Almost Surely Convergent Random Variables with Given Laws

Andreas Schief

Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, D-8000 München, Federal Republic of Germany

Summary. Let $\mu_n \to \mu$ be a weakly converging sequence of Borel probability measures on a topological space X. We prove the existence of an almost surely converging sequence of random variables $\xi_n \to \xi$ which obey this laws, if a certain μ -dependent countability property of the topology holds. Especially this is the case if

- (a) X is second countable,
- (b) X is first countable and μ has countable support,
- (c) X is metrizable and μ is τ -smooth.

A final example disproves the existence of such random variables for (tight) measures on a Lusin space.

0. Introduction

One of the classical marginal problems (see [7]) of probability theory can be stated as follows. Let X be a topological space, let $P_{\sigma}(X)$ be the space of Borel probability measures endowed with the weak topology (see [14]) and $\mu_n \to \mu$ a converging sequence in $P_{\sigma}(X)$. Do there exist a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and random variables ξ_n , ξ such that $\mathbb{P} \circ \xi_n^{-1} = \mu_n$, $\mathbb{P} \circ \xi^{-1} = \mu$ and $\xi_n \to \xi$ almost surely? It is well known, that this is the case if X is metrizable and μ is τ -smooth or, equivalently, has separable support (see [2], [4], [12], [15]).

We extend this result in the following way. Looking at the proof of Dudley in [2], one observes easily that the problem has a simple solution in case of Dirac measures μ on first countable spaces. The reduction of the general problem to this case is obvious if there are kernels $T_n: X \to P_{\sigma}(X)$ such that

$$\int T_n(x, .) \mu(dx) = \mu_n$$
$$T_n(x, .) \to \varepsilon_x$$

and

for μ -almost all $x \in X$. The existence of these kernels under weak countability conditions on the topology of X will be proved by a previous result of the

author which establishes the openness of convex addition in the cone $P_{\sigma}(X)$ (see [10]).

In [5] Fernique proved a global realization theorem: Given a Polish space X there exists a random variable X(v) for each Borel probability v on X such that for each converging sequence $\mu_n \rightarrow \mu$ the random variables $X(\mu_n)$ converge to $X(\mu)$ on a set of probability 1. Though this theorem may be straightforeward extended to the case of τ -smooth measures on wider classes of metrizable spaces (for instance those which are Borel subsets of a completition), it does not hold in the non-metrizable setting of this paper: Consider a set $C \subset [0, 1]$ of outer Lebesgue measure 1 and inner Lebesgue measure 0. Let X = [0, 1] be endowed with the topology generated by the Euclidean open sets and C. In this case, open sets in X are of type $G_1 \cup (G_2 \cap C)$ for Euclidean open sets G_i and Borel sets of type $(B_1 \setminus C) \cup (B_2 \cap C)$ for Euclidean Borel sets B_i . Define probabilities on X by

$$v_i((B_1 \setminus C) \cup (B_2 \cap C)) = \lambda(B_i),$$

where λ denotes the Lebesgue measure (cf. [6], p. 71 (2)). Observe that for G_i as above

$$v_1(G_1 \cup (G_2 \cap C)) = \lambda(G_1) \leq \lambda(G_1 \cup G_2) = v_2(G_1 \cup (G_2 \cap C)),$$

which implies that the constant sequence $\mu_n = v_2$ converges to v_1 . Since X is second countable, Theorem (2.6) yields a realizing sequence of random variables $\xi_n \rightarrow \xi$. However, the random variables ξ_n may not be chosen identically since this would imply $\xi_n = \xi$ almost surely and so $v_1 = v_2$. In other words, we have constructed a space X without global realization where each converging sequence may be realized.

Applications of the realization theorem may be found in [1], [3] or [8].

1. Notations and Preliminary Results

Given a topological space X, denote by

 $\mathscr{G}(X)$ the class of open sets in X,

 $\mathscr{B}(X)$ the class of Borel sets in X,

 $P_{\sigma}(X)$ the set of Borel probability measures on X.

