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Abstract. Consider a q-variate weakly stationary stochastic process {X,} 
with the spectral density W. The problem of autoregressive representation 
of {X,} or equivalently the autoregressive representation of the linear least 
squares predictor of X, based on the infinite past is studied. It is shown 
that for every W in a large class of densities, the corresponding process 
has a mean convergent autoregressive representation. This class includes 
as special subclasses, the densities studied by Masani (1960) and Pourahmadi 
(1985). As a consequence it is shown that the condition W-1 eLI ~q or mini- 
reality of {X,} is dispensable for this problem. When W is not in this class 
or when W has zeros of order 2 or more, it is shown that {X,} has a 
mean Abel summable or mean compounded Cesfiro summable autoregres- 
sive representation. 

I. Introduction 

While it is well-known that every purely nondeterministic q-variate weakly sta- 
tionary stochastic process (SSP) (X,} with the spectral density W has an (infinite 
order) one-sided moving average representation, not every such process can 
have a mean convergent (infinite order) autoregressive representation (ARR) 
and the problem of ARR of such processes has not received the attention which 
it deserves. Due to the importance of ARR in prediction theory, and particularly 
in the statistical theory of multivariate time series, this paper is devoted to 
the problem of finding the weakest condition on W which guarantees the 
existence of an infinite order ARR for {X,}. 

To be more precise, we say that the SSP {X,} has a mean convergent (summ- 
able) ARR if there exists a sequence {Ak}ff= 1 of constant q • q matrices such 
that, for each n, 

Xn= ~ AkXn_k+en, (1.1) 
k=l 
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where {e,} is the innovation process of {X,} and the infinite series ~ Ag X,_  k 
k = l  

is to be convergent (summable) in the mean. This representation of the process 
{X,} as an infinite order stochastic difference equation can also be regarded as 
the inversion of the one-sided moving average representation of {X,}. Such inver- 
sion of the one-sided moving average representation of a q-variate SSP plays 
a vital role in the statistical estimation of the parameters of {X,}. For the notation 
and definitions see [9, 10, 13]. 

It is obvious that the problem of ARR {X,}, cf. (1.1), is equivalent to the 
problem of ARR of )~,1,_ ~ (the linear least squares predictor of X,  based on 
{x._k; k_-> 1}): 

X,I , -1 = ~ AkX , -k ,  (1.2) 
k = l  

which has been studied by Wiener and Masani [16], and Masani [7]. 
It follows from the isomorphism between the time and spectral domains 

of {X,} that the infinite series (1.1) or (1.2) is mean convergent (summable), 
if and only if the isomorph of e, in La(w) has a convergent (summable) Fourier 
series in the norm of L2(W). For a purely nondeterministic full rank SSP {X,} 
with the spectral density W= 4~* and G the one-step ahead prediction error 
matrix, it is well-known [16, II, p. 115] that the function G1/2(b-~e in~ in L2(W) 
is the isomorph of e, in M(X). Thus, the series in (1.1) is mean convergent 
(summable), if and only if the Fourier series of q~-1 is convergent (summable) 
to q~-i in the norm of L2(W). Also, it can be shown that the (v+ 1)-step ahead 
(v > 0) linear least squares predictor J~, + v I.- 1 based on {X n_ k; k > 1 } has a mean 
convergent (summable) ARR, if and only if the Fourier series of ~ -  1 is conver- 
gent (summable) to (b -1 in the norm of LZ(w). (This latter assertion for the 
univariate processes is proved by Miamee and Salehi [11] in the spectral domain 
and by Bloomfield [3] in the time domain.) 

From the previous discussion the convergence (summability) of the Fourier 
series of I~ ) -1  tO CI ~-1 in the norm of I~(W) emerges as the spectral necessary 
and sufficient condition for the existence of a mean convergent (summable) ARR 
of {X,}. Although this condition is not concrete in terms of W, it is useful 
in obtaining some concrete sufficient conditions in terms of W for the ARR 
of {X,}. These conditions are stated and proved in Sect. 2 by using some tech- 
niques from harmonic analysis. In the following we state and discuss the implica- 
tion of these conditions for the problem of ARR of {X,}. 

