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Summary. Let X t e I R  d be the solution of the stochastic equation d X  t 
= b(Xt)  d t  + a(X,)  dWt, where Wt denotes a standard Wiener process. The 
aim of the paper is to clarify under which conditions the drift term or the 
diffusion term is of negligible significance for the long term behaviour of 
X t . 

I. Introduction 

In this paper we present several results which may be useful for judging the 
long term behaviour of diffusion processes. The object of this study is some 
IRa-valued diffusion Xt ,  t > O, given by the stochastic equation 

(1.1) dX t  = b (Xt) d t + a (Xt) d Wt, 

where Wt, t > 0, is a standard Wiener process in IR". We assume that the vector 
b(x) and the d•  a(x) are uniformly Lipschitz continuous functions 
of x~iR d. Then, given Xo, (1.1) has a unique solution in the Ito sense, which 
does not explode in finite time. (See Durret t  (1984) for the relevant facts about 
stochastic integration.) 

In order to obtain information on the long term properties of Xt  one might 
think of trying to compare X t  with other processes, which possibly are easier 
to analyze. An obvious candidate here is the deterministic process xt, t>0 ,  
given by the ordinary differential equation 

(1.2) d xt = b (xt) d t. 

It would be of great use to know not only, when Xt  and x t show the same 
kind of behaviour, but also, when the properties of both processes differ substan- 
tially from each other. Apparently the latter will occur, if the behaviour of 
Xt  is close to that of the diffusion Zt,  given by the stochastic equation 

(1.3) dZ,  = a(Zt) d Wt. 
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Let us introduce the diffusion matrix 

a(x) = o-(x) o-(x) r. 

It is natural to conjecture that Xt and xt have similar properties, if there is 
little noise in the system in the sense that a(x) is small (with respect to b(x); 
recall that a(x) measures the amount  of random oscillation at point x). If on 
the other hand a(x) is large, one would expect that Xt and Z t are close to 
each other. Now the results of this paper suggest that these two domains adjoin 
each other. To be more precise let us introduce the extremal eigenvalues of 
a(x) 

2~.x (x) = max ~ T a (x) ~, 
I~1=1 

2~.in(x) = min Ira(x) ~. 
Ir 

(4 denotes a d-dimensional column vector.) We conjecture that X~ and x~ have 
similar properties, if the low-noise condition 

(1.4) ~max (X) = O(Ixl" [ b (x)[), 

as ]xl--* o% holds, whereas under the high-noise condition 

(1.5) Ixl. [b(x)] = o (2mi, (x)) 

we expect that Xt and Zt behave similarly. The aim of this paper is to provide 
some support for these conjectures. 

Of course not every diffusion of interest belongs to the domain, covered 
by (1.4) and (1.5). Prominent examples are the solutions of the one-dimensional 
linear stochastic equation 

dXt=b. Xtdt  + a. XtdWt, 

with b, a e N .  The higher dimensional versions of this equation are fairly difficult 
to analyze, both the drift and the diffusion component  contribute significantly 
to the properties of the corresponding solutions (compare for instance Arnold 
et al. (1986)). In the light of our conjecture this is not difficult to understand: 
These linear models are located on the border  of both domains defined by 
(1.4) and (1.5). 

The paper is organized as follows: In the next section we prove some results 
for certain diffusion models, which belong to the low-noise class (1.4). It turns 
out that not only Xt and xt possess similar properties but also Yt and xt, where 
Yt denotes the Stratonovitch solution of (1.1). This is not surprising. If the noisy 
part is on the whole negligible, then it does not matter, how the noise is added 
to the system. In Sect. 3 we analyze models which satisfy (1.5). Here our strategy 
is as follows: We construct a bijection u: l l a ~ N  d such that the drift term 
of u(Xt) vanishes. More precisely we like to achieve that 

(1.6) d u (Xt) --- �9 (X,) d Wt 
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for [Xtl > C and a suitable C > 0, furthermore 

u ( x ) ~ x  and D u ( x ) ~ E ,  

as Ix[ ~ oo. Here Du denotes the Jacobian of u and E the identity matrix. F rom 
Ito's formula z = D u. a. Since by means of the chain rule 

d u (xt) = D u (xt). b (xt) d t, 

it is fairly obvious in view of (1.6) that in general u(X,) and u(x,) will behave 
completely different. Since u(x )~  x, this translates to Xt and xt. Our main conjec- 
ture is that just a slight strengthening of (1.5) is sufficient for the existence 
of such a mapping u. In Sect. 3, which contains the main results of this paper, 
this will be discussed in detail. In the appendix two auxiliary analytical lemmas 
are proven. 

Notational Conventions. All vectors are column vectors. The transpose of a vector 
(or a matrix) ~ is written as ~r. x, y, z always denote elements of IR d. ['l is 
the Euklidean norm, ( . ,  - )  the ordinary scalar product. Further we denote 
O/Oxi and 8Z/Sxi 8xj  by Di and D~j. - For  convenience we sometimes suppress 
the index t in stochastic equations. Thus Eq. (1.1) is also written as 

d X = b ( X )  d t + a ( X ) d W ,  

or coordinatewise for every 1 _< i_< d 

dX~=bi(X) d t +  ~ a~j(X) dW~. 
j = l  

II. Some Results for the Low-noise Case 

In this section we collect some results supporting our statement that in the 
low-loise case the properties of X t are determined mainly by the drift component.  
For  related results we refer the reader to Clark (1987), Cranston (1983), Keller 
et al. (1984) and Pinsky (1987). 

A. Fix Points and Stationary Distributions 

Let us suppose that 

( b ( x ) , x ) < O  for all xq=0. 

