
Probab. Th. ReI. Fields 71, 59-67 (1986) erob mty 
Theory - o  Related F'~ds 

�9 Springer-Verlag 1986 

Uniform Convexity and the Distribution 
of the Norm for a Gaussian Measure 

WanSoo Rhee 1 and Michel Talagrand 2 

1 The Ohio State University, Academic Faculty of Management Sciences, 356 Hagerty Hall, 
1775 College Road, Columbus, Ohio, USA 

z Equipe d'Analyse, Tour 46, Universit6 Paris VI, 4 Place Jussieu, 75230 Paris Cedex 05, France 

Summary. We show that if a Banach space E has a norm [I'll such that the 
modulus of uniform convexity is bounded below by a power function, then 
for each Gaussian measure # on E the distribition of the norm for # has a 
bounded density with respect to Lebesgue measure. This result is op t imum 
in the following sense: 

If (an) is an arbitrary sequence with a,--*0, there exists a uniformly con- 
vex norm N ( ' )  on the standard Hilbert space, equivalent to the usual norm 
such that the modulus of convexity of this norm satisfies ~(e)> en for e > a n, 
and a Gaussian measure # on E such that the distribution of the norm for 
# does not have a bounded density with respect to Lebesgue measure. 

1. Introduction and Results 

Consider a Banach space E and # a centered Gaussian measure on E, that is a 
Radon measure on E such that for each x*~E* the law of x* is centered 
normal. For  acE, tER +, let 

B(a,t)={x~E;llx-a[l<t}, and ~a(t)=#(B(a,t)). 

The function ~9a(t ) has remarkable properties. C. Borell showed that log~b a is 
concave. A remarkable improvement  of this result has been obtained recently 
by A. Ehrhard [1] who showed that 7~a= 4>-1. ~ba is concave, where 

~b(u)=(2~) 1/2 i e-X2/adx. 

It follows that for each t o >0,  there is a constant C such that 

I%(t ) -7 'o(u) l<c l t -u l  for t ,u> t  o. 

Since ~ is Lipschitz, it follows that 

[~,,(t)-r for t ,u>t o. 
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In other words, the distribution of x--,Hx-a[I has a bounded density with re- 
spect to Lebesgue measure on each interval [t 0, oo]. In this paper, we consider 
the problem of whether this density is bounded on [0, oo[, that is whether 
there is a constant C such that 

for 0~<u_t,  ~ { x : u < l l x - a l l < t } < - C ( t - u ) .  (*) 

A first positive result has been obtained by J. Kuelbs and T. Kurtz [3]. 
They showed that condition (.) holds for each Gaussian/ l  when E =  12(N), with 
the usual norm and a =  0. V,I. Paulauskas extended their result to some special 
Gaussian measures on I p [5]. The best result known at present seems to be due 
to F. Gotze [2]. He assumes that the norm has strong differentiable properties 
and uses a technical condition, which is, roughly speaking, a global way of 
saying that the ball is round, at least with respect to the measure #. 

In the opposite direction it has been shown independently by V.I. Pau- 
lauskas and the authors [7] that condition (*) fails in general. Paulauskas' 
example is on c0(N ) with the usual norm, while the example of the authors is 
on 12(N), for a norm equivalent to the usual norm. A further example by the 
authors exhibits a C ~ renorming of t2(N), such that all the differentials of the 
norm remain bounded on the unit sphere, and still condition (*) fails for this 
renorming [8]. It is hence not possible to ensure condition (.) by assuming 
that the Banach space is very regular and the norm is very smooth. However, 
the crucial point in these various examples is that the unit sphere for the norms 
which fails (.) has flat areas, as is very clear in [8]. It should be noted that 
Gotze's condition is a global way to forbid the existence of such flat areas. 
Hence, the crucial fact is the shape of the unit ball. So it is natural to in- 
vestigate what type of geometrical conditions will force condition (.). These 
conditions have to force the ball to be "round" in some sense. 

Given a Banach space E, and 0 < ~ <2,  let 

0~(e) = 1-sup{il(x+y)/2ll; i lx[I,  liY[I < 1, Iix-yil >e}. (1) 

The Banach space E is called uniformly convex if c~(e)>0 whenever e>0,  and 
the function e is called the modulus of uniform convexity. For example, if E is 
lP(N), then e(e) is of order 8 2 for p < 2 and e v for p > 2. See also [6]. 

Our first result will be 

Theorem A. Assume E is uniformly convex Banach space, and that there exists 
f i>0  and p 6 N  such tha t  the modulus of uniform continuity o@) satisfies 
o~(~)> fieV for 0 < e < 2 .  Then condition (*) holds for each a and each #. 

