, ..., x¥_such that 7, (x})>m, and

I'Lnk({x?: lérk}) >0
Define
My =max {m,(x¥): i<r}.

Since p, (N x {1, ..., m,,})—0 there is an integer n; ., such that
P, (N {my g +1, .. D) >0

Setting now F={x!: keN, i<r,}, we derive a contradiction by observing that
F is an open neighbourhood of co and

lim inf u, (F)<1—a.
(2) &, is realizable, since:

& if t=p,({o0}),
b= 1

pa({o0}) b

Set

else

in the construction of the probability measure in the proof of (2.6). Part (1)
yieldsfor t<1

B(¢,=co eventually)=1

and the proof of (2) is complete.

(3) The point oo possesses no countable neighbourhood base, since in this
case their would be a sequence (x,),.n Of points of N xIN converging to co.
This would yield ¢, — ¢,,, which is a contradiction to (1). [

The same method as above yields that the Dieudonné measure p on the
space of countable ordinals X (see [6], p. 231, (10)) is realizable though X is
not p~countable.
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