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Summary. Let ~(7), 7 > 0, denote the class of distributions F satisfying 

(i) lira Fa*(x)/F(x)=2 ~ dYdF(y)< oe 
X ~ ~  0 

(ii) lim F(x-y)/F(x)=e ~y gy~lR. 

The classes 5~(7), for 7>0,  are characterized by means of subexponential 
densities. As an application we derive a result on the asymptotic behaviour 
of densities of random sums. In particular for an M/G/1 queue, we relate 
the tail behaviour of the stationary waiting time density to that of the service 
time distribution. 

w 1. Notations, Introduction 

We consider proper  distribution functions concentrated on (O, oe) having 
unbounded support. With F and G we shall always denote those distribution 
functions. For  F and G the convolution product  �9 is defined as 

x 

F, C(x),= ~ F(x-  y) de(y)= ~ ~(x-y) dF(y). 
0 0 

For  n e N  denote by F"* the n-th convolution product  of F and by F"* :--1 - F " *  
the tail of F"*. 

If F and G are absolutely continuous with densities f and g, then F ,  G 
is absolutely continuous with density 

x 

f |  := I f (x--y)  g(y) dy = f g(x -y) f(y)  dy. 
0 0 

For  n~lN denote by f " |  the density of F"*. 
If F is absolutely continuous with density f, then r F =f /F  is called the hazard 

rate of F. 
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The moment generating function of F is denoted by 

f(s)= ; e~'dF(y). 
0 

If F has a finite expectation it will be denoted by #(F). 
One aim of this paper is a characterization of  the following class of convolu- 

tion-equivalent distributions: 

Definition 1. A distribution function F belongs to the class 5r with 7 = 0 if 

(i) lim F2*(x)/F(x)=2d<oo 
X --~ O0 

(ii) lim F(x-  y)/F(x) = e ~y V yelR. 
x - * o o  

The class 5 P,=Se(0) is called the class of subexponential distributions. 
Using Banach algebra methods Chover, Ney and Wainger (1973a) proved 

d=f(7) .  An elementary real analytic proof was recently given by Cline (1987). 
The frame of our investigation is formed by the class of distribution functions 

satisfying property (ii) of Definition 1. 

Definition 2. A distribution function F belongs to the class 50(7) with 7=>0 
if 

lim F(x-y)/F(x)=e ~y VyEIR. 
x ~ o o  

In the case 7 = 0 we write 5 ~ .'= 50 (0). 
The class 2e(7 ) is related to the class N V  ( -7 )  of regularly varying functions 

with exponent - 7  by the fact that 

F e  50(7) if and only if f o  lneN~/~(-  7). (1.1) 

Thus the convergence of F(x--y)/F(x) in Definition 2 is uniform on compact 
y-intervals. For  excellent discussions of regularly varying functions see de Haan 
(1970) and Bingham, Goldie and Teugels (!987). 

Applying Karamata 's  representation theorem for regularly varying functions 
to the class 50(7) we obtain for every Fe50(7), 7 => 0, the representation 

F(x)=c(x)exp{- i  b(y)dy }, x_>O, 

where c: ~ + -~ (0, or), b: IR + ~ IR + are such that lim c (x) = c > 0 and lim b (x) = ~. 

The classes Y(7) are closed with respect to tail-equivalence, where F and 
G are called tail-equivalent if there exists som e ce(0, oo) such that 17~cG, i.e. 
lim F(x)/G(x)=c. The representation above guarantees for each F e ~ ( 7 )  the 

x --* oo 

existence of a tail-equivalent G e 50 (y) such that G is absolutely continuous and 
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has a hazard rate r o satisfying lim ro(X)= 7. Thus considering distribution func- 
x --* oo 

tions in 5P(?), we can always assume that they are absolutely continuous. 
Densities of distributions of 5~(7) have already been considered by Chover, 

Ney and Wainger (1973 a, b). 

Definition 3. A function f :  IR ~ IR + such that f (x )> 0 on [A, oe) for some A s lR + 
belongs to the class 5Pd (7) with 7 > 0 if 

(i) lim f2 |  
x - - *  oo 

(ii) lim f ( x - y ) / f ( x ) = e  ~v \/yslR. 
x ~ o o  

The class 5~ is called the class of subexponential densities. 
If we define g(x)=e-~Xf(x) for some 7 > 0  and a function f :  IR---,IR+ such 

that f ( x )>0  on [A, oe) for some ASP,+,  then immediately by definition, f sS~d  
if and only if ge  5Pal(7). 

