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Summary. A quantum diffusion (A, A',j) comprises of unital *-algebras A 
and A' and a family of identity preserving *-homomorphisms J=(Jt: t>= O) 
from A into A'. Also j satisfies a system of quantum stochastic differential 
equations dj~(xo)=jt(#}(Xo))dM{,jo(Xo)=Xo| for all xoEA where #}, 
1 _< i, j =< N are maps from A to itself and are known as the structure maps. 
In this paper an existence proof  is given for a class of quantum diffusions, 
for which the structure maps are bounded in the operator norm sense. A 
solution to the system of quantum stochastic differential equations is first 
produced using a variation of the Picard iteration method. Another  applica- 
tion of this method shows that the solution is a quantum diffusion. 

I. Introduction 

In several recent papers (e.g., [-1, 2]) the concept of a quantum diffusion has 
been introduced and many of their algebraic properties investigated. A quantum 
diffusion is a quantum stochastic process (A, A',j), where A, A' are unital 
*-algebras and j is a family of identity preserving *-homomorphisms indexed 
by the positive real line. In our case A is a *-subalgebra of B(Ho) where Ho 
is a Hilbert space and A'=B(Ho| where H is the noise space of N dimen- 
sional quantum stochastic calculus. In addition j satisfies a stochastic differential 
equation of the type 

N 

djt(xo) = ~ j,(l~}(Xo))dM}, 
i,j=O 

where Xo is an arbitrary member of A, #~ are maps from *-algebra to itself 
and M, J." are families of operators in H which are the integrands of the theory. 
The purpose of this paper is to construct a class of diffusions in which the 
maps ~t} are bounded. 

In Sect. 2 we introduce relevant definitions and results from quantum sto- 
chastic calculus [3]. Section 3 defines quantum diffusions and looks at the prop- 
erties of the structure maps. In Sect. 4 we prove the existence of maps Jr, by 
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methods similar to those of I-3] Proposition 7.1. In Sect. 5 these are shown 
to have all the properties of a quantum diffusion. Section 6 looks at an example 
of a class of diffusions in which the diffusions are given by unitary conjugation. 

Inner products are conjugate linear on the left. Two operators E, F are 
mutually adjoint on a domain D if (Eu, v)=(u,  Fv) for all u, v in D. The 
algebraic tensor product is denoted by _@. For f e L  ~ ([0, oo)), My is the operator 
on/.2([0, oo)) given by (Mfg)(t)=f(t)g(t) for gsL2([0, oo)). 

2. Quantum Stochastic Calculus 

Let h be a Hilbert space. Then H=F(h), the Boson Fock Space of h, is the 
Hilbert space determined up to unitary equivalence by the total set {~ (f):feh} 
of exponential vectors where ( 0  (f), ~ (g)) = exp ( f ,  g). The annihilation a(f), 
creation a*(f) and conservation A(T) operators (feh, T~B(h)) are defined on 
the span of the exponential vectors by linear extension of 

a(f) 0(g)= ( f ,  g)  ~k(g) 

at(f) O ( g ) = d  O(g+ef) ~=o 

d 0(e~Tg)  o" A (W) O (g) = ~ = 

Since the exponential vectors are linearly independent, these operators are well 
defined. Also a(f) and a*(f) are mutually adjoint as are A (T*) and A(T). 

If h is the direct sum of hi and h2 then H is the tensor product of F(hl) 
and r(h9 and i f f = f ~  | O(f)= O(f~) | O(f2). 

In this paper we are interested in the case h=L2([0, 00); 112 N) where N is 
a fixed positive integer. 

Let {ei}~=l and iN {Ej}i,~=~ be the canonical bases of I12 N, M N respectively. 
Thus feh=LZ([O, oo))| N, LeB(h)=B(LZ([O, oe))| N can be written as 

N N N 

f=  E f i |  e,, L= /4 e Also Lf= E Zif ie  ej. 

