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Summary. Let/Z, --*/Z be a weakly converging sequence of Borel probability 
measures on a topological space X. We prove the existence of an almost 
surely converging sequence of random variables 4, ~ r which obey this laws, 
if a certain/z-dependent countability property of the topology holds. Especial- 
ly this is the case if 

(a) X is second countable, 
(b) X is first countable and # has countable support, 
(c) X is metrizable and/Z is v-smooth. 

A final example disproves the existence of such random variables for (tight) 
measures on a Lusin space. 

O. Introduction 

One of the classical marginal problems (see [7]) of probability theory can be 
stated as follows. Let X be a topological space, let P~(X) be the space of Borel 
probability measures endowed with the weak topology (see [14]) and /z,--->/Z 
a converging sequence in P,(X). Do there exist a probability space (f2, sr IP) 
and random variables ~,, r such that IPo ~ - 1 =  #,, IPo ~-1=/Z and 4, ~ ~ almost 
surely? It is well known, that this is the case if X is metrizable and/Z is z-smooth 
or, equivalently, has separable support (see [2], [4], [12], [15]). 

We extend this result in the following way. Looking at the proof of Dudley 
in [2], one observes easily that the problem has a simple solution in case of 
Dirac measures/z on first countable spaces. The reduction of the general problem 
to this case is obvious if there are kernels T~: X~P~(X) such that 

and 
S r.(x, .)/z(ax)= m 

T.(x, .)- ,  ~ 

for /z-almost all xeX. The existence of these kernels under weak countability 
conditions on the topology of X will be proved by a previous result of the 
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author which establishes the openness of convex addition in the cone P~(X) 
(see [10]). 

In [5] Fernique proved a global realization theorem: Given a Polish space 
X there exists a random variable X(v) for each Borel probability v on X such 
that for each converging sequence #, ~ #  the random variables X(#,) converge 
to X(#) on a set of probability 1. Though this theorem may be straightforeward 
extended to the case of c-smooth measures on wider classes of metrizable spaces 
(for instance those which are Borel subsets of a completition), it does not hold 
in the non-metrizable setting of this paper: Consider a set C c [ 0 ,  1] of outer 
Lebesgue measure 1 and inner Lebesgue measure 0. Let X = [0, 1] be endowed 
with the topology generated by the Euclidean open sets and C. In this case, 
open sets in X are of type G1 u(G2c~C) for Euclidean open sets G~ and Borel 
sets of type ( B I \ C ) w ( B 2 n  C) for Euclidean Borel sets Bi. Define probabilities 
on X by 

v i ((B 1 \ C) w (B2 n C)) = 2 (B,), 

where 2 denotes the Lebesgue measure (cf. [6], p. 71 (2)). Observe that for G i 
as above 

Y1 (G1 u (G 2 ~ C)) =/~(G1) ~ 2 (G  1 L: G2) = v 2 (G1 w (G2 :~ C)), 

which implies that the constant sequence # ,=v2 converges to vl. Since X is 
second countable, Theorem (2.6) yields a realizing sequence of random variables 
~,---> ~. However, the random variables ~, may not be chosen identically since 
this would imply r162 almost surely and so v~=Ve. In other words, we have 
constructed a space X without global realization where each converging 
sequence may be realized. 

Applications of the realization theorem may be found in [1], [3] or [8]. 

1. Notations and Preliminary Results 

Given a topological space X, denote by 
~q(X) the class of open sets in X, 
~(X)  the class of Borel sets in X, 
P~(X) the set of Borel probability measures on X. 

Endow P~(X) with the weak or narrow topology, i.e. the weakest topology such 
that the mapping 

/~/~(G) 

is lower semi-continuous for each G ~ ( X )  (see e.g. [11], [14]). The Dirac meas- 
ure in a point x ~ X  will be abbreviated by ex. For  the definition of special 
properties of Borel measures we refer to [14]. Finally we call a map T: X ~ P~(X) 
a kernel, if for each B ~ ( X )  the function 

x ~ T(x, B) 

is Borel measurable. 
Next we cite a result, which is the crucial basis of this paper. 
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(1.1) Theorem. Let 2~[0, 1]. Then the mapping 

P~(X) x Pr X)~(#, v)~-~2# + (1-2)veP~(X) 

is open. 