The condition 

W~Lqxq ,  W - l E t l x q  , (1.3) 

is known to be sufficient for the existence of a mean convergent ARR of {X,}. 
It was pointed out by Masani [7, p. 143] that the condition WeL~215 is unduly 
strong and it would be worthwhile to relax it, see also Feldman [4]. 

In [13] the author has shown that, indeed, the restriction WeL~• q is dispens- 
able. This is done by employing the equivalence between the convergence of 
Fourier series of all functions in L2(W) and the positivity of the angle 0 between 
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the "past  and present" subspace and the "future"  subspace of {X,}, cf. Theo- 
rem 2.1. Thus, from Theorem 2.1 {X,} has a mean convergent A RR if 

0 > 0(or p (W) < 1), (1.4) 

where 0 = cos-  1 p(W) and 

p(W) = sup {I((Y, Z))l; Y e M  ~ ~ (X), Z ~ M 7  (X) and II YII ~- 1, [I z II ~ 1}. 

It is clear that O<p(W)< 1. The past-present and future are said to be at positive 
angle if p(W) < 1. 

Our first result in this paper shows that the condition W-1 eL~ • q or minima- 
lity of {X,,} in (1.3) is dispensable for the existence of a mean convergent A RR 
of {X,}. Also this result gives a more general sufficient condition for the mean 
convergent A R R  of {X,} which includes both (1.3) and (1.4) as special cases 
(cf. Theorem 2.2). 

To state this result and for later use we denote the class of densities satisfying 
(1.3) by M, those satisfying (1.4) by A and define a new class A | M by A | M 
= {W', W= W~/2 W2 W~/2, W1 cA and W2~M}, where W1 ~/2 denotes the positive 
square root  of W1. It is evident that by choosing WI =I(W2=I) this new class 
has M(A) as its proper  subset. 

It is easy to check that a Win  A | M does not necessarily have the property 
W-leL~• (As an example when q = l ,  one can take W=[1-e~~ 1 < 2 < 2 . )  
But, for W e A |  W -~ is necessarily in r!/z Note that the scalar density ~ q X q "  

W=ll-e i~  2 which corresponds to the univariate SSP X,=en-~n_ 1 does not 
belong to the univariate version of A | M. Thus, Theorem 2.2 does not provide 
any information concerning the existence of a mean convergent A RR for this 
process. However, this {X,} can not have a mean convergent ARR, since in 

this case the infinite series in (1.1), i.e. -- ~ X~_ k does not converge in the 
k = l  

mean. This example shows that processes {X,} for which W is not in A | M 
(or in other words if W has zeros of order 2 or more), can not have mean 
convergent ARR. In view of this it is natural to ask whether such processes 
can have an ARR with a weaker requirement of convergence, say summability, 

for the infinite series ~ AkX,_  k in (1.1). Theorems 2.4(c) and 2.5(b) show that 
k = l  

this is actually possible for a large class of processes when we replace the mean 
convergence of the series (1.1) by its mean Abel summability, and compounded 
Cesfiro summability. 

Finally, we would like to note that Theorems 2.4(c) and 2.5(c) show the 
existence of a mean Abel (compounded Cesfiro) summable A RR of {Xn} only 
when the spectral density matrix has a finite number of zeros (of any finite 
orders) on [ -zc ,  ~]. As yet, we do not have any information on the A RR of 
a process whose spectral density has a zero of infinite order. For  q =  1, W(O) 
= exp { --]01- ~}, 0 < 2 < 1, provides a family of such densities. 
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2. Mean  convergence of  the Fourier Series of  qb - 1 in L z ( W )  

As noted in Sect. 1, mean convergence of the Fourier series of # - 1  in L 2 (W) 
emerges as the necessary and sufficient condition for the autoregressive represen- 
tation of a purely nondeterministic full rank process {X,} with the spectral 
density W. This section is devoted to finding useful sufficient conditions on 
W which guarantee the mean convergence of the Fourier series of ~b-t and 
many more functions in L 2 (W). 