One might wonder if it would not be enough to assume a weaker condition 
on the modulus of continuity c~(.). To show that this is essentially impossible, 
we prove the following' 

Theorem B. Let (a,) be a sequence with a,-*O. Then there exists a uniformly convex 
norm N( ' )  on the standard Hilbert space H such that the modulus of uniform 
continuity c~(') of N( ' )  satisfies c~(e)>_e" for n> 3 and 10-2>_e>a, ,  and a Gauss- 
ian measure # on E, such that (*) fails for a=O. 
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In particular, conditions of the type ~(e)>fle "(~I where a(e)~oo when e goes 
to zero, are not sufficient to imply (,). 

Using the techniques of [8], there is no doubt that in the statement of 
Theorem B one can also force the norm to be infinitely differentiable, and have 
bounded differentials on the unit sphere; this however increases the complexity 
of the construction, and we have not carried out the details, since the result of 
[8] already mentioned has shown that this type of restriction on the norm is 
largely irrelevant in the study of condition (*). 

This use of condition (,) was initiated by the study of the rate of con- 
vergence in the Central Limit Theorem. Minor modifications of the construc- 
tion we give for Theorem B enable to perform the construction such that there 
is no rate of convergence in the CLT for the new norm N(') .  In other words, 
given a sequence 3,-*0 one can construct an E-valued random variable X, 
which is bounded, has expectation zero, and such that if X,  denotes an i.i.d. 
sequence distributed like X, and # the Gaussian measure with the same co- 
variance as X, the inequality 

sup(P (N(n ,/2 ~ Xi)<=t)_#{x; ]IxH =<t})~ ~n 
t i<=n 

occurs for infinitely many n's. The techniques, which are described in detail in 
[8], will not be reproduced here. 

2. Proof  of  Theorem A 

We can suppose that E is the support of #, and that E is infinite dimensional. 
We fix an integer n. The first lemma is classical. We include its proof for 
completeness. Let n~N. 

Lemma 1. We can write E as a product E 1 • E2, where dimE 1 =n, such that there 
exist two Gaussian measures #1 and #2 on E 1 and E 2 such that # identifies with 
#1 x P2. 

Proof Let E* be the unit ball of E*, provided with the weak* topology. Each 
* which converges weak*, in particu- sequence (x*) of E~ has a subsequence x,~ 

lar # a.e., to some x*eE~. It follows that x,* goes to x* in probability, hence in 
Lz(#). Since E~' identified as a subset of L2(#) is Hausdorff, it is compact, and 
the LZ-topology coincides with the weak*-topology. 

Let F~ be an n-dimensional subspace of E*. Let 

F2= {y*~E*; for x*eF1, ~x*(x)y*(x)d#(x)=O}, 

that is, F 2 = F ( ~ E *  in L2(#). Then F2caE* is closed in L2(#), so is weak*- 
compact. Banach's Theorem shows that F 2 is weak*-closed. So we have writ- 
ten E * = F  1 | where F1 and F 2 are orthogonal in LZ(#) and weak*-closed. It 
follows that E = E ~ |  where 

E 1 = {x~E; for x*eF2, x*(x)=O } 

E 2 = {x~E; for x*~F l, x*(x)= 0}. 
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Let  S 1 (resp. $2) be the project ion of E onto  E 1 (resp. E2) , and let ]/2 be the 
image of # under  S 1 (resp. $2). I t  is s t ra ightforward to check on the con- 
variances that  p identifies with #1 x #2. The  l e m m a  is proved.  Of  course, ]ISj]I 
and []$211 can be very large and depend on n. But this won ' t  be a problem.  

We now fix 0 < u < t < l ,  and let 

A =  {x; u< llx-al[ < t}. 
For  y~E2, let 

A y = { x e E 1 ; x  + y~A}. 

We will es t imate /l(A) using Fubini ' s  Theo rem:  

/~(A) = j#a  (Ay) d#2(y ). (2) 

so we need to es t imate  #l(Ay). Fo r  yeE2, let 

N(y) = Inf{ Ijx + y - a [ I  ; xeE1}.  

In  other  words, N(y) is the no rm of y - a  in E/E 1. 

L e m m a  2. Let N ( y ) < t  and let x 'eE 1 with lix'+ y-aH =N(y ) .  Then for x~Ay, we 
have 

[Ix - x ' l [  ~ C 1 t(1 - t -  ~ N(y)) 1Iv 
for a constant C 1. 