Proof. See [10]. [] 

The following corollary will be the main tool to get the above mentioned 
decomposition lemma. 

(1.2) Corollary. Let 2E[0, 1]. Let #, v, pePs(X) such that 2/~+(1-2)v=p .  I f  p 
has a countable neighbourhood base in P~(X), then for each sequence (p.)n~ con- 
verging to p in P.(X), there exist sequences (#.)..~ and (v.).~N such that 

and 
)~#.+(1--2)v.=p.  

t~ ~ # and v.-~ v. 

Proof Observe first that # and v have countable neighbourhood bases too. 
Let (Ak)k~ N and (Fk)k~N be decreasing neighbourhood bases of g and v respectively. 
By Theorem (1,1) the sets 2Ak+(1--2) Fk are open in P~(X). So there are integers 
Nk such that for each n > Nk 

p~2A~+(1--2)  Fk. 

We may choose the Nk increasing and converging to infinity. For each integer 
n>N1 denote by k. the largest integer such that n>Nkn, choose #.eAkn, v.~F~,, 
such that p. ~ 2 g. + ( 1 -  2) v. and the proof is complete. [] 

2. The Theorem 

Since the existence of almost surely converging random variables which realize 
a weak convergent sequence #.--. #, depends mainly on the limiting measure 
/t, the following definition is adequate. 

(2.1) Definition. We call IleP~(X) realizable iff for each sequence #~ which con- 
verges in P~(X) to I~, there exist a probability space (0, d,  IP) and random variables 
~,,, ~ such that 

(i) po~21=~ .  ' 1Po~-l=~ 

and 

(ii) {~,~ ~}es~, IP(~, ~ ~)= 1. 

To be able to handle three relevant cases simultaneously, we give the follow- 
ing 
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(2.2) Definition. Let pePs(X). X is called p-countable iff there is a Borel subset 
X o in X and a countable class ff of open sets, such that p(Xo)= 1 and ~ includes 
a neighbourhood base o fx  for each x ~ X  o. 

We state some simple facts. 

(2.3) Remark. X is p-countable if 
(a) X is second countable, 
(b) X is first countable and p = ~ 2iexl, 

ieN 

(c) X is metrizable and p is z-smooth. 

Proof (a) and (b) are obvious. For (c) observe that z-smooth measures in metriz- 
able spaces have separable supports. [] 

(2.4) Remark. I f  X is p-countable then 
(a) p has a countable neighbourhood base in P~(X), 
(b) p is z-smooth. 

Proof The observation that the subspace Xo in Definition (2.2) is second count- 
able gives (b). The construction of a countable neighbourhood base of p from 
the set (r is straightforeward (see e.g. [14], Theorem 11.2.(iii)). [] 

Conditions (a) and (b) are not sufficient for X to be p-countable: Let X 
= [0, 1] endowed with the right half-open interval topology (counterexample 
51 of [13]). Since for G ~ ( X )  there is a countable set C such that G \ C  is 
open in the Euclidean topology on [0, 1], the Borel sets of X are the same 
as in the Euclidean case and we may take p to be the Lebesgue measure on 
X. Since a neighbourhood base of a point x e X  consists of at least countably 
many sets of the form Ix, x + el, a neighbourhood base of an uncountable subset 
of X is uncountable itself, which implies that X is not p-countable. (a) and 
(b) are holding since, as mentioned above, each open set in X includes an open 
set of the Euclidean topology with same p-measure. 

The following decomposition lemma enables us to reduce the realization 
problem to limiting measures ex. 