Then 0 is a stable fix point of the vector field (b(x)). One might believe that 
the diffusion Xt should therefore have a limiting distribution. In general this 
is not the case, however, under the following 'low-noise type'  condition this 
is true: 

trace a(x) < -- 2 ( x, b(x) ) - ~ 
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for some e > 0  and all Ix[ large enough is sufficient for having a stationary 
limit. For  the proof notice that 

d IXl 2 = (2 ( x ,  b(X)) + trace a(X)) d t + 2 ~  Xi a~j(X) d Wj. 
i , j  

By assumption the drift term does not exceed - e  for large [XI, which is enough 
to guarantee the existence of a stationary limit. This is all well-known, so we 
do not go further into it but refer the reader to the literature (compare Chapter 
III, Th. 7.1 and Chapter IV, Th. 4.1 in Has'minskii (1980)). 

B. Convergence of the Angular Process 

Here we discuss a situation, where ]xt[---~ oo and x,/lx,I converges. We shall 
show that in the low-noise case these statements remain valid for X,. Let us 
introduce the decomposition 

b(x)=bv(x)+bo(x) 

of the drift vector, where bp (x) is the projection of b (x) onto the subspace generat- 
ed by the vector x, i.e. 

X 

bp(x) = (x,  b(x)) ixl2. 

We assume 

(A1) ( x , b ( x ) )>O forall  I x l ~ l ,  

(A2) there is a non-negative, monotone 

h(t) dt - - <  oe and, as Ixl ~ ~ ,  
t 

1 

decreasing function h(t) such that 

Ibo(x)l~h(Ixl)lb(x)l for [ x l~ l .  

In particular Ibo(x)l=o(Ib(x)l). It is easy to show that Ixt[ diverges and xJlxt[ 
converges, if Ixol > 1. In fact from dx,= b(x3 dt and the chain rule 

d (x,, b(x~)) 
d~ Ix~l Ix, I = Ibv(x3l ~ ]b(x31, 

thus [xt[ is strictly increasing and going to infinity. Further from (A2) 

_lbo(x,)l=o{h(l  l) d ) 
dt Ix, ]xt~ \ ]xt] dt Ixtt , 

and from (A 2) the convergence of xt/]xt[ follows. It turns out that these properties 
are preserved, if a small amount  of noise in added. We assume the following: 
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(A3) As [xl--* ~ ,  

~max (X) : O(I b (x)[. ]x]. h (Ixl)), 

where h(t) is as in (A2). 

Since h(t)=o(1), (A3) is slightly stronger than the low-noise condition (1.4). 
For later use we mention that (A 3) implies 

trace a(x) = O (Ib(x)[ . Ixl-h([xl)). 

Proposition 1. Under (A1)-(A3), as t ~ 0% almost surely [Xt[ ~ oo and Xt/[Xt[ 
has a finite limit. 

Proof. (i) From (A1) and (A2) (x,  b(x))~lx].]b(x)l for Ix]--' oo. Now IXt] ~ oo 
follows from (A 3) and the well-known recurrence/transience criteria due to Has'- 
minskii and Battacharya (compare Battacharya (1978)). 

(ii) Define the function 

H(t)-- ; h(s) d s, t>O, 
S t 

where h(s) is as in (A2). As shown in Lemma A1 in the appendix we may 
assume without loss of generality that h is differentiable such that h'(t) 
= 0 (t- 1 h(t)). From Ito's formula 

h(lX1) b (X) )+~tracea(X) -{ l \  lXt h'(1XI)] X T a ( X ) X ~ -  dH(IXI)= ix12 ((x, 1 - - -  2 h(IX])] ~ } a t  

h(IXl) 
ixt2 y~ x, Gij(x) dWj. 

i,j 

(If H(lx[) is not smooth enough at x = 0 ,  modify it suitably in a neighbourhood 
of 0. This has no effect on our conclusions.) Since (x,  b(x)),~ Ixl" [b(x)l for large 
]xl, from (A3) with a suitable c > 0  

H(lX, l)<c-l i h(lX~l)'lb(Xs),~+S, 
<-_c+St, 

where St denotes a stochastic integral. Now with probability 1 either lim infSt 
= - o o  or St has a finite limit. (For a proof recall that any stochastic integral 
is, up to a change of time, a Brownian motion.) The first alternative is excluded 
here in view of the above inequality, since H(IXt])-"*O a.s., as t ~  oo. Thus, 
St has a.s. a finite limit, and, using the above inequality a second time, we 
conclude that 

o~ dt 
(2.1) S h ( l X t l ) . l b ( X , ) [ ~ <  ~ a.s. 

0 
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(iii) Let us denote Pq(x)= 3q x i xj ixl2, where 6ij is Kronecker's symbol. P(x) 

=(P~j(x)) is the projection matrix onto the subspace of dimension d - i ,  which 
is perpendicular to the vector x. Some calculations, involving Ito's formula, 
yield 

(2.2) 
X bo (X) 1 

d~-~-~= IXI d t + ~ x ] z ( X ) d W  

X X r a ( X ) X  
+ 2-~x( 3 ixl~ 

c(X) trace a(X))dt +~(fdt. 
Here r (x)=  P(x)~r(x), c(x) is the vector with components 

cdx)=er a(x)ei4 xT a(x)x X r X 

and e~ is the unit vector (61i . . . .  ,3ei) v. The i-th component of the stochastic 
integral in (2.2) has the quadratic variational process 

i ~ii(Xs) ds  
Ixd ~' 0 

where gt(X)=Z(X)Z(x)T=p(x)a(x)P(x) r. Since P(x)is a projector, the maximal 
eigenvalue of 5(x) is not bigger than that of a(x), therefore, using (A3), 5u(X) 
= ei r g(x)ei is of order O((b(x)[. Ixl" h(Ix[)). In view of (2.1) 

~ ds 
a . ( x 3  < 

O 

which implies the a.s. convergence of the stochastic integrals in (2.2). Further- 
more, using (A2) and (A3), the length of the drift vectors in (2.2) are of order 
O(]b(x)l.lxl.h(Ixl)), and, using (2.1) again, we get the a.s. convergence of all 
integrals on the right hand side of (2.2). Therefore Xt/IXtl converges a.s. []  

C. Rate of Divergence 

We continue to study (Xt) under the assumptions of the last paragraph. At 
which rate does IXtl diverge? Let us assume additionally 

(A4) There is a positive function f(t), t > 0, such that for all lxl >= 1 

(x, b(x) ) >= [xlf ([xO > O. 

