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Summary. Let {X,}~= 1 be a sequence of i.i.d, random variables having 
continuous distribution F(x) with E IX[~+~< oo for some positive integer l 
and for some e > 0. It is shown that for any fixed integer N > 0 the sequence 
of moments  of record values {E(XL(n))t}~=N characterizes F. Furthermore,  
this result is applied to the weak convergence of continuous distributions. 

1. Introduction 

X Let { ,,},=1 be a sequence of independent and identically distributed (i.i.d.) 
random variables having continuous distribution F(x). Define the sequence of 
record times {L(n)}n~__ 0 by L(0) = 1 and L(n) = min {j I xj > XL(n_ 1)' J > L(n -- 1)}, 
n > l .  Then the sequence {XL(n)},~0 is called the sequence of record values of 
{X,}2= 1. For  applications of record values see Glick (1978) and the references 
in Gupta  (1984). 

Recently, Kirmani  and Beg (1984) proved that for any fixed integer N > 0 ,  
the set of expected record values {EXL(,)},~=N characterizes the continuous 
distribution F(x) provided E[XIV< oo for some p >  1. In this note, we extend 
the result above to the higher-order moment  case (Theorem 1), and then study 
the relationship between the weak convergence of continuous distributions and 
the convergence of moments  of record values (Theorems 2 and 3). 

2. Lemmas 

In order to prove the main results in Sects. 3 and 4, we need the following 
lemmas. 

Lemma 1. Let X be distributed by a continuous distribution F(x) with E IX[S< oo 
for some s > 0 ,  then E IXg<n~lr< oo for all re(O, s) and n>O. 
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Proof Define the inverse function of a distribution F(x) by F-l(t) 
=inf{x[  F(x)>t}, re(O, 1). Since 

1 n 
EIXL(.)I~=~.~ i[F-~(t)[~ (log ~ _ ~ ) d t  

0 

(Nagaraja 1978 or Kirmani and Beg 1984), we show by H61der's inequality 
that for all re(0, s) and n>0 ,  

i lF - l ( t ) l r  ( l ~  ~ _ ) 1  ndt 

<{i lF-l(t)ISdt}r/s{i (log l \"~/(~-r)~) dt~)~-r)/s 

=(ElXlgr/* xnS/(S-r) e-X dx  

= (E IXlS) r/s {V(ns / ( s -  r) + 1)} (~- r~/s < oo. 

For the case s > r = l ,  L e m m a l  reduces to a result of Nagaraja (1978, 
Lemma 1), and for the case r = l / s > l ,  it reduces to a result of Kirmani and 
Beg (1984, p. 464). 

Lemma 2. For continuous distributions F and G, F = G iff (F-l(t))  ~=(G- l(t))t 
a.e. (almost everywhere) on (0, 1)for some positive integer 1. 

Proof Since the necessity is trivial, we only consider the sufficiency. For odd 
integer l the result is also trivial. For even l the result follows from the crucial 
point that the inverse function of a continuous distribution is strictly increasing 
and left continuous on (0, 1). 

{( Lemma 3. For every p> 1, the sequence of functions log is com- 
plete in Lp(O, 1). Namely, if feLp(O, 1) satisfies 1 - t l  J,=o 

1 \ 

~ )  dt=O, n=0 ,  1,2 . . . .  , (1) ! f(t)  (log 1 " 

then f(t)=O, a.e. on (0, 1). 

Proof It is known that the sequence {x"e-X}~=o is complete in L2(0 , 0(3) 
(Goffman 1965, p. 193). In fact, by similar argument we can see that the 
sequence is complete in Lp(0, oo) for every p > l ,  and hence for every 2>0,  the 
sequence {x"e-~X}~~ is also complete in Lp(0, oo). Thus iffeLp(O, 1) satisfies 
(1), then 

~f(1-e-X)e-~/Px'~e-(P-1)x/Pdx=O, n=0 ,  1,2 . . . . .  (2) 
0 

Let g(x)=f(1-e-~)e -x/p, x~(0, oo). Clearly geLv(0, oo) and hence by (2), g 
vanishes a.e. on (0, oo). Therefore, f(1 - e - '~ )=0 ,  a.e. on (0, oo) or, equivalently, 
f ( t )=0 ,  a.e. on (0, 1). The proof is complete. 
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3. Characterizations of Continuous Distributions 

We now extend the result of Kirmani and Beg (1984) to the following 

Theorem 1. For any two f ixed integers N > 0 and I> O, the sequence of moments 
of record values {E(XL(n) )l},=N ~ characterizes the continuous distribution F(x) 
provided E IXlZ+~< oo for some e>0.  