Let S be the dense subspace in h of locally bounded functions. 
For  each t>0 ,  h is the direct sum of ht=L([O, t]; II; N) and h'=L((t, oo); (I;N), 

so H the Boson Fock space of h, is the tensor product of H~ = F(h,) and H t = F(ht). 
Denote by 4, ~t and i t the span of the exponential vectors O(f), O(f,) and O(ff) 
( f = f  O f  t) in H, Ht and H t respectively. 

Let G, Gt and G t be the dense subspaces of H, H t and H t spanned by the 
exponential vectors ~ (f), ~ (f)  and ~ (if) (f=ft |  S). 

We are interested in the Hilbert space H = H o | H where H o is a Hilbert 
space known as the initial space. 

Definition. A family of operators E=(E(t): t >O) in H is an adapted process 
if for all t the domain of E(O contains Ho@Gt@_H t and its restriction to 
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Ho @ Gt @ H * is the algebraic ampliation of an operator in Ho @ Ht with domain 
Ho @_ Gt. 

An adapted process is respectively simple, continuous, square integrable, 
bounded if it is piecewise constant, the map t ~ E (t)u | ~ (f) is strongly continu- 
ous for all ueHofeS, the map t---,E(t)u| is strongly measurable and 

i llE(s)u| oo for all t>OueHof~S, each E(t) is a bounded operator 
0 

o n / t .  

The basic processes of the theory are M} 0 < i, j__< N where 

I A(MzEo,,| l< i , j<N 
M}~- a(Xto,q| 1<i<_N,j=O 

a*(Zto, tl| I<-_j<N, i =0  
tI i = 0 = j .  

These are all continuous adapted processes and will be the integrators of the 
t N 

theory. The stochastic integral M(t)= ~ ~ FjdM~ is first defined for simple 
0 i , j=O 

adapted processes F] O<i,j<N such that for u, veHo, geS, feh 

(u e qx(f), M (t) v e O(g)) 
t N 

= I ~ fi(s)g~(s)(u| Fj(s)v@O(g))ds 
0 i , j=O 

(2.1) 

where fi =fi 1 < i <_ N, 

u, veHo, f, geS 

i N g ~  o. If also M'(t)= Z FJ dMj 
0 i , j=O 

then for 

(M'(t) u | O(f), M(t) v | t)(g)) 
t N 

= S ~ f~(s)gJ(s){(M'(s)u| , F](s)v| 
0 i , j=O 

+ (F/J(s) u | O(f), M(s) v | 0(g)) 
N 

+ ~" (F/ku| Fjkv| 
k = l  

(2.2) 

Putting M = M', u = v and f =  g in (2.2) produces the following inequality: 

t N 

HM(t)u| + 3N + I)a(T) z ~ e '-~ ~ klFj(s)u| 2ds 
0 i , j=O 

(2.3) 

where 0___t< T, c~(T)=max{1, sup{lhf(s)H2: O<_s<_ T}}. 
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Using this estimate it is possible to extend stochastic integration to M(t) 
t N 

= S Z Fj dM} where Fj are square integrable adapted processes. This is done 
0 i , j = O  

in such a way that (2.1), (2.2) and (2.3) remain true. Also M will be a continuous 
adapted process and thus square integrable. 

If 2 stochastic integrals M, M' are such that for all t > 0 

sup(llM(s)JI, JIM'(s)[I, IIF](s)H, Ilfj'*(s)lf �9 O<i,j<N, 0 < s < t } < c ~  (2.4) 

then from (2.2) one obtains: 

d(M' M) = (dM') M + M'  d M  + dM' .  d M  (2.5) 

where dM} commutes with adapted processes and the Ito correction d M ' . d M  
is evaluated by linear extrapolation of the following formula 

i k dMj.  dMt = 6't i dM~ 

8,i_ J'l if i=l+-O 
where t - ]. 0 otherwise. 

(2.6) 

Remark. If M(t)  is constant for all t then dM(t )=O a.e. t, and since integrands 
are independent this implies Fj(t)= 0 a.e. t 0 < i, j <  N; in particular if they are 
continuous this will be true for all t > 0. 

3. Quantum Diffusions 

Let A be a unital *-subalgebra of B(Ho). 