Define the real function ue, t ~ 0, by 

du, = f ( u 0  dt, u o = 1. 
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From dx,=b(xt) dt it follows dlx~l ~f(lx~l) dt, consequently, if Ixol ~ 1, Ixt[ ~u, 
for all t > 0. In the low-noise situation this essentially remains true for X,, too. 

Proposition 2. Assume (AI)-(A4) and let f (t)/t be ultimately decreasing. Then 
with probability 1 

lim inf I X~I > 0. 
t ~  00 U t 

If f( t)=o(t) ,  

lim inf ]X,] > 1. 
t--+ oo U t 

If we revers the inequality in (A4), the analog results for lira suplX~l/ut are 
valid. 

Proof (i) From Ito's formula 

1 1 
d t + ~  Z x, o,(x) dWj (2.3) d log IXI =1~(2 ( x ,  b(X)} I ~ j 

+ 2 ~ X ]  z (trace a ( X ) _  2 x r a ( x ) x \ "  ).t 
Now from (A 3) 

i X~a(X~)Xs iXs]4=o h(lX~l).lb(Xs)l . 
0 

(2.1) gives the convergence of the right hand side. The left hand side is the 
quadratic variational process of the stochastic integral in (2.3). This integral 
is therefore a.s. convergent, as t ~ o o .  Similarly from (A3) and (2.1) the last 
integral on the right hand side of (2.3) converges a.s., as t ~  oo. Thus from 
(2.3) 

ds 
log lg ,  I = i (Xs, b(Xs)} 1~12 + M,, 

0 

where Mt is a.s. convergent. Using (A4), for any s < t 

(2.4) 
X t 

log [X,I--log IX~t_> .((f(1Xs]) f ( G ) ] d s + M t _ M s .  
ut Us - ; \ [X~l us / 

(ii) Assume now that liminf[Xtl/u,=O. Then there are numbers s l < t l < S  2 
< ... going to infinity, such that I X~.l/u,< 1/21xs.I/us. and IX~l/u~< 1 for s , <  t 
< t,. Since f(t)/t  is decreasing, we deduce from (2.4) 

log �89 > Mr.-- M s .  

Letting n ~ oo we see that M t cannot converge at infinity. Thus lim inf[ X t[/u t > 0 
almost surely, which is our first assertion. By the same kind of reasoning one 
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can show that lim[Xtl/ut exists almost surely on the event {lim inflXt[/ut< 1}. 
This is useful for the proof of the second assertion. Thus assume now that 
f ( t)=o(t) .  If l imt[Xt[/ut<(1-z) for some e>0,  in view of Lemma A2 in the 
appendix 

7 ~ ( s ( I x ,  I) d s = oo. 
o \ IX~l u~ / 

Applying (2.4) with s-- 0, t = 0% we get 

log(l_e)_loglX01__> ~(f(]Xsl) f ~ ) _ ) d s + M  _ M o  ' 
Uo o \ IXs[ 

thus M r + -  oo for t-* oo. Consequently the event {lim inf[X,l/ut< 1} has zero 
probability and the second assertion is proven. [] 

D. On the Stratonovitch Solution 

Here we show that in the low-noise case our results carry over to Stratonovitch 
solutions of the equations under consideration. We study processes (Yt) which 
satisfy the equation 

d Yt=b(Yt) dt + a(Y,)odWt. 

The o indicates that we are now considering the symmetric differential. (For 
a discussion of the symmetric differential we refer the reader to the monograph 
of Ikeda/Watanabe (1981), p. 100.) We need an additional assumption 

(A 5) For all i, j, k, as [x[--* oo 

Note that, since aik(X)Z<= ajj(x)= e T a(x)e j, from (A3) 

(2.5) ajk (X) a = O (] b (x)[. h ([ x [). ]x 1), 

in fact (2.5) and (A3) are equivalent. Thus (A 3) and (A5), though not equivalent, 
are related. 

Proposition 3. Under (A1)-(A3) and (A5), as t ~ o o ,  almost surely IY, I ~  oo and 
Yt/[ Ytl converges to a finite limit. 

Proof. This is much along the lines of the proof of Proposition 1. 
(i) The equation for Y~ may be rewritten as the Ito equation 

d Y -  b(Y) d t + a(Y) dW+ i d a ( Y )  d W  
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more precisely 

dYi = bi(Y) dt + ~ a,j(Y) dVVj+ �89 ~ Dk ai~(Y) ak~(Y) at. 
j k, j  

In view of (A5) and (2.5) the additional drift term is of order O(h(lyl).lb(y)[), 
thus, since h(t)=o(1), of smaller order than the drift vector b(y). Consequently 
the transience criterion of Has'minskii and Battacharya applies as in the proof 
of Proposition 1, and it follows I Yt] ~ oe a.s. 

(ii) Let H(t) as in the proof of Proposition 1. For  the symmetric differential 
the chain rule holds, therefore 

(2.6) dH(] Y[) = - - -  
h(l YI) , ,y. ~y~ (r , b(Y)) dt + ~ Y~ a~j(Y)odW~) 

i,j 

h (I Yl) ,,y. 
~y~ t\ , b(Y)) dt + ~ Y~ a~j(Y) dVVj) 

i,j 

1 ~ [h( [y[ )  )) 
2 ~ t J k ~ - ~  -yiaij(y (Y)akj(Y)dt. 

i,j,k 

Using h'(t)= O ( t - l h ( t ) ) ,  (A5) and (2.5) it is not difficult to show that 

/h(ly,) %(y))akj (y)=o[h( ly l )Z ,b(y),), 

while from (A 1) and (A2) 

h(lyl) h(lyl) [~[~ (y, b(y)} ~ fb(y)[. 

Recalling h(t)=o(1) we see that the additional drift term in (2.6) is small for 
large ]Yl compared to the first term. Now a repetition of the arguments leading 
to (2.1) leads to 

dt 
Ib(Y~)[ - h(I Y~I) ~ 1  < oc a.s. 