Proof. Let  XEAy. L e t  z l = x + y  and z2=x '+y .  
We have II(zl+z2)/2--all>N(y). If  we use (1) with t - l ( z l - a )  and t l(z 2 

- a ) ,  we have 
p t-P I ix ' -  x[Ip < c~(t -1 IIx'-xII) 

< 1 - t -  1 Ll(z 1 +z2)/R_all 

< l - t - i N ( y ) .  

x' x P< N (y)) with b -  : C~. So [I - II = C l ~ t v (  l - t - 1  1 

L e m m a  3. Let yeE 2 with N(y)<u. Let x 'eE 1 with Ily+x'-al[ =N(y) .  Let zeE 1 
with LIz]l = 1. Let 

B~ = { s ~  + ; x' +sz~Ay} 

then diam B~ <_ 2(t - u)/(u-  N(y)). 

Proof. Let  s l e l R  + be the smallest  s with x '+szeAy  and s 2 be the largest  s with 
the same proper ty .  Since the function 

0(s)= I[y + x ' - a  + sz[I 

is cont inuous,  and  since its value at zero is <u ,  it follows that  O(sl)=u. Indeed  
we mus t  have O(sl)s{u,t }. If O(sl)=t, then there is SE[0, Sl[ with O(s)=u, which 
contradicts  the definit ion of s 1, We also have O(s2)= t. Otherwise,  since l im0(s) 
= 0 %  there is s>s 2 with 0(s )= t .  Let  y ' = y + x ' - a .  We have 

Ny'l[=N(y), ]ly'-l-sizN=u, Hy'-}-s2zl l - t  and I[uy'/N(y)H=u. 



Distribution of the Norm for a Gaussian Measure 63 

We also have I [u t - l y ' - I -u t - i saz l [  =u.  I t  follows that  for 7 e l 0 , 1 ]  we have 

I ] ( y u / N ( y ) + ( 1 -  y ) u t - 1 ) y '  +(1 - -  7 )u t -  I s2zH ~U. 

Let us pick 7 such that  

(1 - 7)u t -  1 s2 = sl (7 u/N(y)  + (1 - y)u t -  1) 
that  is 

y = ( s  2 - s i ) u t - -  1/((s 2 - s l ) u t -  1 + s  1 u/N(y)). 
We get 

( T u / i ( y ) + ( 1 -  y)ut  ~)[ly' + sl zIF < u  

and since I]y'+slz]] =u,  we have 

7 u / g ( y ) + ( 1  - y ) u t -  1 < 1. 

It  follows by straight  c o m p u t a t i o n  that  

s 2 <= s 1 (t -- g(y))/(u -- N(y)). 

Moreover ,  since t < 1, we get H sl zll < ][x' + y -  a]] + 1, so Is 11 =< 2. 
We now prove  T h e o r e m  A. We apply  the preceding const ruct ion and  es- 

t imates  with n = p + l .  We identify E~ with R n. Then  #1 has bounded  density 
with respect  to Lebesgue 's  measure.  Moreove r  on E 1 the n o r m  of E and the 
Euclidean n o r m  are equivalent.  

Fo r  each y, we es t imate  #x(Ay). Suppose  first that  

N ( y ) > t -  2 ( t - u ) = 2 u - t .  

then L e m m a  2 shows that  Ay is conta ined  in a ball centered at x'  and of radius 
< C ~ t ( 1 - t - l N ( y ) ) l / P <  C l t ( 2 ( 1 - u / t ) )  1Iv. The vo lume of this ball is less than 
C 2 t " ( 1 - u / t ) <  C 2 ( t - u  ), since n>=p. So # l (Ay)<  C 3 ( t - u  ). 

Suppose  that  N ( y ) < 2 u - t .  We compute  the vo lume of Ay using polar  coor-  
dinates of  center  x'. It  follows f rom L e m m a  2 and 3 that  this vo lume is less 
than 

H = C 4 t n -  1(1 - t - '  N(y))"-  1 / P ( t  - -  U ) / ( U  - -  N(y)), 

since n -  1 = p, for t < 1, H < C 4 ( t -  u ) ( t -  N ( y ) ) / ( u -  N(y)) and since N(y) < 2 u 
- t ,  # 1 ( A y ) < 2 C s ( t - u ) .  

In  any case, we have #~(Ay)< C s ( t - u  ). The Theo rem then follows f rom (2). 

Theorem C. I f  E is a super-reflexive Banach space, there is an equivalent norm 
on E which satisfies (.) for  each Gaussian measure. 