Proof Let Y be distributed by a continuous G with EIYI*+~<oo and E(XL(,)) ~ 
=E(YL(,)) z for every n>=N. Then 

0 = E(Xr(.)) z - E(YL(.) )' 

=-i (1-v  1 h(t) log i - t ]  dt, n = N ,  N + I , . . . ,  (3) 
n ! o  ( 1; 

where h ( t ) - [ ( F - l ( t ) ) Z - ( G - l ( t ) )  l] l o g ~  . Note that p - ( l + � 8 9  and 

that E IXI *§ and El YI t+~ are both finite, thus heLp(O, 1) by H61der inequality. 
Therefore, by (3) and Lemma3,  h(t)=0,  a.e. on (0,1), and hence (F-l( t ) )  z 
= (G- a (t))l, a.e. on (0, 1). The desired result follows from Lemma 2. 

4. Weak Convergence of Continuous Distributions 

In this section, we shall apply Theorem 1 to the weak convergence of con- 
tinuous distributions. Let X, X (1), X (2) . . . .  be a sequence of random variables 
having continuous distributions F, F1,F 2 . . . .  , respectively�9 Recall that the 

sequence {Era},,= ~ 1 converges weakly to a continuous F (denoted by Em ~ , , ~  ~ F) 

iff F , , ( x ) ~  F(x) for every x ~ ( - o %  oo) (Billingsley (1968)). We first consider 

the necessary condition of the weak convergence of {Fro}2= 1 (Theorem 2), and 
then the sufficient conditions (Theorem 3). 

Theorem 2. I f  Fm m2oo, F and EIX(")II+~ ,,~ ,E IX]~+~<~  for some positive 

~ v ( , , )  ~z " E(XL(n))l for all n>-O. integer l and for some e>0,  then ~W~L(,V ~oo" 

Proof Note that F m ~ ~F implies Fml(t) , F - l ( t ) ,  a.e. on (0,1) (Serfling 
m ~ o o  m ~ o o  

1980, p. 21), and hence by the assumptions, 

1 

.( I(F~- ~ ( t ) ) ' - (F -~  (t))~[ (e+~)/~ dt m~ ~ 0 (4) 
0 

(Royden 1968, p. 118). Now, for all n > 0  and for all m sufficiently large, 

(m) l I E(XL<.)) - E ( X L j I  

1 1 (log 1 " 

1 1 (t))Zl(t+ ~)/t d t l  at + ~) < ~ . { i  I(FZ'X(t))Z-(F- 

�9 {F(n(l+e)/e+l)}  ~/(~+~) , O, 
m - +  oo 
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in which the second inequality follows from H61der's inequality, and the last 
assertion from (4). 

Theorem 3. Assume that (ElX(")lz+~}~=l is bounded for some positive integer 
l and for some e>0, and that E(X(.m).)t-----*# for all n>-N>O, where N is 

L ( n )  m ~  oo n 

a fixed integer. In addition, the distributions {Fm}~= 1 are equicontinuous. 
Then there exists a random variable X distributed by a continuous F such that 

w 

F m m~o) F and l~,=E(XL(,))~for all n>N. 