0 

(iii) Using the chain rule we obtain for the angular process 

Y bo(Y) 1 
d IYI-- IYI dt+~y~z(Y)odW, 

which for the i-th component translates into the Ito equation 

Yi (el, bo(Y)) 1 1 -- ~ 2  dl.'Vj +~ E (Ok ~J(Y)'~ (Y) d 
IYI IYI d t + l , l j z ' J ( Y )  j.k\ lYl ] 

Zkj(Y) dt. 

z and ei are defined as in the proof of Proposition 1. Now it is not difficult 
to check, using (A5) and (2.5) that the last term on the right hand side is 
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of order h(] YI)" Ib(Y)l'] YI - ld t .  Therefore we may conclude as in the proof  of 
Proposition 1 that all integrals on the right hand side of the above equation 
converge, and Yt/[ Yt[- 1 converges a.s. Details are left to the reader. []  

In much the same way the conclusion of Proposition 2 carries over to Yt 
under the assumption of (A 1)-(A 5). 

III. The High-noise Case 

In this section we argue that the drift component  has no essential effect on 
the behaviour of X t, if there is enough noise in the system. Our approach consists 
in the construction of new coordinates deviating insignificantly from the original 
ones such that the system has no longer any drift in the new scale. Let us 
develop our ideas in the one-dimensional case, which from a mathematical point 
of view is pretty trivial. 

A. The One-dimensional Case 

Let us give an instance where the drift term has negligible influence. Consider 
the real-valued diffusion (Zt) given by 

(3.1) dZ, = ,r(z,) dW~. 

Let g(z) be some smooth increasing function such that 

g ' ( z ) ~ l ,  as I z l ~ .  

Then Xt =g(Zt) obeys the equation 

where 
dX=b(X) dt+a(X)dW, 

b(g(z)) = �89 z(z) 2, 

a (g (z)) = g' (z) z (z). 

Since g(z),,~z for large Izl, the long-term behaviour of Xt and Z t a r e  very much 
alike. On the other hand b(x) depends highly on the local properties of g(x) 
via its second derivative. Thus the drift term contains no relevant information 
about  the behaviour of Xt. For  instance, it makes little sense to try to compare 
Xt with the solution of the equation dx,=b(xt)dt, as we did in the low-noise 
case. 

Which are the diffusions Xt which can be obtained from (3.1) by means 
of a transformation g(z) as above? Note that, since g'(z)--* 1, typically g"(z) 
=o(Iz[-1),  as Iz[--+ oo. Then, letting x=g(z), 

b(x) = o(Iz1-1 z2 (z)) = o(Ig(z)1-1 a2 (x)) = o ([xl - 1 a(x)), 
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which means that we are just in the high-noise case. Not every diffusion belong- 
ing to the high-noise class can be obtained from a diffusion of form (3.1) in 
the described manner, however, we have the following result. 

Proposition 3.1. Suppose that ~ Ib(x)l dx  < oo -co ~ -  . Then there is a monotone, differ- 

entiable function u(x) such that 
i) u' (x) --* 1, as I xl -- '  ~ ,  

ii) for Z t = u (Xt) 

dZr  /f I zA>I ,  

where z (u (x)) = u' (x) 6 (x). 

For the proof choose any function u(x) such that 

co 2b(y) , \ 
u'(x) =exp S ~ ay] ,  

\ x  

- c o  

if x > l ,  

if x < - - 1 .  

Remarks 
1) We can work out our argument further by adding a time change to 

the scale change. Let 

0 

23 = Zot, 

where Zt and z(x) are as in the above proposition. Then 

d 2 , = a ( 2 O d B ,  if 12,l> 1, 

where B t is a suitable standard Wiener process. If Zt has a stationary limiting 
distribution then by the ergodic theorem almost surely 

co 

-co ( ) d 

where ~ denotes the stationary density. To treat the remaining case let us assume 
that 

~(x) Ixl --, 
)ta'Y ~ - 4  1, if [x], lyl  ~ ~ such that lYlV~' 1. 
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From the definition of z(x) we obtain cr(x)/z(x)~l, as [x ]~oo .  Furthermore 
almost surely 

i ~(Z~) o ~ Z~lzA--<'~ ds=o(O 

for any 7 > 0, since we are in the case where Zt has no limiting distribution. 
It follows Pt~ t a.s. Such a time change obviously has a negligible influence 
on the behaviour of Z t. Altogether, by minor changes of time and space we 
have achieved that the drift coefficient vanishes outside of a compact set, while 
the diffusion term remains unchanged. 

2) It is well-known that for any one-dimensional diffusion Xt there is a 
monotone  function u(x) such that u(X~) has no drift component.  Just define 

u' (x)=cexp(- f  2b(y) a(y)-ay) �9 

Of course u(x) and x, u'(x) and 1 may be far apart from each other so that 
t ___+ our argumentation is not valid in general. - Note  that u (x) 1, as x ~ _+ 0% 

can only be achieved, if ~ (b(y)/a(y))dy=O. Only in this case we can attain 
- o o  

that the stochastic equation formulated in Proposition 3.1 holds on the whole 
real line. 

3) For  the (Stratonovitch) solution Y~ of the equation 

dY=b(Y) dt +a(Y)odW 

Proposition 3.1 is not valid. Introduce the function 

ay 
H(x)- ~ a(y) 

and assume H(oo)=  0% H ( - o o ) =  --or .  By means of the chain rule 

d H ( Y ) = ~ d t + d W ,  
otx) 

b(x) 
or, letting Ut =H(Yt), c(H(x))= a(x)' 

dU=c(U) dt +dW. 

For  this equation the Stratonovitch- and Ito-equation coincide. By a substitution 

o o  
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Thus, if ~lb(x)l a(x) -1 dx< o% we may apply the conclusion of Proposition 3.1 
to G=H(Y~). Again the drift component  in the equation for G is negligible 
and, since H(x) depends only on a(x), this is true for the drift term in the 
above Stratonovitch equation, too. The conclusion is similar as for the Ito equa- 
tion, however, unlike circumstances in the low-noise case, the Stratonovitch 
and Ito solutions in general behave differently. 