Definition. A quantum diffusion on A is a family j = (Jr; t > 0) of identity preserving 
*-homomorphisms from A into B(/4) such that for all xoeA: 

(2) jo(xo)=Xo | I...(3.1) 
(2) x=(x(t)=jt(xo);  t>O) is an adapted process. 

(3) there exist maps #~: A ~A,  0 < i, j < N such that x (t) satisfies the stochastic 
differential equation 

N 

dj,(xo)= Z j,(#~(Xo))dml (3.2) 
i , j = O  

#} will be referred to as the structure maps. 
If such a j  exists, since jr(x0) is a stochastic integral it is a continuous adapted 

process and therefore square integrable. Also by the remark at the end of Sect. 2 
and (3.1), the structure maps inherit the following properties from j. They are 
linear in xosA,  vanish on the identity, and i . ~" , # j(Xo) = #i (Xo ) . . . (3.3). 
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If in addition for each xo~Ajsup{lljAxo)ll:O<-s<-t}<oe, for all t>0 ,  then 
(2.5) is applicable to j t(xo)j,(yo)(=jt (Xo Yo)) and by equating coefficients we obtain 
the following structural equations: 

N 

#}(Xo) Yo + Xo #}(Yo) + • #~(Xo) #~(Yo) = #}(XoYo) �9 (3.4) 
k = l  

This will be true in particular if each Jt is contractive, for example if A is closed 
under holomorphic functional calculus. 

Define ~: A-+A | MN, ~: A ~ A  | (E N and z: A-+A by 

N N 

a(Xo)= ~ (#}(Xo)-6}Xo)|  a(Xo) = ~ #~o(Xo)| Z(Xo)=#~ 
i , j = l  i = l  

From (3.3) and (3.4) we find that o- is a *-homomorphism, e(XoYo)=a(xo)Yo 
+ a(Xo)a(Yo) (where multiplication in the first term is "scalar" and in the second 
is "matrix"), and z (Xo Yo) = z (Xo) Yo + Xo z (yo) + cd (Xo) a (Yo). These equations and 
their cohomological properties were investigated in [1, 2]. They will play no 
part in the existence proof, we only assume properties of the structure maps 
already stated and the additional assumption that the structure maps are 
bounded, in the sense that there exists an M such that for all xoeA, O<=i,j 
< N  [[#}(xo)ll < M  I[xol/ ... (3.5). 

4. Existence ofj  

j is constructed by the Picard iteration method, imitating Proposition 7.1 of 
[3]. 

Proposition 4.1. For all x o cA, there exist adapted processes x (~)(t) = (ff)(Xo): t > 0) 
satisfying 

x(~176174 for n > l  

x(~)( t )=f f ) (Xo)=Xo|  ~ .(~-1) i 3 Jr (#j(Xo)) dN  i (4.1) 
0 i,j=O 

such that for u~Ho, f~S ,  T>=O and 0_<t_< T 

[](x(n)(t)--x(n-1)(t))U@~(f)[12<=e T+ Nfll2 fi(T)n Ilxo[I 2 [luH 2 (4.2) 
n! 

where fi (T) = (N + 1) 2 (2N 2 + 3N + 1) e (T) 2 TM 2. 

Proof. Clearly x (~ is a square integrable adapted process for all xoeA, assume 
that x ( ' -  1) is also, then 

"(n- 1) i 2 IIA (#j(Xo))U| ds<oc  
0 i , j=O 

since #)(Xo)SA for all 0 <__ i, j < N. 
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Hence x (") is well defined and as it is stochastic integral it will be a square 
integrable adapted process. By induction, there exist adapted processes x (") sat- 
isfying (4.1) for all xoeA, n>O. And 

t N 
x(n)(t)--x(n-1)(t)= ~ 2 . ( n - l )  i "(n-2) i j Js (~AXo)) - j=  (~j (Xo))dM, .  