3. Proof  of  Theorem B 

The p roof  will use the ideas of [8]. We first need an auxil iary n o r m  on H 
= l 2 (N). 

Theorem D. Let  0 <17 < 1. Let  (an).> - 3 be a sequence o f  numbers between 0 and 1 
with a .~O.  Then there is a norm N ~ on H and a sequence bn>O with the follow- 
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ing properties: 

(a) for x~H, Ilxll <N~ +~l)llxll. 
(b) The modulus of uniform continuity ~ of N O satisfies 

c~(~)>=5" for 1/16>_~>_a. and n>3. 

(c) Whenever x = ( x  1 .... ,x. ,O,.. .) and y = ( 0  . . . . .  y.+ l,0 .... ) satisfy N ~  
and N o (x) < b., then 

1 < N ~  1 + [Ix[l". 

Proof We can assume (a.) decreasing and a 3 < 1/16. We set az= 1/16. For  q_>_3, 
let nq be the smallest integer such that  (1-52/16)l/"q__>1-e ~. Then  l imnq= oo. 
Let  6, be a sequence with 6 . <  1, such that  n >  nq ~ aq2 /4>4(1-  62). Now let/3n 
= ( 1 + 6 , ) / 2 6 , > 1 .  We can assume /3 ,<1+ , / .  Let  for n > 3 ,  

N.(x) = (1/2( ~ X2)  n/2 §  IX. I") 1/" 
i t-n 

and N~ First, since N.(x)</3t./"llx[I, (a) holds. Now 
we show that  

Ix, l <6,  Ilxil ~ N,(x)< lixll. (3) 
Indeed, we have 

N2(x) <= 1/2( ~ x2) "/2 + 1/2 Ix, l" + (/3, - 1/2)I x,  I" 
i * n  

< IIx17(1/2 + 6 . ( / 3 . - 1 / 2 ) ) <  Ilxtl". 

N o w  let 5 with aq_,  >5  > aq and q > 3. Let  x, y e H  with N~ 1, and N~ 1 
and N ~  F r o m  (a), we have [IX-Nil >5/2,  so we have 

I[(x + y)/21[ e < 1 -ez /16  < 1 - e  q. 

Assume that  there is a n such that  

N.((x + y)/2) > [I (x + y)/2 It- 

Then IIx+yll>lx,+y,l>>_26,. Since llxll and I]Y]I are __<1, we have 

82/4< I l x - y l l  2 < 2  ][X][ 2 §  IlyH 2 - - I lx  §  2 <4(1  - 62). 

It follows that  n__< nq. We have 

N2((x + y)/2)=< 1/2(1/2( ~ x 2 + ~ y2)_ y, ((xi _ y~)/2)2),/2 
i:gn i#:n i:4=n 

+/3. (1/2(x 2 + y2) _ ((x. - y . ) / 2 ) 2 )  n/2. 

Using the inequali ty l a -  b I" < a " -  b" for 0-< b < a, we get 

N2((x+Y) /Z)<l /2 (1 /2 (Z  x2+ Z 2 ./2 2 2 ./2 = Yl)) +fi.(1/2(Xn+Y.)) 
i:gn i:l-n 

- 1/2( ~ ((xz - y~)/2)2) "/2 - /3 .  I(x. - y.)/2 I". 
i:#n 
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Now we use the fact that O(a,b)=(1/2a"/2+fi,b"/2) a/" is convex for a, b > 0 ,  and 
that  N , ( x ) < l  and N , ( y ) < l :  

N." ((x + y)/2) < 1 - 1/2( ~, ((x i - y~)/2)2) "/2 - ft, ](x, - y,)/2 [". 
i : ~ n  

Since Sup{ ~ ((xi-yi)/2) 2, ( (x , -y , ) /2 )  z} >e2/8, and n<nq, we get 
i ~ n  

N.((x + y)/2) < (1 - e2/16) ~/n < 1 - e q. 

This shows that c~(e)>eq. 
To prove (c), notice that  [y,+ l [= f i ,+  ~ - 1 / ( n +  1). So 

N,+ z (x + y ) <  (1 + 1/2 Ilx II"+ ~)l/<"+ ~> _-< 1 + [I xll "+ ~. 
Also 

llx+yt]=(fi22{("+')+lixl12)t/2<l for []xl[ < b .  

if b. is small enough. Finally, if b,,< 1/2, then for all q #n ,  

Nff(x + y) < l/21lx § yl]q/z + flq]Xqlq <= l/2 + 2 lxqiq < l. 

Theorem D is proved. 