B. The Higher-dimensional Case 

We extend the type of result given in Proposition 3.1. Our main additional 
assumption is the following uniform ellipticity property of the diffusion matrix: 

(3.2) 2 = lim sup 2max(X)/2min(X ) < 00. 
Ixl-* ~ 

We are looking for a bijection u = u(x) of the IRa onto itself such that the diffusion 
u(Xt) has no drift term outside some compact set. Let 

L = �89 aij(x)Dij + Z bi(x) Di 
i , j  i 

and denote by Du(x) the Jacobian of u at point x. Then from Ito's formula 

du(X)= Lu(X) dt + Du(X). a(X) dW, 

(the dot denotes matrix multiplication). We are thus loocking for bijections 
u: ~ a  ~ ]R d such that 

(S) (i) l u ( x ) - x [ - o ( [ x ] )  and [Du(x)-El=o(1), as Ix[ ~ oo, 
(E denotes the identity matrix), 

(ii) There is a C > 0 such that 

nu(x)=O, if ]xl>>_C. 

We conjecture that in the high-noise case such a transformation of the coordi- 
nates can mostly be found. 

Conjecture. I f  there is an e > 0 such that 

I xl 1 + ~l b (x)l = O (2rain (X)) 

(and if a(x) and b(x) are sufficiently smooth), then there exists a bijection u such 
that (S) is satisfied. 

In this section we develop two results in this direction. Note  that, if we 
multiply both a(x) and b(x) with some positive scalar c(x), then the high-noise 
condition formulated in our conjecture is not affected. Also the problem (S) 
is not changed since the operator  L just turns into c(x)L. (Probabilistically 
this corresponds to a random time change of Xr) In particular, choosing for 
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instance 1/c(x )= 2min(X ) and recalling (3.2) we see that  it is no loss of generali ty 
to require s trong ellipticity of L: 

(3.3) There are numbers 0 < cl < c2 < oe such that for  all x 

Cl ~ m i n ( X ) ~ m a x ( X ) ~ C  2 �9 

We need a certain amoun t  of smoothness  of  the coefficients of L. 

(3.4) A s r  ~ oe sup [a~j (Y)-a i i ( z ) l+lbi (y) -b i (z ) l  =o(1).  
I,r,]~l_>-, l y -  zl 

Theorem 3.2. Let  (3.3) and (3.4) be satisfied. Let  

~ = 2 ,  if 2 < d - l ,  

e =  1 + 2 ( d -  1), if 2 = > d -  1. 

I f  for  some s > O, 

(3.5) r b(x)l = O ( I x l -  ~-+), 

as Ix[ ~ o% then there is a bijection u such that (S) holds. 

In this theorem always ~ __> 1. Since 2 > 1, always c~__> 2, if the dimension d > 2. 
The  next  result shows that  it is no t  too much  to hope  that  the conclusion 
of the theorem above  remains valid if (3.5) holds just  for e = 1. 

Theorem 3.3. Let  (3.3) be satisfied. Assume that there is a positive definite matr ix  
(ai~(oe)) and some e > 0  such that 

(3.6) Ib(x)l = O(I x1-1 -,), 

(3.7) lai j(x)-ai~(oe)l  = O(Ixl-~), 

as Ixl--, oo. Also assume that, as r o o% 

(3.8) sup I bl (y) - b~ (z)l = O ( r -  2 - ~), 
IrHzl>_-, l y -  zl 

(3.9) sup la~i(y)-a~j(z)l _ O(r -  1-~). 
Ivl,r~l->r lY-- zl 

Then there is a bijection u such that (S) holds. 

In the sequel we always assume d > 2, the case d = 1 being t reated in Proposi-  
t ions 3.1. In the p roo f  of  these theorems we are mainly  concerned with the 
funct ion v ( x ) =  u ( x ) - x .  Note  that  (S) translates into 

(S') (i) Iv(x)l=o(Ixl)  and [Ov(x)[=o(1),  as [xl ~ oe. 

(ii) g v ( x ) =  - b ( x ) , / f l x l  > C>0 .  

The following lemmas deal with the solvabili ty of this kind of Dirichlet-problem. 
We start  with an auxiliary result. 
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Lemma 3.4. Let 0 < C < s and define 

zs =inf{t:  [Xt[ = C or [Xt[ =s}. 

Under the assumptions of Theorem 3.2, if C is large enough, there is a D > 0  
such that for all s>C, C <=[x[<=s 

rs 

Ex S IX, l-~-~dt<=D, 
o 

where ~ is as in Theorem 3.2. 

Proof. For every s >  C let f(t)=f~(t), t>_ C, be the function given by 

f (s)= f ( C)=O (3.10) 

and 
t 1-a-e 1 (@)A(d-1)+l-~t-e/2 , 

-- if C<_t<-a, 

--t  1-~-~ 1-- , if a<t, 

where C < a < s is uniquely determined by (3.10). Note  that f( t)  attains its maxi- 
mum in a. Now 

cr X r 

g"lx l )  f (] l) + ~ ( t r a c e a ( x ) - ] x [ -  ,Jr = 2 ~  xra(x)x 2xra(x)x+2(x'b(x)))" 

We estimate this function from above. To this end note that 

trace a(x)<=(d- 1)/~max(X) + IX1-2xra(x)x, 

since 2min(X)< IX]-2xra(x)x.  In view of (3.3) Ix1-2xra(x)x>=cl, thus from (3.2) 
and (3.5), if C is large enough 

trace a(x) -  Ix 1-2xTa(x)X + 2 (X, b (x) ) <<_ ( 2( d -  1 ) + ~ ) [ x l -  2 xT a(x)x, 

if [x[>_C. 