Endow $P_{\sigma}(X)$ with the weak or narrow topology, i.e. the weakest topology such that the mapping

$$\mu \mapsto \mu(G)$$

is lower semi-continuous for each $G \in \mathscr{G}(X)$ (see e.g. [11], [14]). The Dirac measure in a point $x \in X$ will be abbreviated by ε_x . For the definition of special properties of Borel measures we refer to [14]. Finally we call a map $T: X \to P_{\sigma}(X)$ a kernel, if for each $B \in \mathscr{B}(X)$ the function

$$x \mapsto T(x, B)$$

is Borel measurable.

Next we cite a result, which is the crucial basis of this paper.

(1.1) **Theorem.** Let $\lambda \in [0, 1]$. Then the mapping

$$P_{\sigma}(X) \times P_{\sigma}(X) \ni (\mu, \nu) \mapsto \lambda \, \mu + (1 - \lambda) \, \nu \in P_{\sigma}(X)$$

is open.

Proof. See [10]. □

The following corollary will be the main tool to get the above mentioned decomposition lemma.

(1.2) **Corollary.** Let $\lambda \in [0, 1]$. Let μ , ν , $\rho \in P_{\sigma}(X)$ such that $\lambda \mu + (1 - \lambda) \nu = \rho$. If ρ has a countable neighbourhood base in $P_{\sigma}(X)$, then for each sequence $(\rho_n)_{n \in \mathbb{N}}$ converging to ρ in $P_{\sigma}(X)$, there exist sequences $(\mu_n)_{n \in \mathbb{N}}$ and $(\nu_n)_{n \in \mathbb{N}}$ such that

$$\mu_n \to \mu \quad and \quad \nu_n \to \nu.$$

 $\lambda \mu_n + (1 - \lambda) \nu_n = \rho_n$

Proof. Observe first that μ and ν have countable neighbourhood bases too. Let $(\Delta_k)_{k \in \mathbb{N}}$ and $(\Gamma_k)_{k \in \mathbb{N}}$ be decreasing neighbourhood bases of μ and ν respectively. By Theorem (1.1) the sets $\lambda \Delta_k + (1 - \lambda) \Gamma_k$ are open in $P_{\sigma}(X)$. So there are integers N_k such that for each $n \ge N_k$

$$\rho_n \in \lambda \Delta_k + (1-\lambda) \Gamma_k$$

We may choose the N_k increasing and converging to infinity. For each integer $n \ge N_1$ denote by k_n the largest integer such that $n \ge N_{k_n}$, choose $\mu_n \in \Delta_{k_n}$, $\nu_n \in \Gamma_{k_n}$ such that $\rho_n = \lambda \mu_n + (1 - \lambda) \nu_n$ and the proof is complete. \Box

2. The Theorem

Since the existence of almost surely converging random variables which realize a weak convergent sequence $\mu_n \rightarrow \mu$, depends mainly on the limiting measure μ , the following definition is adequate.

(2.1) **Definition.** We call $\mu \in P_{\sigma}(X)$ realizable iff for each sequence μ_n which converges in $P_{\sigma}(X)$ to μ , there exist a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and random variables ξ_n, ξ such that

(i)
$$\mathbf{P} \circ \xi_n^{-1} = \mu_n, \quad \mathbf{P} \circ \xi^{-1} = \mu$$

and

(ii)
$$\{\xi_n \to \xi\} \in \mathscr{A}, \quad \mathbb{P}(\xi_n \to \xi) = 1.$$

To be able to handle three relevant cases simultaneously, we give the following (2.2) **Definition.** Let $\mu \in P_{\sigma}(X)$. X is called μ -countable iff there is a Borel subset X_0 in X and a countable class \mathscr{G} of open sets, such that $\mu(X_0) = 1$ and \mathscr{G} includes a neighbourhood base of x for each $x \in X_0$.

We state some simple facts.

- (2.3) Remark. X is μ -countable if
 - (a) X is second countable,
 - (b) X is first countable and $\mu = \sum_{i \in \mathbb{N}} \lambda_i \varepsilon_{x_i}$,
 - (c) X is metrizable and μ is τ -smooth.