We note that for a general density W, # - t  is not necessarily in L] • and 
therefore the Fourier coefficients of ~b- t are not well-defined. In the next theorem 
we need a condition on W such that U(W)cL~• Under  this condition the 
Fourier coefficients of every function in LZ(w) is well-defined. It can be shown 
[10, 13, 14] that L2(W)cLlxq if W-t~Llq• and only if (det w)-t/Zq~L t. Thus 
this assumption is weaker than p(W)< 1. 

The next theorem which is a multivariate extension of a deep theorem of 
Helson and Szeg6 [-6, p. 131] provides a necessary and sufficient condition for 
the mean convergence of the Fourier series of every function in L2(W), cf. [10, 
13, 14]. 

Theorem 2.1. Let W be a q x q matrix-valued density function with log det W~L ~. 
Then p ( W ) < l ,  if and only if L2(W)~L]• and the Fourier series of any 7 t 
in LE(w) converges to ~P in the norm of L2(W). 

Next we find a weaker sufficient condition on W which guarantees the conver- 
gence of the Fourier series of every function in a small subclass S of L2(W). 
For  a density W, we define S={~t'~L2(W); 7JWgJ*eLq• Note that this class 
has ~ - t  as one of its elements. In the following theorem we show that if 
W~A | M, then the Fourier series of every 7 j in S converges to 7 j in the norm 
of L2(W). This theorem is a matricial extension of a similar univariate result 
due to Bloomfield [3]. 

Theorem 2.2. Let W be a q x q matrix-valued density function and S = {7~LE(W); 
~W~P*eL~215 I f  WeA | M, then the Fourier series of every function 7J6S 
converges to 7 t in the norm of LE(W). 

Proof Let co t and coq denote the smallest and largest eigenvalue of WE. 
Then for WeA | M we have 

col Wl--< W--<coq Wl 

and for 7JeS we have 

a.e. (Leb.), (2.1) 

Str 7JW1 7 ~* dm < S co? 1 tr 7sW7 '* dm < Iltr 7~W~ * IIo~ SCOl 1 din< oo, 

which proves that 7J~S implies 7J~Lz(W1). 
Since 7JEL2(W1) and p ( W 0 <  1, it follows from Theorem 2.1 (and the argu- 

ment preceeding it) that the Fourier series of every 7J~S converges to 7 j in 
the norm of L2(W1); i.e., with S~ denoting the symmetric n-th partial sum of 
the Fourier series of T we have 

II ~ -  S~ II w l ~ 0 as n --* oe. (2.2) 
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To finish the proof we need to show that ] r T - S ~ l l w ~ 0  as n--,oo. But 
this is the consequence of (2.2) and the inequality 

T - S .  rlwl ~ - S .  IIw__<l[coqll II 

which follows from (2.1). Q.E.D. 
For a density W we define H2(W)=sp{ein~ in L2(W). Note that 

�9 -Z~H2(W). Also we would like to note that for a general W,, q~-~ and other 
elements of H;(W)  are not necessarily in Llq • q and therefore their Fourier coeffi- 
cients are not well-defined. By an argument similar to that of Rosenblum [15, 
p. 41] one can identify the elements of/_i2 (W) with analytic matrix-valued func- 
tions, and thus here by the Fourier coefficients of elements of H2(W) we actually 
mean the Taylor coefficients of these analytic functions. 

Let P~(.) denote the Poisson kernel, i.e., P~(0)= 1 - r2 /1  - 2  r cos 0 + r 2, 0 < r < 1 
and --rc<0<rc. For  a function T~H2(W) with Fourier (Taylor) coefficients 
{7Jk}Z= o the convolution of P~ and 7 ~ is defined (and denoted) by 

~(ei~ 7J(rei~ , 7 t) (e i~ = ~, ~ r% ik~ (2.3) 
k=0 

We say that the Fourier (Taylor) series of a function 7~HZ(W)  is Abel 
summable to ~u in the norm of L2(W), if and only if 

lira ]1 ~ -  THw =0. (2.4) 

It follows from the isomorphism between the time and spectral domains 
that the autoregressive representation of {X,} is mean Abel summable, if and 
only if the Fourier (Taylor) series of 4 -1  is Abel summable to 4 -1  in the 
norm of L2 (W). 