0 i,j=O 

So for ur  by (2.3) 

II (x <") (t) - x (" - 1)(t)) U @ ~t ( f )  l[ 2 
t N 

__<(2N 2 + 3N + 1)~(T) z ~ e t-= Z II(J~"- ~)(#}(Xo))-ff-2)(#~(Xo)))u | ~9(f)[I 2 ds 
0 i , j = 0  

_-<(N + 1)2 (2N 2 + aN + 1) er~(T) 2 i e-= max { IIJ~"- ~(~}(Xo)) 
0 

_j~,-  2)(]A~ (X0))) U @ ~ ( f )  ll 2; 0 < i, j =< N} d s 

from which (4.2) follows by induction. [] 

Corollary 4.2. For each Xo ~A there exists an adapted process x = (x(t): t > 0) such 
that x(t) is the strong limit of x~")(t) for all t>O. Furthermore defining maps 
Jr, t >O from A to B(ffI) by jt(xo)= X(t) for xo~A , we have that j=(j,: t >O) satisfies 
the system of stochastic differential equations (3.2). 

Proof. From (4.2) for uEHo,fES and T > 0  

Ilxou | 0( / ) l l  + ~ sup { I/(j}")(Xo)-j} "-  1)(Xo)) u | 0(f)ll ; 0__< t__< T} 
n = l  

el/2(T+ Ilfll2)IIxo[/Ilull fl ( T) "/2 
n=l (n!) 1/2 

= M i ,  r Ilxoll Ilull < oo (4.3) 

where Ml,  r(e[1, 0o)) does not depend on x or u. Therefore x(")(t)u | tp(f) con- 
verges in H uniformly in each finite interval [0,T] to say x(t)u|  
will be linear in ueHo, and so defines an operator with domain H o |  
being the strong limit of adapted processes will itself be an adapted process. 
Letting jt(xo)=X(t) for xoeA, using uniformity of convergence (in x as well 
as in t) and (2.3), take strong limits on both sides of (4.1) to conclude that 
j satisfies (3.2). [] 

5. Multiplicativity and Other Properties o f j  

The following properties of j  are all derived from induction on j(") and properties 
of the structure maps; 

(1) A is linear in xoEA(/~}(Xo) is linear). 
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(2) jo(Xo)= Xo | I 
(3) j t ( I )=I for all t (#~(I)=0) 
(4) jt(x~) = j t ( x J  (#}(Xo)* = #i(x~), MI t = M}). 

All that remains to be shown is multiplicativity of j and that jt(xo)r for 
all xo~A. Before proving that  j is multiplicative note that from (4.3) have that 

sup{Lli(Xo)UQ@(f)ll 2" O<_t<_ T} < Mf ,  T tlxoll /lull. (5.1) 

As jt(xo) is not  necessarily bounded,  Jr(xo)jt(Yo) is not defined, so we look at 

(.jr (x*) u | ~ (f), jt (yo) v | ~ (g)> -- (u  | 0 (f), Jt (Xo Yo) v | 0 (g)>. 

Proposition 5.1. For all u, veHo,  f, geS,  n > 0  

I(j,(xa) u | ~ (f), Jt (Yo) v | ~b (g)> - (u | ~ (f), Jt(xo Yo) v | t~ (g)>l 
< 6(T)" 
= n! Mf,g,T]JXoH llyolJ [lull IIvl[ (5.2) 

where 6 ( T ) = ( N +  1 ) z ( 2 + N ) T m a x { M  z, 1} sup{L] f(s)g(s)[I, ]1 f(s)]], Hg(s)H, 1} and 
M f , g , T = ( M  f , T--}-elIfllz/Z) M g ,  T.  

Proof. By (2.1) and (2.2) 

(Jr(x*) u | ~ (f), Jt (Yo) v | ~, (g)> -- (u | 0 (f), Jt (Xo Yo) v | ~b (g)> 

= Y~ f~(s )gJ(s ){<L(x*)u |174  
0 i , j = O  

+ <j~ (#/(x*))u | 0 (f), A(Yo)v | 0 (g)) 
N 

+ Z <J~ (#7 (x*)) u | ~9 (f), Js (#~ (Yo) v | ~t (g)> 
k = l  

-- <u | ~( f ) ,  j~(l~}(XoYo) v | O(g)>} ds 
t N 

= ~ ~ f~(s)ga(s){<j~(x*)u| ~(f) , js(#}(yo)v|  ~(g)> 
0 i , j = O  

-- <u | ~9 (f), j=(x o #}(Yo)v | ~ (g)) 
�9 i X + (j,(#}(Xo)*) u | tp (f), J~(Yo) v | Ip (g)> -- (u  | ~ (f), J , (# j (o)  Yo) v | ~ (g)) 

N 

+ ~, <,%(#~(Xo)*)u| tp(f),j,(#~(yo))V | ~(g)) 
k = l  

- (u | ~ (f), js(l~(Xo) #~(Yo)) v | ~ (g))} ds. 