Proof. (a) and (b) are obvious. For (c) observe that τ -smooth measures in metrizable spaces have separable supports. \Box

(2.4) Remark. If X is μ -countable then

- (a) μ has a countable neighbourhood base in $P_{\sigma}(X)$,
- (b) μ is τ -smooth.

Proof. The observation that the subspace X_0 in Definition (2.2) is second countable gives (b). The construction of a countable neighbourhood base of μ from the set \mathscr{G} is straightforeward (see e.g. [14], Theorem 11.2.(iii)).

Conditions (a) and (b) are not sufficient for X to be μ -countable: Let X = [0, 1] endowed with the right half-open interval topology (counterexample 51 of [13]). Since for $G \in \mathscr{G}(X)$ there is a countable set C such that $G \setminus C$ is open in the Euclidean topology on [0, 1], the Borel sets of X are the same as in the Euclidean case and we may take μ to be the Lebesgue measure on X. Since a neighbourhood base of a point $x \in X$ consists of at least countably many sets of the form $[x, x + \varepsilon[$, a neighbourhood base of an uncountable subset of X is uncountable itself, which implies that X is not μ -countable. (a) and (b) are holding since, as mentioned above, each open set in X includes an open set of the Euclidean topology with same μ -measure.

The following decomposition lemma enables us to reduce the realization problem to limiting measures ε_x .

(2.5) **Lemma.** Let X be μ -countable. Then for each sequence $(\mu_n)_{n \in \mathbb{N}}$ converging to μ there exist kernels $T_n: X \to P_{\sigma}(X)$ and a Borel set X^0 such that $\mu(X^0) = 1$,

(iii)
$$\int T_n(x, B) \,\mu(dx) = \mu_n(B) \quad \text{for each } B \in \mathscr{B}(X)$$

and

(iv)
$$T_n(x, .) \to \varepsilon_x$$
 for each $x \in X^0$.

Proof. Choose X_0 and $\mathscr{G} = \{G_m : m \in \mathbb{N}\}$ according to (2.2). Let B^{m1}, \ldots, B^{mr_m} be those atoms of the algebra generated by G_1, \ldots, G_m , which possess positive μ -measure. By (1.2) and (2.4) there exist measures $\mu_n^{mk} \in P_\sigma(X)$ such that

$$\mu_n^{mk} \to \frac{1}{\mu(B^{mk})} \mathbf{1}_{B^{mk}} \mu, \quad m \in \mathbb{N}, k \leq r_m,$$

Almost Surely Convergent Random Variables

and

$$\sum_{k=1}^{r_m} \mu(B^{mk}) \mu_n^{mk} = \mu_n, \qquad n \in \mathbb{N}.$$

Choose $N_m \uparrow \infty$ such that $N_1 = 1$ and for each $n \ge N_m$, $m' \le m$ and $k \le r_m$

$$\mu_n^{mk}(G_{m'}) \ge \frac{1}{\mu(B^{mk})} \, \mu(B^{mk} \cap G_{m'}) - \frac{1}{m}.$$

Call m_n the largest integer such that $n \ge N_{m_n}$. Define

$$T_n(x, .) = \begin{cases} \mu_n^{m_n k} & \text{if } x \in B^{m_n k}, 1 \leq k \leq r_{m_n} \\ \text{arbitrary} & \text{else.} \end{cases}$$

Then T_n is a kernel and (iii) follows by

$$\int T_n(x, B) \,\mu(dx) = \sum_{k=1}^{r_{m_n}} \,\mu_n^{m_n k}(B) \,\mu(B^{m_n k}) = \mu_n(B).$$

To get (iv) set $X^0 = X_0 \cap \bigcap_{m \in \mathbb{N}} \bigcup_{k=1}^{r_m} B^{mk}$, which is obviously a Borel set of μ -measure 1. For $x \in X^0$ and $x \in G_m$ we have to show

$$\lim \inf T_n(x, G_{m'}) = 1.$$

Since for each n such that $m_n \ge m'$ there exists an integer k_n such that $x \in B^{m_n k_n} \subset G_{m'}$, we have

$$\liminf T_n(x, G_{m'}) = \liminf \mu_n^{m_n k_n}(G_{m'})$$
$$\geq \liminf \frac{1}{\mu(B^{m_n k_n})} \mu(B^{m_n k_n}) - \frac{1}{m_n}$$
$$= 1.$$

This finishes the proof. \Box

It is worth mentioning that the kernels appearing in Lemma (2.5) may be chosen continuous under certain conditions (for instance if X is compact and metrizable), which can be derived by application of Corollary (2.2) of [9].