If C_-<[xl-< a, this entails 

L f  (Ix l) __< 1 Ixl- 2 xTa(x)x ( f "  (Ix])+ (2 ( d - l ) +  e / 2 ) ~ )  

1 
-< - - - c l  I 2 (d -  1)+ 1 - c t -~ /2 ] -  Ixl-~-~. 
- 2 

Similarly check that for Ixl >-a 

trace a(x) - Ix[ -2xr  a(x)x + 2  (x, b(x)) >( (d-  1)/~.-e/2)]x1- 2xr a(x)x, 
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therefore we obtain for Ixl _-> a the estimate 

L f  ([x,) < l [ x , - 2 x r a ( x ) x  ( f "  (]xl)+ ( ( d - 1 ) / 2 - ~ / 2 ) ~ )  

1 
< - - c  1 [ (d-  1)/2+ 1 - ~ - 3 e / 2 1 - I x  I -~ - '  
= 2 

Altogether, if 5 > 0 is so small that the factors on the right hand side in both 
estimates of Zf(Ixl) do not vanish there is a c > 0 such that 

Ixl-~-~_-__-cZf(rxl), if Ixl>C. 

By means of Ito's formula 

d f  (ISl)= Z f  (lXl) dt + d(martingale), 

and from the optional sampling theorem and (3.10), if C <  Ixl <s,  

~s ~8 

Ex ~ [Sd-~-~dt<--cEx ~ Zf(ISd)dt 
0 0 

= c Ex ( f  (1 X0 I) - - f  (] X~s D) 

= cf([xl) <= cf(a). 

For  the proof  of our assertion it remains to show that f (a )  is bounded uniformly 
in s. If now e = l + 2 ( d - 1 ) ,  we obtain by means of a partial integration and 
(3.10) 

a 

f (a )  = ~ f '  (t) d t = i t -  zta- 1)-e/2 (t-~/2 _ a-'/2) d t 
C C 

_ e/2 ~ (C_~(d_l)_~/2+l t_;~(d_l)_e/2+l) t_l_e/2d t 
2 ( d -  1 ) -  1 +e /2  

1 < C-z(a-  ~)-~/2 + 1. C-~/2. 
= 2 ( d -  1 ) -  1 +e/2  

If on the other hand ) . < d - 1 ,  a = 2 and e > 0 is so small that ( d - 1 ) / 2 +  1 - ~  
- 3 5/2 > O, then in view of (3.10) 

s s 

f ( a ) =  - If'(t)at< I tl -=-edt< ~ t -1 -edt, 
a a C 

and the lemma is proven. []  

Lemma 3.5. Let g: 1R a --+ N. be such that for some e > 0 

g ( x )  = O ( I x l  - = -  ~), 
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as Ix[ ~ o% where ~ is as in Theorem3.2, and 

Ig(y)-g(z)[ 
sup =o(1), 

I~l,lzl>_-~ [ y -  z] 

as r -+ oo. Then, under the assumptions of Theorem 3.2, / f  C > 0 is large enough, 
there is a function 99 such that 

i) Lq0 (x) = -- g (x), /f  Ix[ > C, 
ii) [9(x)]<C, i f l x l > C ,  

iii) for all 1 <_i<_d [D i ~o(x)[ =o(1), as Ixl--, ~ .  

Proof. Without loss of generality let g(x)>O for all x. Let 0 < C < s  and % as 
in Lemma 3.4. As is well-known 

~s 

~ps(x)=Ex ~ g(Xt)dt 
0 

solves the equation 

(3.11) Lg~(x) = --g(x) 

on the domain C<[xJ<s.  In view of (3.5) and Lemma 3.4 q0,(x) is uniformly 
bounded in s > C and C__<ix] =< s. Furthermore,  since g(x)>= O, qos(x) is increasing 
in s. Thus, letting s ~  0% ~o~(x)T~o(x), where ~o(x) is a bounded function on 
the domain ]xJ>=C. It is well-known that cp solves (3.11), too. For  the reader's 
convenience we give a short probabilistic proof. Choose x such that ]xJ>C 
and define Ax = {y: J y - x [  < Ix[ -C} .  Let c~ be the unique continuous function 
on Ax u ~Ax such that 

LCo(y) = --g(y) for all yeAx  

and qS-qo on 0A~. Then L ( q ) ~ - ~ ) = 0  on Ax. Letting p= in f{ t :  Xt~OA~}, for 
any yeAx  

q,~ (y) - ~a (y) = Ey (~o s (X~) -- q, (Xv)). 

If s--+ o% the right hand side converges to zero, thus 9---q3 on Ax and assertion 
i) of the lemma follows, whereas ii) is valid by construction. In order to prove 
iii) we utilize Schauder's a priori bounds for partial differential equations. Let 
O<r(t)<=t/2 be some function going to infinity and let Bx be the ball of radius 
r(]x[) around x. Using the notat ion of Theorem 6.2, p. 85 Gilbarg/Trudinger 
(1977), in view of (3.4) 

[aol(o~ <=r(lx[) sup [a~ 
y,z~B~ l y -  zl 

as Ix[ ~ oo, if only r(t) goes to infinity slowly enough. Similarly 

b (1) _-<r(hx[) 2 sup [bi(y)-bi(z)[-o(1).  
i 0,  i ; B x  y,=~B~ [y-z]  
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Therefore the a priori bound given in the cited theorem (with e = 1, f2= B~) 
holds uniformly over all balls B~ such that I xl >_- 1. In particular there is a c > 0, 
such that for Ixl _-_ 1 

/ Ig(y) r(Ixl)[Di q~(x)l < c {sup t~o(y)l + r(lx]) 2 sup Ig(Y)l + r(Ix[) 3 sup 

By the assumptions of the lemma and since q~ is bounded, the right hand side 
is a bounded function of x, if r(t) is going to infinity slowly enough, and assertion 
iii) is proven. []  

Next we treat the case of the Laplacian. 

Lemma 3.6. Let g: IRd ~ IR be Lipschitz such that for some 0 < e <  1, as Ixl ~ ~ ,  

(3.12) g(x)= O(Ixl-*-9 

and, as r -+ o% 

[g(y)-g(z)l 
(3.13) sup 

lyhlzl__>r ]y--z] 
=O(r-2-~).  