(2.5) Lemma. Let X be #-countable. Then for each sequence (p , ) ,~  converging 
to p there exist kernels T,: X ~ P~(X) and a BoreI set X ~ such that p(X~ 1, 

S T,(x, B) p(dx)=p,(B) foreach B e N ( X )  (iii) 

and 

(iv) T . ( x , . ) ~ e .  foreach x ~ X  ~ 

Proof Choose Xo and i f =  {G,,: meN} according to (2.2). Let B ml . . . . .  B "r'- be 
those atoms of the algebra generated by G1, ..., Gin, which possess positive 
p-measure. By (1.2) and (2.4) there exist measures p",k6P~(X) such that 

mk ~ 1 
p. ~ I , ~ p ,  m~N, k<r,,,  
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and 
rm 

#(Bmk)#2k=#,, neN.  
k = l  

Choose Nm$ oo such that N1 = 1 and for each n _> Nm, m = m and k___ r,, 

1 1 
#mk(Gm, ) ~ #(Bmk) #(B mk (3 Gin, ) ---'m 

Call mn the largest integer such that n__> Nm. Define 

r m n k  

T~ (x, .) = {~)bitrary else.if xGBm"k,l~k~rm, 

Then T~ is a kernel and (iii) follows by 

i T~(x, B) #(dx)= ~ Ixy"k(B) #(B'n.k)=#,,(B). 
k = l  

rm 

To get (iv) set X ~ = Xo c~ ~ L) B~k, which is obviously a Borel set of #-meas- 
m e N  k = 1 

ure 1. For x e X  ~ and xeGm, we have to show 

lim inf T, (x, G~,) = 1. 

Since for each n such that m,>m' there exists an integer k, such that 
xEB m"k"C Gin,, w e  have 

lim inf T,(x, Gm,)=lim infp~"k"(Gm,) 

This finishes the proof. [] 

1 1 
> lim inf ) t #  "Bm"k"~ #(B~"k") -- - -  

In n 

=1. 

It is worth mentioning that the kernels appearing in Lemma (25) may be 
chosen continuous under certain conditions (for instance if X is compact and 
metrizable), which can be derived by application of Corollary (2.2) of [9]. 

The main result can now be established. 

(2.6) Theorem. I f  #eP~(X) and X is #-countable then # is realizable. 

Proof Choose X o and fq = {G,,: meN} according to (2.2). We may and do assume 
that each Gefr appears infinitely often in the sequence (Gm),,eN. 
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(1) The Case / ,=~= for x ~ X  o. Let (vn)n~ N be a sequence in P~(X) converging 
to e~ and Uk = G,,~ a decreasing neighbourhood base of x. Choose integers Nk~ oo 
such that N1 = 1 and for each n > Nk 

1 
vn(UO>=I k" 

Call again k n the largest integer such that n > Nk.. Denoting by Z the complement 
of a set Z c X, we set 

Q = X  ~ x X, 

Z '  = ( |  | ~(X),  

~nt= V,(-~k,) lv~V, if t<vn(U J ,  

1 
lv~2~ v n else, 

P , =  (| | ~ ,  

IP= ~ ~t2(dt), 
1o, 1[ 

(d,  P)=comple t ion  of(~,  ~) 

(the completition is necessary since we have to guarantee the measurability 
of the set {in ~ ~} ~ {~r As random variables ~, and ~ we choose the 
projections. Then (i) follows by 

lPo~-~=e~, 

P o ~ ;  1 =j~' , t2(dt)=vn. 

To get (ii) we observe first that {~n--+x}~.  For t < l  we get that ~-almost  
surely holds ~ne Uk. eventually, since vn(Uk.)--+ 1. So 

and 

which completes the proof of (1). 