The main result can now be established.

(2.6) **Theorem.** If $\mu \in P_{\sigma}(X)$ and X is μ -countable then μ is realizable.

Proof. Choose X_0 and $\mathscr{G} = \{G_m : m \in \mathbb{N}\}$ according to (2.2). We may and do assume that each $G \in \mathscr{G}$ appears infinitely often in the sequence $(G_m)_{m \in \mathbb{N}}$.

(1) The Case $\mu = \varepsilon_x$ for $x \in X_0$. Let $(v_n)_{n \in \mathbb{N}}$ be a sequence in $P_{\sigma}(X)$ converging to ε_x and $U_k = G_{m_k}$ a decreasing neighbourhood base of x. Choose integers $N_k \uparrow \infty$ such that $N_1 = 1$ and for each $n \ge N_k$

$$v_n(U_k) \ge 1 - \frac{1}{k}.$$

Call again k_n the largest integer such that $n \ge N_{k_n}$. Denoting by \overline{Z} the complement of a set $Z \subset X$, we set

$$\begin{split} \Omega &= X^{\mathbb{N}} \times X, \\ \widetilde{\mathscr{A}} &= (\otimes_{\mathbb{N}} \mathscr{B}(X)) \otimes \mathscr{B}(X), \\ \mathbb{P}_{nt} &= \begin{cases} \frac{1}{v_n(U_{k_n})} \mathbf{1}_{U_{k_n}} v_n & \text{if } t \leq v_n(U_{k_n}), \\ \frac{1}{v_n(U_{k_n})} \mathbf{1}_{U_{k_n}} v_n & \text{else}, \end{cases} \\ \mathbb{P}_t &= (\otimes_{\mathbb{N}} \mathbb{P}_{nt}) \otimes \varepsilon_x, \\ \widetilde{\mathbb{P}} &= \int_{\mathbf{10}, \mathbf{10}} \mathbb{P}_t \lambda(dt), \\ (\mathscr{A}, \mathbb{P}) &= \text{completion of } (\widetilde{\mathscr{A}}, \mathbb{P}) \end{split}$$

(the completition is necessary since we have to guarantee the measurability of the set $\{\xi_n \to \xi\} \cap \{\xi \notin X_0\}$). As random variables ξ_n and ξ we choose the projections. Then (i) follows by

$$\mathbf{P} \circ \xi^{-1} = \varepsilon_x,$$

$$\mathbf{P} \circ \xi_n^{-1} = \int \mathbf{P}_{nt} \lambda(dt) = v_n.$$

To get (ii) we observe first that $\{\xi_n \to x\} \in \widetilde{\mathscr{A}}$. For t < 1 we get that \mathbb{P}_t -almost surely holds $\xi_n \in U_{k_n}$ eventually, since $v_n(U_{k_n}) \to 1$. So

 $\mathbb{P}_t(\xi_n \to x) = 1$

and

 $\mathbb{P}(\xi_n \to x) = 1,$

which completes the proof of (1).