Let wd denote the volume of the unit ball in 1R a and define for x, yMR a 

Then 

, ( - ( 4 r c ) - ~ ( l o g l y - x l - l o g l y ] ) ,  
F(x, y)= ~((2 d ( d -  1) Wd)- l(ly -- xl 2 - d -  ly[2-a), 

~0(X)= ~ F(x ,y )g(y)dy  
Ra 

/f d=2 ,  
d__>3. 

is well-defined. Furthermore 

i) �89 q~= - g ,  
ii) q~(x)=O(Jx[1-~), 

iii) Ol cp(x)= O(Ixl-% 
iv) Dii q)(x)= O(Ixl- 1-% 

I Dij ~p (y)-- O,~ q~ (z)l 
v) sup 

IrI,N_-_r ]y--zl 
=O(r -~- , ) .  

Proof Let B x = { y ~ d :  lYl<�89 Cx={y: l y - x l < l l x l } .  If yCB=uC~, some 
simple geometric considerations yield [y[/3<]y--x[<31yJ. By the mean value 
theorem 

I ly -x l  2 - d -  lyl2-al < ( d -  2) 3 a- 1Ix] lyl 1 -~ 
and 

I l og ly - x l - l og ly l l  < 3 Ixllyl. 
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Thus for suitable ca, c2 > 0, by means of (3.12) 

[C(x, y) g(y)l d y< ca lx[ 
R a - B x  w C x  R a - B ~  

[yl-d-~dy=c21xl S t - l -~d t  
Ixl/2 

=O(Ixla-9. 

Next, since 0 < e < 1, by means of (3.12) 

I([y- xl2-a-lyl2-a) g(y)l d y<=ca 
B x  

Ixl 
lYl2-alg(Y)l dy~r ~ t-~dt=O(lx[a-9. 

B x  0 

In the case d = 2, since l yl ~ l y -  x l ~ 2 Ix[ for y e B~, 

I(logLy-xl-loglyl)g(y)ldy= ~ log Ig(y)ldy 
B x  B x  

=ca S lYl- l -~l~ dy<=c2 ~ t -~log dt=O(lx[a-~). 
B~ 0 t 

Similarly one estimates ~ IF(x, y) g(y)] dy. Altogether 
Cx 

~ ]F(x, y) g(Y)l d y < ~ ,  

thus q~ (x) is well-defined. Also ii) follows from our estimates. Next define 

If d=>3 

cp~ (x) = ~ F(x, y) g (y) d y. 
B x  

~os(x)=(2d(d-1)we) -a ~ lY-Xl2-ag(y)dy+O~, 
Bs 

where Ds is a constant depending only on s. By classical results from potential 
theory (Lemma 4.2 in Gilbarg/Trudinger (1977)) A ~0,(x)=-g(x)  for all xeBs, 
further from the estimates above 

I~o,(x)-~o(x)l~ ~ [r(x,y)g(y)ldyNclxl ~ t-a-"dt. 
~ a  - Bs  s /2  

Letting s ~ ~ ,  ~Os ~ ~o pointwise, uniformly on compact sets. A theorem of Har- 
nack (Theorem 2.9 in Gilbarg/Trudinger (1977)) implies that A ~0=--g, and i) 
follows. The case d = 2 is treated similarly. To prove iii)-v) we use again Theo- 
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rem 6.2 of  Gi lbarg /Trud inger  (1977) (with f2= C~ and ~ =  1). In par t icular  we 
obtain f rom (3.12) and (3.13) 

Ixl [Di (p(x)[ + Ixl 2 ID,j ~o (x)l + Ix[ a sup 
ly- xl,l~-~l _-< Ixl/4 [y-- z[ 

[Di~ ~p(y)--Dij 9(z)l 

<c/{sup [q~(Y)[ + lxl z sup Ig(Y)l + Ix[ a sup I g ( Y ) - g ( z ) [ ] =  O([xr 1-*), 
- \r~c~ r~c~ r,~c~ [ y - z t  ] 

and iii)-v) follows. [ ]  

L e m m a  3.7. Let (3.6)-(3.9) be satisfied for some e > O, also (3.12) and (3.13), where 
g(x) is as in Lemma 3.6. Then there is a C > 0  and a function cp such that 

i) Zq~ (x) = -- g (x) , / f  I xl => C, 
ii) (p(x)=o([xD, 

iii) D i ~o(x)=o(1). 

Proof Withou t  loss let 0 < e <  t. Applying a linear t ransformat ion  to  IR a, we 
may  assume that  al j(oc)=6i~ in (3.7) (3 o is Kronecker ' s  symbol). Let  cp I be 
the solut ion of the equa t ion  �89 (p~ = - g ,  as given by L e m m a  3.6 and let 

gl (x) = 1 ~  (ao (x )_  6ij) D,j go, (x) + ~, bi(x) Di ~01 (X). 
i,j i 

In view of L e m m a  3.6 iii)-v) and (3.6)-(3.9) 

as well as 

g ~ ( x ) = O ( [ x l - ' - 2 ~ ) ,  

Ig ~ (Y) - g ,  (z)l sup = 0 ( r -  2 - 2 ~), 
lYl,lzl>=r ]y--z[ 

q ) l ( X ) = O ( [ X l ) ,  O i q ) , ( X ) = O ( 1  ). 

I terat ing this p rocedure  we define q~ and gk such that  

with go = g, thus 

�89 9k = -- gk- 1, 

gk=(L- �89  A) (Ok, 

LqYk = gk - -  g k -  1, 

gk (x) = O ( I x l - l - ~ k + " ) ,  

I gk(y) -  gk(z) l -ck + . 0 ,  sup O ( r -  2 
IrHzl->r l y -  z[ 

q~k(X)=O([xl), O~ (Pk(X)=O(1). 
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In view of Lemma 3.6 we can continue this construction as long as 1 ___ k_< n, 
where n is such that h e <  l < ( n +  1)e. (By choosing an irrational e we exclude 
the possibility he-- 1.) In particular 

g,(x)=O(Ix[ -z-o) 

where 6 = ( n +  1 ) e - I  >0.  Now note that, since aii(oe)=6o., 2, as given in (3.2), 
is equal to 1. Applying Lemma 3.5 with e = 2  we see that there is a function 
q~,+ 1 such that 

L~O,+l(X)=-g,(x ) for I x l > C > 0 ,  

lop.+ l(x)l < C, D~rp.+l(x)=o(1). 