Next, following the pattern of Theorems 2.1 and 2.2, we find a necessary 
and sufficient condition on W for the Abel summability of the Fourier (Taylor) 
series of every function in H 2 (W), For this the matrix-valued function Q defined 
(in terms of 4) by 

Q(O)=Q(r,O,q))=q)-l(rei~176 -Tc<0<~c, (2.5) 

plays an important role. The following theorem is actually a matricial extension 
of some of the (univariate) results due to Rosenblum [15, Theorem 1 (ii)]. 

Theorem 2.3. Let W = ~ *  be a q x q matrix-valued density function with 
log det W~L ~. Then the following statements are equivalent. 

(a) The Fourier (Taylor) series of every function 7 ~ in H 2 (W) is Abel summable 
to 7 j in the norm of I~(W). 

(b) There exists a constant K1, 0 < K l < o o ,  such that for all functions 
~P 6Hz(W) we have 

]lPr,~llllwK~K1]lt[tHw , 0 < r < l .  (2.6) 

(e) There exists a constant K2, 0 < K 2 < oo, such that 

(P~*trQQ*)(0)=<Kz,0<r<l and -~<0_<Tr. (2.7) 
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Proof. (a)=~(b) follows from the uniform boundedness principle. (a)~(b)  follows 
from an argument similar to that given in Rosenblum [15, pp. 32-33]. 

To prove that (b) implies (c), we note that for each 0 < r <  1 and - n<x<=n  
the function ~g(0)= ~(0, r, x )=  ( 1 -  r e i(~ -x))-lq)-1(0 ) is in H 2 (W). This is a con- 
sequence of the closure theorem for Hq2• q, cf. [8, p. 288]. By using the simple 
inequality 4(1-rZe~~ and applying (2.6) to this function 7 j we get 
(2.7): 

~P~ ( 0 -  x) tr eb- l (r e i~ eb (0) cb* (0) ~b* (r e i~ dm (0) 

<4(1 - r  2) { I1 -r2ei(~ q~-i (reiO) W(O) @*(re i~ din(0) 

< 4 (1 - r 2) K 1 i [ 1 - r e i(~ - ~)[ - 2 tr q5 - 1 (0) W(O) ~b* - 1 (r  e iO) dm (0) 

=4qK~ ~ P~(O-x) dm(O)=4qK~. 

To prove (c) implies (b), we note that for any ~ffH2(l/g) [using the Cauchy- 
Schwartz inequality, Fubini's theorem and (2.7)1 that 

IIP~*~'llw = f tr q" (r e i~ q)(O) cP* (O) 7"*(re i~ dm(0) 

tr ~ (r e i~ @(rei~ Q(O) Q*(O) [~(re i~ eb(rei~ * din(0) 

-<_ ~ tr QQ*. tr ~I'(re i~ eP(re i~ [~(re i~ ~(rei~ * dm(0) 

q ~ t r Q Q *  ~ ~jk(rei~ 2 = ~, ~j (re  ~~ am(0) 
k , l =  i --re j = l  

= ~ trQQ* R(O-x )  (~ j  dm(0) 
k , l =  l - r e  j = l  

< ~ trQQ* P~(O-x) ~k~q)j~ dm(x) dm(O) 
k , / = i  -re j = l  

= -~i tr 7~Wkg* ( j~  P,(O-x)trQQ*(O)dm(O))dm(x) 

_-< K2 I1 hul] w. Q.E.D. 

Although Theorem 2.3 provides two equivalent necessary and sufficient con- 
ditions for the Abel summability of the Fourier (Taylor) series of every function 
in H2(W), these conditions are hard to apply and are not explicit in terms 
of the components of W. In the next theorem by using Theorems 2.l, 2.2 and 
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2.3 we provide sufficient conditions for the Abel summability of the Fourier 
(Taylor) series of all functions in H2(W) and in particular ~-1,  which are easy 
to apply and more explicit in terms of the components of W. 

Theorem 2.4. Let W be a q x q matrix-valued density function with log detWeL 1 
and P be a complex-valued trigonometric polynomial of some degree n. 