(2) The General Case. Let $\mu_n \to \mu$. Choose T_n , $n \in \mathbb{N}$ and X^0 according to (2.5). For $x \in X_0 \cap X^0$ set $v_n = T_n(x)$ in (1) and choose the m_k as measurable functions of x (Define increasing sequences $l_k(x)$ such that

$${m \in \mathbb{N}: x \in G_m} = {l_1(x), l_2(x), \ldots}$$

and set by recurrence

$$m_1(x) = l_1(x),$$

$$m_{k+1}(x) = \min\{n > m_k(x) \colon x \in G_n \subset G_{m_k(x)} \cap G_{l_{k+1}(x)}\}).$$

In this case N_k , k_n and $\tilde{\mathbb{P}}$ are measurable functions or kernels. Define

$$\widetilde{\mathbf{P}}(A) = \int \widetilde{\mathbf{P}}(x, A) \,\mu(dx), \qquad A \in \widetilde{\mathcal{A}},$$

where $\tilde{\mathbb{P}}(x, .)$ can be chosen arbitrarily for $x \notin X_0 \cap X^0$. Complete for the same reasons as above $(\tilde{\mathcal{A}}, \tilde{\mathbb{P}})$ to $(\mathcal{A}, \mathbb{P})$. We get (i) by an application of part (1):

$$\begin{split} \mathbf{P} \circ \xi_n^{-1}(B) &= \int \mathbf{P}(x, \, \xi_n^{-1}(B)) \, \mu(d\,x) \\ &= \int T_n(x, \, B) \, \mu(d\,x) \\ &= \mu_n(B), \\ \mathbf{P} \circ \xi^{-1}(B) &= \int \mathbf{\tilde{P}}(x, \, \xi^{-1}(B)) \, \mu(d\,x) \\ &= \int \varepsilon_x(B) \, \mu(d\,x). \\ &= \mu(B). \end{split}$$

For (ii) observe first that $\{\xi_n \to \xi\}$ equals up to a **P**-negligible set

$$A = \{ \xi \in G_m \Longrightarrow \xi_n \in G_m \text{ eventually} \} \in \widetilde{\mathscr{A}}.$$

We compute finally, using again part (1)

$$\mathbb{P}(\xi_n \to \xi) = \mathbb{P}(A) = \int \widetilde{\mathbb{P}}(x, A) \,\mu(dx) = 1. \quad \Box$$

We conclude with two examples showing the assumption in (2.6) to be essential but not necessary.

(2.7) Example. There exist (tight) measures on Lusin spaces which are not realizable.

Proof. We use counterexample 98 of [13]. Let $X = \mathbb{N} \cup \{\infty\}$ and define a topology on X such that every subset of \mathbb{N} is open and for $\infty \in G \subset X$

$$G \in \mathscr{G}(X) \Leftrightarrow \frac{1}{n} | \{1, \ldots, n\} \cap G | \to 1.$$

Choose $\mu = \varepsilon_{\infty}$ and $\mu_n = \frac{1}{n} \sum_{i=1}^n \varepsilon_i$. Obviously $\mu_n \to \mu$ while there is no sequence

in \mathbb{N} converging to ∞ : If $x_n \to \infty$ there is a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ such that $x_{n_k} > 10^k$ for each $k \in \mathbb{N}$. But then the set $\{x_{n_k}: k \in \mathbb{N}\}$ is closed in contradiction to $x_{n_k} \to \infty$. \Box

(2.8) **Example.** There exist (tight) measures μ on Lusin spaces X, such that μ is realizable, though X is not μ -countable.

Proof. We use counterexample 26 of [13]. Let $X = \mathbb{N} \times \mathbb{N} \cup \{\infty\}$. Define a topology on X such that each subset of $\mathbb{N} \times \mathbb{N}$ is open and for $\infty \in G \subset X$

$$G \in \mathscr{G}(X) \Leftrightarrow |\{m \in \mathbb{N} : |\{n \in \mathbb{N} : (n, m) \notin G\}| < \infty\}| < \infty.$$

(1) Let $(\mu_n)_{n \in \mathbb{N}}$ be a sequence in $P_{\sigma}(X)$ converging to ε_{∞} . We will show $\mu_n(\{\infty\}) \to 1$. Assuming the contrary and, if necessary, considering a subsequence, there is a real $\alpha > 0$ such that for each $n \in \mathbb{N}$ holds $\mu_n(\{\infty\}) > \alpha$. Denoting the projections on $\mathbb{N} \times \mathbb{N}$ by π_1 and π_2 , we proceed by recursion $(n_1 = 1, m_1 = 0)$ for $k \in \mathbb{N}$:

Choose $x_1^k, \ldots, x_{r_k}^k$ such that $\pi_2(x_i^k) > m_k$ and

$$\mu_{n_k}(\{x_i^k:i\leq r_k\})>\alpha.$$

Define

$$m_{k+1} = \max\{\pi_2(x_i^k): i \leq r_k\}.$$

Since $\mu_n(\mathbb{N} \times \{1, \dots, m_{k+1}\}) \to 0$ there is an integer n_{k+1} such that

$$\mu_{n_{k+1}}(\mathbb{N}\times\{m_{k+1}+1,\ldots\})>\alpha.$$

Setting now $F = \{x_i^k : k \in \mathbb{N}, i \leq r_k\}$, we derive a contradiction by observing that \overline{F} is an open neighbourhood of ∞ and

$$\liminf \mu_n(\overline{F}) \leq 1 - \alpha.$$

(2) ε_{∞} is realizable, since:

Set

$$\mathbf{P}_{nt} = \begin{cases} \varepsilon_{\infty} & \text{if } t \leq \mu_n(\{\infty\}) \\ \frac{1}{\mu_n(\{\infty\})} \mathbf{1}_{\{\infty\}} \mu_n & \text{else} \end{cases}$$

in the construction of the probability measure in the proof of (2.6). Part (1) yields for t < 1

$$\mathbb{P}_{t}(\xi_{n} = \infty \text{ eventually}) = 1$$

and the proof of (2) is complete.

(3) The point ∞ possesses no countable neighbourhood base, since in this case their would be a sequence $(x_n)_{n \in \mathbb{N}}$ of points of $\mathbb{N} \times \mathbb{N}$ converging to ∞ . This would yield $\varepsilon_{x_n} \to \varepsilon_{\infty}$, which is a contradiction to (1). \square

The same method as above yields that the Dieudonné measure μ on the space of countable ordinals X (see [6], p. 231, (10)) is realizable though X is not μ -countable.

References

- 1. Beran, R.J., Le Cam, L., Millar, P.W.: Convergence of stochastic empirical measures. J. Multivariate Anal. 23, 159–168 (1987)
- Dudley, R.M.: Distances of probability measures and random variables. Ann. Math. Stat. 39, 1563–1572 (1968)
- Dudley, R.M.: An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions. In: Lect. Notes Math. Vol. 1153, pp. 141–178. Berlin Heidelberg New York: Springer 1985

- 4. Fernandez, P.J.: Almost surely convergent versions of sequences which converge weakly. Bol. Soc. Bras. Mat. 5, 51-61 (1974)
- 5. Fernique, X.: Un modèle presque sûr pour la convergence en loi. C.R. Acad. Sci. Paris, t.306, Série I, 335-338 (1988)
- 6. Halmos, P.R.: Measure theory. New York: van Nostrand 1950
- Hoffmann-Jørgensen, J.: The general marginal problem. In: Lect. Notes Math., Vol. 1242, pp. 77– 367. Berlin Heidelberg New York: Springer 1987
- Pyke, R.: Applications of almost surely convergent constructions of weakly convergent processes. In: Lect. Notes Math., Vol. 89, pp. 187–200. Berlin Heidelberg New York: Springer 1969
- 9. Schief, A.: On continuous image averaging of Borel measures. To appear in topology and its applications
- 10. Schief, A.: Topological properties of the addition map in spaces of Borel measures. Math. Ann. 282, 23-31 (1988)
- 11. Schwartz, L.: Radon measures. London: Oxford University Press 1973
- 12. Skorokhod, A.V.: Limit theorems for stochastic processes. Theory Probab. Appl. 1, 261–290 (English), 289–319 (Russian) (1956)
- 13. Steen, L., Seebach, J.: Counterexamples in topology, 2. ed. New York: Springer 1978
- 14. Topsøe, F.: Topology and measure (Lect. Notes Math., Vol. 133). Berlin Heidelberg New York: Springer 1970
- 15. Wichura, M.: On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Stat. 41, 284–291 (1970)

Received August 8, 1988