The following result is known for continuous functions f [Chover, Ney and 
Wainger (1973 a, b)]. 

Theorem 1.1. For fsSPd(7) define a distribution function concentrated on (0, oo) 
by 

F(x).-= y)dy I f(y)dy.  
0 

Then FsSe(7). 

oo 

Proof W.l.o.g. assume S f (Y) d y = 1. 
0 

For e > 0  there exists some vslR+ such that for all t>v 

t 

(2 d -  e)f (t) <-<_ ~ f ( t -  y) f  (y) dy < (2 d + e)f  (t). 
0 

and hence by integration 

lim F_*-2 (x) = 2d. 
~-~+ F(x) 

Furthermore, F s S f ( ?  ) holds by Karamata 's  theorem. [] 

Thus, also in Definition 3 d = S e~Vf(y) dy must hold. 
o 

We define a larger class than 5~d(?), similar to the class ~(7)  for distribution 
functions before: 
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Definition 4. A function for f :  IR-~IR+ such that f ( x ) > 0  on [A, oo) for some 
A siR + belongs to the class Aez{ (7) with 7 > 0 if 

lira f ( x - y ) / f ( x )  = e ~" VyEIR. 
x - *  oo 

In the case 7 = 0 we write ~ d . ' =  ~q~d (0). 
The convergence of f (x -y ) / f ( x )  is uniform on compact y-intervals. 
For  f s  ~ d ( 7 )  with ? > 0 such that f e d  (IR+) 

F (x):= S f (y) d y f (y) d y 
\ 0  

defines a distribution function concentrated on (0, oo). By Karamata 's  theorem 

co 

lim f(x)/F(x)=7 S f(Y)dy 
X - *  oO 0 

holds and thus f is asymptotic equivalent to F which is decreasing on IR+. 
f s Y ' d  is equivalent to slow variation of foln and thus f is not necessarily 

asymptotic equivalent to some monotone function [for an example see Cline 
(1986), p. 538]. 

Using Karamata 's  representation theorem again we obtain for every function 
f s  ~ d  (7), 7 > 0, the representation 

f ( x ) - - -c (x )exp{ - i  b(y)dy }, x __> A, (1.2) 

where c: [A, oo)--*(0, oo), b: [A, oo)-+iR are such that lim c(x)=c>O and 
x ---~ oo 

lim b(x)=7. In the case y > 0  b may be chosen as positive. 
x ~ a o  

The classes E~ are closed with respect to asymptotic equivalence and 
the representation (1.2) guarantees for each f e ~ d ( ? )  the existence of an asymp- 
totic equivalent geoL,~ such that g is absolutely continuous. We weaken 
the asymptotic equivalence as the tail-equivalence of distribution functions in 
Kliippelberg (1988) and call two functions f and g weakly asymptotic equivalent 
iff~n g, i.e. 

0 < lim inf f  (x)/g (x) __< lim sup f (x)/g (x) < oo. 
X - * a o  X ~ C O  

The following result shows that - restricted on 5~d(?) - the classes 5~ are 
closed with respect to weak asymptotic equivalence. It can be proved analogous 
to Theorem 2.1 of Kliippelberg (1988). 

Lemma 1.2. Suppose f, g ~ &vd (7), f, g ~ L 1 (0, Xo) for all Xo~iR+ and f c~ g, then 

f e  ~9~ (7) if and only if g ~ 5vd (7). 
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w 2. A Characterizat ion o f  6e  (~) 

A well-known characterization of regularly varying functions says that f belongs 
to N~V(p) if and only if there exists some slowly varying function I such that 

f(x)=xPl(x). 

Applying this to distribution functions of ~(7) we are led to a characterization 
of the classes 5e(7 ) for 7 > 0. 

Theorem 2.1. Let F be a distribution function, ~ > O, and define 

h(x) ,=e'XF(x). 
Then 

Fe5r if and only if heSed. 