Proof of  Theorem B. The basic observat ion is as follows. Let  7. be the canoni-  
cal Gaussian measure on l 2 (that is the produc t  of n s tandard normal). Then 
the one-dimensional  C L T  shows that  the law of I[xll 2 is asymptotical ly 
N(n, 3n-1/2). In particular,  7. becomes very concentra ted a round  the sphere of 

radius l /n .  
By induct ion over n, we construct  a sequence k(n) of integers, two se- 

2 quences r/(n) and 7(n) of reals and a Gaussian measure v. on lk(.). Denote  q(n) 
2 = ~ k(i) and #.  be the produc t  measure of vi . . . .  , Vn-t o n  lq(n) , where the later 

i < n  

2 2 We make this space is identified with the Hilbert ial  sum lk(x)|174 
construct ion such that  the following condit ions are satisfied: 

q(n) =< 7(n)/2, 7(n)<=tl(n--1)/4, r/(1)=< 1, (4) 

v, {x e 12r y (n)-/7 (n) < I[ x I] < 7 (n) + 17 (n)) => 1 - 2 - " -  1, (5) 

nt?(n) < p.{x~12~.fi HxJl <= 1/4bq(.)+ : y(n)(tt(n)) 1/(q(')~ 1~}, (6) 

2 the support  of v n is lk(.). (7) 

Not ice  that  for some a >0 ,  

2 . >atq(n) ~.{xe/q<.>, Llxll <t} 

for t <  1, since (7) implies that  # .  is equivalent to Lebesgue's measure. So the 
construct ion is possible by picking ?(n)= r / (n-1) /4 ,  then t/(n) small enough to 
force (6) and k(n) large enough to ensure the existence of v. in (5). 
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2 Let  # be the produc t  measure on l-Ilk(,). We identify H with the Hilbert ian 
n 

s u m  @ 2 Xn~lk(n). Since 7 (n )<2- " ,  q ( n ) < 2 - "  lk~,). So x e H  is writ ten x = ( x , )  with 2 
f rom (4), (5) show that  

# { x e H ;  for every n, IIx,][ < 2 - " + 1 } > 0 .  

So it follows that # ( H ) = I  by the 0 - 1  law. For  x e H ,  let O(x)eH, given by 
O(x)~llx.II if q is of the type l+q (n ) ,  and 0(x)q=0 otherwise. Let  N(x)  
= N  (O(x)). Then Theorem D ensures that the modulus  c~ of uniform continuity 
satisfies the condi t ion of Theorem B. We now estimate #(D,), where 

D , =  {x; ~l(n)-217(n)<N(x)<y(n)+3rl(n)}.  
Let 

A = {x; II(xl . . . .  , x ,_  1)[I =< 1/4bq(n)+ 17(n)Of(n)) 1/(q(")+ 1)} 

B={x;7(n)-q(n)<= [Ix,][ < 7(n)+ t/(n)} 
and 

C = { x ;  I1(0 . . . .  ,0, Xn+ ~,X,+ 2 . . . .  )11 _--<~(n)}. 

Then  (6) implies that  # (A)>  nrl(n). F r o m  (5), we have 

# ( B ) = > 1 - 2  "-1=>1/2,  

and we also have since 7 ( n + k ) + ~ ( n + k ) < 2 7 ( n + k ) < 2 - k q ( n ) :  

# ( C ) >  1~ ( 1 - - 2 - k - 1 ) > 1 / 2 "  
k >=n+ l 

Since A, B and C are independent ,  we have #(AcnB~C)>n/4r l (n) .  We now 
show that  A ~ B ~ C ~ D ,  which will finish the proof  since the width of D, is 
5~(n). 

Let x e A c ~ B c ~ C , x ' = ( x l , . . . , x  . 1,0,. . .)  a n d y = ( 0  . . . .  , x , , 0  . . . .  ). We have 

N (x') -<_ 2 II x' II < bq(~ 1 (7 (n)/2) t/(n) 1/(q(") + 1 

< b~(,)+ ~ rl (n) i/(q(")+ 1> IIYI[ 

<b q(,)+ z rI(n) ll(q(~)+ 1) N(Y) - 

Thus Theorem D, (c) implies 

N(y) < N(x '  + y) < N(y)  + (N(x')/N(y)) q("~ + 1 

< N(y) + (b~(,~ + t ~(n) ~/(q("~+ ~)~"~+ 

<= N (y) + ~ (n). 

Since N(x  - x' - y) < q (n), 

N (y) - t/(n) < N (x) < U (y) + 2 I? (n). 
The result follows. 
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