(4 . -+  x) = 1 

~'(~n --' X) = 1, 

(2) The General Case. Let /~n~#. Choose Tn, n ~ N  and X ~ according to (2.5). 
For x ~ X o c ~ X  ~ set v ,=  Tn(x) in (1) and choose the mk as measurable functions 
of x (Define increasing sequences Ik(X) such that 

{ m ~ N :  x ~ G~} = {h  (x), 12(x) . . . .  } 

and set by recurrence 

m~ (x) = l~ (x), 

m~ +~ (x) = rain {n > mk (x): x e G. ~ G.,~(~) m Gl~ +,(~)}). 
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In this case Nk, k. and ~' are measurable functions or kernels. Define 

IP(A)=J~(x ,  A)#(dx), Ae~, ,  

where ]P(x, .) can be chosen arbitrarily for x ~ X  o c~X ~ Complete for the same 
reasons as above (~, ]P) to (~r ]P). We get (i) by an application of part (1): 

p o ~ -  1 (B) = S ~ ( x ,  ~-1  (B)) #(dx)  

=[. Tn(x, B)#(dx) 

= #n(B), 

]P~ ~ - 1(B) = S ]P(x, ~ - t (B)) #(dx) 

= I ex(B) #(dx). 

= #(B). 

For (ii) observe first that {~, ~ ~) equals up to a P-negligible set 

A = { ~ e G , , ~  ~ e Gm eventually} e =~r 

We compute finally, using again part (1) 

] P ( ~ , ~ ) = ~ ( A ) = J I P ( x ,  A ) # ( d x ) = l .  [] 

We conclude with two examples showing the assumption in (2.6) to be essen- 
tial but not necessary. 

(2.7) Example. There exist (tight) measures on Lusin spaces which are not realiz- 
able. 

Proof. We use counterexample 98 of [13]. Let X = N u { 0o } and define a topolo- 
gy on X such that every subset of N is open and for 0o e G c X 

Gef#(X) "~1  1{1 . . . .  , n} c~ GI--+ 1. 

Choose # = s ~  and # = 1  ~ ~i. Obviously # , - * #  while there is no sequence 
t / i =  1 

in N converging to ~ :  If x , ~  there is a subsequence (X,~)k~N such that 
x,~> 10 k for each keN.  But then the set {x,~: keN} is closed in contradiction 
to  Xnk--~oo. [ ]  

(2.8) Example. There exist (tight) measures # on Lusin spaces X,  such that # 
is realizable, though X is not #-countable. 

Proof. We use counterexample 26 of [13]. Let X = N • N u { ~ }. Define a topolo- 
gy on X such that each subset of IN • ]hi is open and for 0o ~ G c X 

G e c S ( X ) ~ l { m e N :  [{heN: (n, m)CG}l.r oo)1 < 0o. 
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(1) Let ( # , ) , ~  be a sequence in P~(X) converging to coo. We will show 
p, ({ oo }) --+ 1. Assuming the contrary and, if necessary, considering a subsequence, 
there is a real ~ > 0  such that for each n ~ N  holds /~,({~})>~. Denoting the 
projections on N x N by z:l and n2, we proceed by recursion (nl = 1, mt =0)  
for k e N :  

k such that n 2 (x~) > rn k and Choose x~, ..., xrk 

#,k({x~: i=<_rk}) >a .  

Define 
mk +1 = max {n2 (x~): i < rk}. 

Since #,,(N x {1 . . . .  , mk+ a})~  0 there is an integer nk+ 1 such that 

#,k+ ~(]q x {mk+l + 1 . . . .  })>~. 

Setting now F =  {x~: k e N ,  i<rk}, we derive a contradiction by observing that 
F is an open neighbourhood of oo and 

lim inf/t,  (F) < 1 - ~. 

(2) coo is realizable, since: 

Set [ e ~  if t <#,({oo}), 

]P"' = t ~.(~oo}) / 1 1T~) #. else 

in the construction of the probability measure in the proof of (2.6). Part (1) 
yields for t < 1 

N(~, = ov eventually)= 1 

and the proof of (2) is complete. 
(3) The point oo possesses no countable neighbourhood base, since in this 

case their would be a sequence (x,),~N of points of N x N converging to ~ .  
This would yield 8x,--+ coo, which is a contradiction to (1). [] 

The same method as above yields that the Dieudonn6 measure # on the 
space of countable ordinals X (see [6], p. 231, (10)) is realizable though X is 
not/z-countable. 
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