Proof Immediately from the definition h ~ Y d  if and only if Fe~d(7) .  Thus 
we have to prove FESP(7) if and only if FeStal(y). Obviously, F e ~ ( 7 )  if and 
only if h~Sfd. ~(7) is closed with respect to tail-equivalence [Embrechts and 
Goldie (1982)] and 5Pal(7) with respect to asymptotic equivalence by Lemma 1.2. 
Hence, whichever implication is being considered, we can assume that F is 
absolutely continuous and its hazard rate rv(x) tends to 7 as x--* oe. Thus for 
e~(0, 7) there exists some x0MR+ such that 7-e<rv(x)<7+e for all X>Xo. 
This can be used to show that finiteness of either side of the identity 

f(7) = 1 +7 S e'rff(Y) dy 
0 

implies that of the other and hence 

f ( ~ )  < oe if and on ly  if h~L 1 (~+).  

Now consider for v > 0 and x > 2 v the decompositions 

x-v F(x--y) F ; ( f )  F(v) F:*(x) F(x--y) dF(y)+ ~ = dF(y)q 
F(x) = 2 if(x) V(x) 

0 v 

and 

F ( x  - y )  ~ -~  F ( x  - y )  F 2 |  ~ = F(y)dy+ ~ F(y)dy. 
if(x) o F(x) ~ F(x) 

For Fes176 and f (7 )<  oe we have 

i F(x--y) dF(y)= lim ~ e~YdF(y)=f(7), lim lim /V(x ~ v-~ ~ o 
V -'-~ 60 X - *  o0 0 

F ( x -  v) F(v) =0, Jim lirn F---(x) 

lira lim i F(x-y)  i o F(x) F(y) dy= lim e~rF(y) dy=f (7 ) - i  
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For v > Xo we obtain 

x-v if(x--y) x-v if(x--y) x-v 
(y--e) ~ F(x)= F(y)dy< ~ F(x)= dF(y)<(7+e) v ~ F'(x-Y)F(x) F(y)dy. 

This implies 

if and only if 

x-~ if(x--y) dF(y)=O 
lira lim sup S F(x~- 

x-v i f ( x - y )  
lim limsup S /?(x) if(y)dy--O. 

Hence, 

if2, (x) F 2 | (x) = 2f (7  ) -  1 
lira| F(x) - 2 f ( 7 )  i f andon ly i f  l i rn  F(x~ 7 [] 

Corollary 2.2. Suppose y > O. 
(a) F~Se(7)/f  and only if if ~Sed(7) 
(b) If  F has a density fE~_q~d(7), then 

F e Se (7) ee. F e  Sed (7)'~*'fe Sea((7). 

Example. Generalized inverse Gaussian distribution (GIGD). The treatment of 
the GIGD as in Embrechts (1983) can considerably be shortened. The density 
of the G I G D  is given by 

f(x)=(b/a)C/2(2Kc(]//~))-lx c-1 exp {-�89 -1 +bx)}, x e l l + ,  

where Kc is the modified Besselfunction of the third kind with index c, and 
the following parameter set is possible: 

[{(a,b);a>O,b>O} if c > 0  

Oc=l{(a,b);a>O,b>O } if c = 0  

[{(a,b);a>O,b>O} if c<0 .  

In the case of a = 0 or b = 0 the norming constant is interpreted as the respective 
limit. Set 

h(x):=(b/a)C/Z(2Kc(l/~)) -lxc-1 exp { -  2~x}, 

then 

b 
f (x)=exp { - -2  x} h(x). 

Since h~r  and h~Ll~ll+) if and only if c<0 ,  f~sed(b/2) if and only 
if c<0 .  Thus by Cor. 2.2 F~se(b/2) if and only if c<0 .  
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Remark. Using the so-called ?-transform F 7 defined by 

F~(x) = f ( ? ) - i  S e~rdF(y ) 
0 

a class of distribution functions which provides the possibility to embed the 
class 50(7) into the class 50 was introduced by Teugels (1975). He defined J-(?) 
for ? > 0  as the class of distribution functions such that FTE50. Obviously, J-(0) 
= 50. If F ~ ~r (?) for some ? > 0, then by Karamata's theorem 

/~(x),~f(7) -17 ~ tifF(Y) dy. 
x 

If we define h(x)=dXF(x) as in Theorem 2.1, then FTe50 if and only if He50 
where H is the distribution function with density h properly normalized. 

w 3. Densities of Random Sums 

The classes 50(7), 7 > 0, have received attention with applications to branching 
processes [Chistyakov (1964), Chover, Ney and Wainger (1973 a, b)], to queueing 
theory [Pakes (1975), Veraverbeke (1977)], and to risk theory [Embrechts and 
Veraverbeke (1982)]. All these applications are based on distributions of random 
sums, i.e. 