(a) I f  WeA, then the Fourier (Taylor) series of every function ~ e H  2 is 
Abel summable to 7 j in the norm of I~(W). 

(b) Let W' eA. I f  W= ]p]2 W', then the Fourier (Taylor) series of every func- 
tion 7t~H2(W) is Abel summabIe to tf in the norm of l~(W). 

(c) Let S={~PeH2(W); ~PWgg*eL~• and W' ~A |  M. I f  W=[P[ZW, then 
the Fourier (Taylor) series of every function 7J~S is Abel summable to 7 j in 
the norm of L2 (W). 

Proof. In view of Theorems 2.1 and 2.3, proofs of (a) and (b) are the same 
as the proof of Lemma 6 in [12]. (c) follows from (b) by using the method 
of proof of Theorem 2.2 and replacing S~ by ~.  Q.E.D. 

Now, we turn to the problem of Cesaro summability of the Fourier (Taylor) 
series of functions in H2(W). Let 7J~H2(W) with Fourier (Taylor) coefficients 

{~}~ and partial sums S,(0)= ~ IPkeikO. For c~>0, we say that the Fourier 
k = 0  

(Taylor) series of 7 j is (C, c~) summable to 7 ~ in the norm of LZ(w) if 

lim ~o{n- -k+~- - l ] {n+e] - lSk - -7~w=O.  (2.8) 

For scalar sequences it is well-known that the strength of (C, e) methods 
increases with ~. However, there are series which are Abel summable but not 
(C, e)-summable for any e>0,  cf. [5, p. 108]. Because of this and in view of 
the importance of relations like (2.8) in prediction of {X,}, cf. Sect. 1, we consider 
the stronger method of compounded Cesfiro summability method: Let {c~,}~ 
be a (fixed) monotone increasing sequence of positive numbers. We say that 
the Fourier (Taylor) series of 7'eH2(W) is compounded Cesfiro summable to 

if 

" n-k+c~.-1 -1Sk - 0 

It is known [1] that the compounded Cesfiro summability method is regular, 

if and only if lim e"=0.  For more information on the subject of summability 
n "-+oo n 

and the definition of undefined terms the reader may refer to [5]. 
The next theorem establishes analogue of Theorem 2.4 for the compounded 

Cesfiro summability. 

Theorem 2.5. Let W be a q x q matrix-valued density function with log det W~L 1, 
P be a complex-valued trigonometric polynomial of some degree n and {en} a 

(fixed) monotone increasing sequence of positive numbers with lim c~,__ 0. 
n ~ c ~  n 
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(a) Let W' ~A. I f  W= IPI 2 W', then the Fourier (Taylor) series of every func- 
tion ~ t E H Z ( W )  is compounded Cesfiro summable to T in the norm of U(W).  

(b) Let W ' ~ A |  and S be as in part (c) of Theorem2.4. I f  W=[pI2W ', 
then the Fourier (Taylor) series of every T ~S is compounded Cesdro summable 
to T in the norm of I~(W). 

Proof. We prove only part (a) since the proof of part (b) is the same as the 
proof of Theorem 2.4(c). 

To prove (a) first we show that e v e r y  ~ H z ( W )  has radial limits a.e. (Leb.). 
Let ~b and ~b 1 be the optimal factors of [PI 2 and W', respectively. Then 4~ 
the optimal factor of W= IP[ 2 W' is given by qS~ 1. Since W ' e A  it follows that 
~ - 1 = u l / 2  and since ~b is an analytic polynomial of finite degree with no zeros 1 ~ a a q X q ~  

in the open unit disc we have that @11~H ~, 0 < 6 < 1 / 2 .  Thus, (])-i~HV~xq, lip 1 
= 2 +  1/6. Now, we note that every T e H z ( W )  has a representation of the form 

2 T = h 4~- 1, where h E Hq • q, and this entails that T e H i • q with lip =- 1/2 + 1/p 1. 
Therefore, every ~ H z ( W )  belongs to Hi• q, for some p > 0, which implies that 
T has radial limits a.e. The rest of the proof follows from Theorem 2.4(b) and 
adopting the method of proof of Theorems 6.1 and 6.3 [1]. Q.E.D. 
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