The right hand side is made up of ( N +  1)2(2+N) pairs each of which is of 
the form 

~s (w*)u | ~p (f), j ,(z)v | 0 (g)) -- (u | ~ (f), js (w z) v | q/(g)> 
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where w, zEA. In modulus  each term is less than or equal to 

? (T) max {I (j~(v (xo)*) u | q~(f), L(v(yo)) v | ~(g))  

-- (u | 0 (f),  j,(v~(Xo) D( Yo) v | ~k (g) ) [" 0 < i, j <= ( N + 1) 2} 

where 

Vo(Xo)=X o and v~(xo)=#~-(N+l)l'(Xo) ( N + l ) k < i < ( N + l ) ( k + l ) , O < < _ k < N  

and 

Therefore 

~ ( T ) : s u p { l l f ( s ) l l  IIg(s)ll, 11 f(s)ll ,  I]g(s)ll, 1; O ~ s ~  T}. 

I( Jr (x~) u | ~k (f),  Jt (yo) v @ ~k (g)) - (u @ tp (f),  Jt (Xo yo) v | ~ (g))l 
t 

< (N + 1) 2 (2N + 1) y (T) S max {I( J,  (vi (Xo)*) u @ r (f), j, (D(Yo)) v | r (g)) 
0 

-- (u  | ~b (f),  Js (vi(Xo) vj(Yo)) v @ ~ (g)) I ; 0 < i, j < (N + I)2} d s 

<=((N + I)2(2N + I)?(T)" i " - '  �9 .. ~ max{](Jt.(vi....vi,(Xo)*) 
0 0 

�9 u | ~ (f), J tn(vj '"  vii (Yo)) v @ ~ (g)> 

-- <u | ~ (f), Jr, (vi,... vii (Xo) vj ... vjl (yo)) 
�9 v| O<=ik,Jk<=(N+ 1) 2 , O<=k<=n} d t , . . . d t  1 

< ((U + 1) 2(2N + 1) 7(T)) n i " "  t , [ lmax  {llJt,(v,... vii (Xo)*) 
0 0 

- u | @(f)ll Hj~,(vj, ... vii (Yo))v | @(g)ll 

+ 11 u | O ( f )  ll IIL.(vi.... v,, (Xo) v j . . .  v j, (yo)) 
�9 V | ~//(g)]] : <ik,Jk<=(N-kl) 2, O < k < n } d t "  ... dt  1 

t I n -  1 

< ( ( N +  1 )2 (2N+ 1)7(T))" ~ ... ~ max{Mf .T  IIv,.... v~,(Xo)l] 
0 0 

�9 IlullMg, Tl[vj . . . .  vji(yo)ll Ilvlr 

+ Ilu @ ~,(f) ll M,,T live.., v,(Xo) Vj. . .  vjl(Yo) tl: 
�9 O<=ik,Jk<=(Nq - 1) 2, O<_k<n} dt ,  ... dt  1 

__< ((N + 1) 2 (2N + 1) ? (T))" (max { 1, M2})" 

�9 Ilxoll Ilull Ilyoll Itvll Mf,  T-t-ellfllZl2Mg, T~ .  �9 [] 

Letting n ~ ~ in (5.2) the r.h.s, tends to zero and so 

d.jt (x*)u | O (f), Jt( Yo) v | t~ (g) ) = ( u | 0 (f), jt(xo Yo) v | ~ (g) ) 
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and so by linearity for any h~, h2EHo@ G 

q~(x*) hi, Jt( Yo) hz) = <hi, jt(xoYo) he>. (5.3) 