G (x) = ~ 2, F"* (x), 
n = 0  

where {2,} is a sequence satisfying appropriate conditions. The basic result 
was provided by Embrechts, Goldie and Veraverbeke (1979). They proved for 

2" 
the compound Poisson distribution, i.e. 2 ,=  e -~ n~' that G~  2F if and only 

if Fe50. Embrechts and Goldie (1982) generalized this result to the classes 5~ 
for 7 > 0. A general form of all these results can be found in Cline (1987). 

If F is absolutely continuous with density f, then G is absolutely continuous 
with density g satisfying 

g (x) = ~ 2,,f" | (x). 
n = l  

A result analogous to the abovementioned one is also valid for densities. Instead 
of repeating the whole procedure of the proof for densities in place of distribu- 
tions we use the representation of Theorem 2.1. 

We start with some results for densities analogous to wellknown results 
for distribution functions [Athreya and Ney (1972), Chover, Ney and Wainger 
(1973 a)]. The proof of the following Lemma can be obtained by appropriate 
variations. Similar results can also be found in Willekens (1986). 
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Lemma 3.1. 
(a) Suppose f e  ~LPd (7), then 

(i ;1 
n~ >n dYf(y) dy YneN. li~m~infff 

(b) Suppose fESed(y) is bounded. Then for any 5>0 there exists some k, Ell+ 
such that 

f " O ( x ) < k , ( f  e'Yf(y)dy+e)"f(x) Vxel l+ ,  noN. 

(c) fESPd(?) if and only if 

lim fn | (x) 
~-~o~ f (x) 

VnEN. 

The next theorem is a best possible result to relate the densities of a random 
s u m .  

Theorem 3.2. Suppose f c  ~ d  (y) is bounded, f ( x )>  0 on [A, Go) for some A e It+, 
oo 

and ~ e~Yf(y)dy<oe. Let {2.} be a sequence in ll+ with 2j>0 for somej> l 
0 

and 2 n e~Y f (y) d y + < co for some ~ > O. Denote 
n = l  

g(x):= ~. 2.f"| 
n = l  

Then the following assertions are equivalent: 

(a) f~  6Pd (?). 
(b) ge6Pd(7) and lira sup g(x)/f(x)< oo. 

x - + o o  

(c) g ~ c f  for c= ~, n2. e " f ( y )d  . 
n = l  

Proof. (a) implies (b) and (c) by Lemma 3.1 (b, c) and the dominated convergence 
theorem. By Lemma 3.1 (a) 

lim infg(x)/f(x) > n2, e~Yf(y) dy > 0 
x ~ ~ 1 7 6  n ~ l  \ 0  
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and thus (b) implies gc~. Since fe~c~ and f geL1(0, Xo) for all Xoe]R+ by 

the boundedness condition above (b) implies (a) by Lemma 1.2. If (c) holds, 
then for ee(0, c) there exists some XoeN+ such that 

(c-e)f(x)<g(x)<=(c+e)f(x) Vx>=x o. 

This implies for x > Xo by integration 

(c - ~) f (x) < ~ ( x )  < ( c + ~) f (x) 

and thus 
lim d(x)/F(x)=c. 

x --~ oo 

Consider first the case 7>0. Using Theorem 2.13 of Cline (1987) and Cor. 2.2 
(b) this yields feSeJ(7 ). Now suppose 7=0. Multiply g(x) by e - ~  for some 
? > 0, then by definition 

Since (e-?Xf(x)) "| =e-?~f"| holds for all n e N  we obtain 

e-7~g(x) = ~ 2,(e-V~f(x)) "| 
n = l  

Now (c) holds for g and f replaced by e-?Xg(x) and e-~Xf(x), respectively, 
and by the above e -~ ~f(x)e O~ (7) and hence )re 5Pal. Thus (c) implies (a). [] 