Proof The boundedness of the l+e-th absolute moments of {X(")}~= ~ implies 
(Lo6ve 1977, p. 186) that each subsequence {F,,,} of {F,,} contains another 
subsequence {Fro,, } converging weakly to a distribution F, say, obeyed by a 
random variable X. Since {Fro,, } are equicontinuous, F should be also con- 
tinuous (see Royden (1968, p. 178)). Further, applying the well-known Moment 
Convergence Theorem (Chow and Teicher 1978, p. 254) we know 

E IXl ~§ E Ix(m")l l+~/2 m'~ ~o 

and hence E(XL(,))z=#, for all n > N  by Theorem2. This means that each 
converging subsequence of {F~} has the same limiting continuous distribution 

w 
F(x) by Theorem 1. Therefore F m - o ~  F and E(XL(,))z=/z, for all n>N. 

5. R e m a r k s  

Let XI,n<X2, ,<=.. .<X,, ,  be the order statistics of i.i.d, random variables 
{Xi}~= 1 from any distribution F(x) with finite mean. It is known (Huang 1975) 
that the set of expected maximal order statistics {EXnj ,.j}J~ 1 characterizes F if 

~ l / n j = o e  and 0 < n l < n 2 <  .... (5) 
j = l  

It is natural to ask whether the result of Kirmani and Beg (1984) can be 
extended to a subsequence {EXL(,j)}[= 1, where {nj}j~__l satisfies (5). The answer 
is negative due to Lin and Huang (1986). They also point out that the result of 
Kirmani and Beg (1984) cannot be extended to a wider class of distributions 
containing discrete case. 

On the other hand, the set of all even moments of all order statistics 

{E(Xk, J In>l, l <=k<n,/=2, 4, 6, 8, ...} 

cannot characterize distribution F due to the following example: Let P ( X = I )  
= P ( Y = - 1 ) = 1 ,  then E(Xk, j=E(Yk ,  j = I  for all k,n and even I. Hwang and 
Lin (1984a) proved that for any fixed even l, the set 

l oe {EX} w {E(X,j, . )  } j = l  (6) 

n ~ satisfies (5). characterizes any distribution F with EX~<oo, where { J}i=z 
However, the mean EX in (6) is redundant for characterizing continuous 
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d i s t r ibu t ion .  Th i s  is a s i m p l e  a p p l i c a t i o n  of  L e m m a  2 a n d  Mi in tz -Szf i sz  T h e o -  

r em ( H w a n g  a n d  L in  1984b). 

Acknowledgement. The author thanks the referees for many valuable suggestions. 

References 

Billingsley, P.: Convergence of probability measures. New York: Wiley 1968 
Chow, Y.S., Teicher, H.: Probability theory. Berlin Heidelberg New York: Springer 1978 
Glick, N.: Breaking records and breaking boards. Am. Math. Monthly 85, 2-26 (1978) 
Goffman, C.: First course in functional analysis. New Jersey: Prentice-Hall 1965 
Gupta, R.C.: Relationships between order statistics and record values and some characterization 

results. J. Appl. Prob. 21, 425-430 (1984) 
Huang, J.S.: Characterization of distributions by the expected values of the order statistics. Ann. 

Inst. Statist. Math. 27, 87-93 (1975) 
Hwang, J.S., Lin, G.D.: Characterizations of distributions by linear combinations of moments of 

order statistics. Bull. Inst. Math. Acad. Sinica 12, 179-202 (1984a) 
Hwang, J.S., Lin, G.D.: Extensions of Miintz-Szfisz theorem and applications. Analysis 4, 143-160 

(1984b) 
Kirmani, S.N.U.A., Beg, M.I.: On characterization of distributions by expected records. Sankhy~ 

46, A, 463-465 (1984) 
Lin, G.D., Huang, J.S.: A note on the sequence of expectations of maxima and of record values. 

To appear in Sankhy~ (1986) 
Lo6ve, M.: Probability theory I, 4th edn. Berlin Heidelberg New York: Springer 1977 
Nagaraja, H.N.: On the expected values of record values. Austral. J. Statist. 20, 176-182 (1978) 
Royden, H.L.: Real analysis, 2nd. edn. New York: Macmillan Company 1968 
Serfling, R.J.: Approximation theorems of mathematical statistics. New York: Wiley 1980 

Received April 30, 1985, in revised form September 20, 1986 