L 
For  an arbitrary non-zero element h =  ~ ui|  of H o @ G  we have that  

for 0_<t_<T ~=1 

I[Jt (Xo) h El 2 = (,jr (Xo) h, Jt (Xo) h) 

= <h, jt(x'd Xo) h) 

< [lh 1[ [[jt(x~ Xo) h I1 
< II h II 2- l/z- IlJt((x~ Xo) 2" h II 1/2- 

< [Ihl12-l/z" IlJt((X*Xo)2")ui 
i 

< I[hll 2-1/2" Mf,,rlluit[ IlXNXol[ 2" 
i 

/ L \1/2" 
= ][h[] 2-1/2 ~ I]XoH2 '=aliE M f i ' T  [[ui[[// " 

Letting n ~ 0% the r.h.s, converges to It h [I 2 tl Xo II 2, therefore lljt(xo)kl ~ II Xo [I I[ h I1. 
As H o |  G is dense in /~, this implies that  jt(xo) can be uniquely extended 
to a bounded  operator  on /~ with bound  less than  or equal to Ilxoll. F r o m  
(5.3) and continui ty of inner products,  we deduce that  Jt is multiplicative. 

We now have all the informat ion required and state it as a theorem. 

Theorem. Given structure maps/2}: A ~ A ,  0<= i,j <=N satisfying 

(1) Linearity 

(2)/2i(x*)* =/2~(Xo) 
(3) /2}(1) = 0 

N 
(4)/2~(Xo yo) =/2~(Xo) yo + Xo/2j(yo) + E/2~(Xo)/2~(yo) 

k = l  

(5) ll/2}(xo)ll < M  Ilxoll 
there exists a unique family J=(Jt; t>=O) of  identity preserving contractive *- 
homorphisms from A to B (FI) such that: 

(1) j o ( xo )=Xo|  
(2) x =(x(t)=jt(xo) is an adapted process 

(3) j satisfies the stochastic differential equation 

d jr (x) =jr (#} (Xo)) d M~ 
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Proof of Uniqueness. If j '  is another such family then as in Proposition 4.1 

[l(j,(xo)-j;(xo) u | ~ ( f )  ll z 

=<((N+ 1)Z(N 2 + 3 N +  1) a(T)z)nd i " ' "  tS-~ max {/IJ,(#~,: ""  #}:(Xo)) 
0 0 

- -  . t  t n - -  - -  j,(#j.... #}', (Xo)) u | ~,(f)ll 2: 0__< ik,Jk<_N1 <--k<=n} dt,.., dt 1 

TV 2M 2, 2 <=((N+I)2(N2+3N+I)~(T)2)'er~. I[xol[2llu| 

as n --* ~ r.h.s. ~ 0 so jt(xo) =j't(Xo) this is true for all Xo and t, so j is unique. 

M.P. Evans 

[] 

6. Unitary Diffusions 

Let a, ~, z defined in Sect. 3 be given by 

a(Xo) 
= W x o  | I W * ,  o~(Xo) = L x  o --  W x o  W *  L, z (Xo) = --  �89 (L* Lxo  --  2L* W x  W *  L) 

+ i [H, Xo] 

where W is a unitary member of A | MN, LeA | ff~N with L* being the corre- 
sponding element of A | ff~N. and H a self-adjoint element of A. Writing W 

N N 

= Z Ej | E i and L = Z /j | ei define/Jj by 
i,j= l i = i  

I Wj-6}I l<i,j<=N 
lJ l <_i<_N,j=O 

N 

Ej= -- ~. WJ ilj* I<j<N, i = 0  
i = 1  

N 

ill--�89 ~ lff*IJ, i = 0 = j .  
i = 1  

These satisfy the following equations 

N 

k = l  

N 

Z 
k = l  
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These are an N-dimensional generalisation of the unitarity conditions given 
in Sect. 7 of [3]. Similarly the stochastic differential equation 

d U = U  d M  , 
\ i , j = O  / 

U(O)=I 

will have a unique unitary solution. From which we can describe the diffusion 
j with o-, e and z as above by 

j,(xo) = u (t)Xo u *  (t), 
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