Since f and g are not necessarily monotone we had to strengthen the condi- 
tion F(x)4= o(G(x)) of Theorem 2.13 of Cline (1987) to lira sup g(x)/f(x)< oo. 

g r  

Under certain conditions on the weights 2, the additional condition 
lim supg(x)/f(x)<oo in assertion (b) is not necessary. This is valid e.g. in the 

important cases of Poisson and geometric weights. For distributions of random 
sums this was mentioned in Cor. 2.14 of Cline (1987) and we use his result 
for the density version. 

Corollary 3.3. Suppose that additionally to the conditions of Theorem 3.2 for neN 

2,=(1--2))o" forsome 2~(0, 1) 

or  

2" 
2 , = e  - x -  forsome 2e(0, oo) 

n! 

holds. If  ge~9~ holds then fe~gad(7). 

Proof. ge6ad(?) implies Ge~(? )  by Theorem 1.1, which yields F~6~(7) by 
Cor. 2.14 of Cline (1987). Since f~ &ad (7) this is for 7 > 0 equivalent to f e  ~ d  (7) 
by Cor. 2.2 (b). For 7=0  multiply f(x) by e -~x for some V>0. As in the proof 
of Theorem 3.2 this yields the assertion. [] 
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w 4. The M/G/1 Queue 

Random sums occur in many stochastic models as solutions in the form of 
a Neumann series of a linear Volterra integral equation of the second kind. 
In all these situations there is a well-known input function and an unknown 
output function. If the input function belongs to some class 5ed (7) the asymptotic 
behaviour of the output function is determined by Theorem 3.2. We shall concen- 
trate on an easy example in queueing theory where our preceding results are 
especially useful. For more examples which have been treated or can be treated 
similarly see e.g. Chistyakov (1964), Teugels (1975), Pakes (1975), Veraverbeke 
(1977), Embrechts and Veraverbeke (1982), Murphree and Smith (1986). 

Denote by r/the arrival rate and by F the service-time distribution having 
finite mean #(F). If p .'=q#(F) < 1 then the stationary distribution G of the virtual 
waiting-time can be written as 

G(x)= ~ ( 1 -  p) p"F~*(x) 
~ t = 0  

where F~(x)= #(F)- ~ ; F(y)dy is the integrated tail distribution of F. 
o 

Since Karamata's theorem implies for F e ~ ( 7 )  

lim F(x)/f~(x)=7 #(F), 
x - * c o  

for 7 > 0 the result of Embrechts and Goldie (1982) relates the tails of F and 
G. Unfortunately, the answer is for 7 = 0 not satisfactory. 

The answer for 7>0  is given by considering that, since F~ is absolutely 
continuous, G is absolutely continuous with density 

g(x)-- ~ (1-p)~"F"| 
n = l  

Thus we can apply Theorem 3.2 and Cor. 3.3 to obtain the following asymptotic 
relationship between the service-time distribution and the density of the station- 
ary waiting-time distribution: 

Theorem 4.1. Suppose F r ~ (7) and q ~ e~ Y'F (y) d y < 1. Then the following asser- 
tions are equivalent: o 

(a) F e ~ d ( 7 )  
(b) g ~ 5~d (?) 
(c) g ~ c g  
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where 

1 -  (f(7)-1) /f 
C =  

It/(1-- p) -1 /f 7=0. 

For 7 > 0 we use Cor. 2.2 to formulate the result in terms of distribution func- 
tions. 

Cor. 3.2. Suppose F ~ ( 7 ) f o r  7>0 and f(7)< 1 +7/~- Then the following asser- 
tions are equivalent: 

(a) F e S '~ (7) 
(b) G ~ 50 (7) 

(c) G~{(1-p )~(1-~( f (7 ) - l ) )  -2} f.  

The model of an M/G/1-queue is equivalent to the Sparre-Anderson-model in 
ruin theory when the arrival process of the claims is Poisson and the claim 
amounts have distribution F. The results of this section should therefore be 
compared with Sect. 6 of Embrechts and Veraverbeke (1982). 
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