Now define q) = (Pl + ... + %+ 1. Then for Ix] > C 

L~o(x) = ~ (g~-g~_ O(x)-g.(x)= -g(x) .  
k=l  

By construction q)(x)=o([x]) and Di q) (x) = o (1). []  

Lemma 3.8. Let q)(x), [x[ __> 1, be a realvalued C2-function such that 

q)(x)=o(lxl), Di qo(x) = o(1), 

as I x [ ~  oe, and let 6>0 .  Then there exists a c>_l and a C2-function ~: ~a--+IR 
such that 

4,(x)=~0(x), if Ixl>c, 

IDi 0(x)l_-__a, forall x. 

Proof. We construct 0 by mollifying q~. Define q~(x)=0 for all Ixl< 1. Choose 
a CZ-function M(x) such that M(x)=0 for all Ix[ > 1/4 and 

SM(x) dx = 1. 

Let p: [0, 1] --. [0, 13 be a Ca-function such that 

p( t )=  1 for all 0_< t_< 1/2, 

0<p(t)__< 1 for all 1/2__<t< 1, 

p(1) =p'(1) =p"(1)  =0.  

Let c > 4. Now define 

~,(x) = S q ) (x -cy  p(lxl/c)) M(y) dy 

d N / C  - -  Z 

~k(x)- (p(x), if Ixl>c. 

if ]xl<c,  
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If now x . ~ x ,  [x~] <c,  Ix] =c,  then 

0 (x~) -~ S ~P (x) M(y) dy = q~ (x), 

since p(1)=0.  Consequently ~ is continuous everywhere. From the second inte- 
gral representation it is clear that O(x) is a C2-function in the domain }x] <c. 
Let us estimate the partial derivatives. First we consider the case Ix] < c/2. Then 
p(]x]/c) = 1, therefore from the second integral representation 

D, O(x)=I 1 ~o(cz) D, M(x/c--z) dz. 

Taking absolute values we obtain 

ID~'(x)l < sup 1 ]q~(Y)l sup ID, M(y)I j" dz. 
ly[<c C y Iz]__< 1/4 

Since by assumption (p(x)= o(IxD, 

ID, O(x)]~6 for all Ix[~c/2, 

if only c is large enough. 
If c/2 < Ix] < c, we utilize the first integral representation for ~. Since ]y] < 1/4 

entails I x -  c p (]x]/c) y] > c/4 > 1, we obtain 

consequently 

sup ]D,O(x)lSd sup [DkCP(Y)[ sup 
c/2 < I x] < c  1 < k < d  0 < t <  1 

lYl -> c/4 

(1 + ]p'(t)]) ~M(y) dy ~ 6, 

if c is large enough, since Dk ~o(y)= o(1) by assumption. Also, if xv is a sequence 
such that xv--*x, Ix d <c,  Ixl =e,  then, since p ( 1 ) = p ' ( 1 ) = 0  

Di O (xv) ~ ~, S M (y) Dk q~(x) blk d y= Di q~(x). 
k 

Thus D~ ~ is continuous in the whole Euclidean space. Also it is clear by construc- 
tion that s u p J D ~ l < 6 ,  if only e was chosen large enough. It remains to show 
that Dij ~p(x,)~Dijq~(x), where x v ~ x  as above. The proof is along the same 
lines, differentiating the first integral representation of ~k and using 
p(1)=p'(1)=p"(1)=O. We leave the details to the reader. It follows that D~j~ 
is continuous everywhere, thus ~h is a C2-function. []  
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Proof of Theorem 3.2 and 3.3. In view of Lemma 3.5, 3.7 and 3.8 there is for 
any 3 > 0  a C > 0  and a C2-mapping v=(vl,  ..., Vd): NJ-+IR d such that 

Lv(x)=-b(x) ,  if Ixl~C, 

Iv(x)l=o(Ixl), 

Di v&) = o ( 1 ) ,  

IDivj(x)l<5 for all x. 

Define u(x)=x+v(x). Then u(x) satisfies (S). It remains to show that u is a 
bijection. From the mean value theorem, if 6 > 0 is small enough 

Iv(x)-v(y)[ < ~  sup [Di vj(z)[ Ix--y[ ~ d2 ~ Ix-y[  < [x-y[. 
i , j  z 

Consequently u(x)+u(y) for all x + y  such that u is injectiv. Next choose 3 > 0  
so small that det (D u (x))= det (E + D v (x)+ 0 for all x. Then u is a regular function 
at any point x, consequently u is an open mapping. In particular, range(u) is 
open. Next let y~range(u), yv~range(u) such that yv ~ y, and xv such that u(xv) = y~. 
The sequence (x~) has to be bounded since otherwise ly~l--* 0o along some subse- 
quence. Without loss x ~ x .  Since u is continuous, y=u(x), i.e. yerange(u). 
We have shown that range(u) is both open and closed in IR d, consequently 
range(u) =IR d. The proof is finished. [] 

Appendix 

We prove two auxiliary results. 

Lemma A1. Let h(t), t_>O, be a non-negative decreasing function such that 

h(t) d r <  ~ .  Then there exists a function k(t) such that 
t 1 

i) k(t) is non-negative and decreasing, 
ii) k(t)>=h(t) for all t=>O, 

iii) ~ k ( t ) ~ <  oo, 
1 

iv) k(t) is continuously differentiable and k'(t)= O(t- l k(t)), as t ~ oo. 

Proof Define j (t) = t -  1 i h (s) d s, t > 0. Since h (t) is decreasing, also j (t) is decreas- 
0 

ing and j(t)>_ h (t). By a partial integration 

dt oo. j(t)~-=j(1)--j(oo)+ ~ h(t) dt-<t 
1 1 
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t 

Now define k( t )=t  -1 ~j(s)ds.  By repeating our arguments we see that i)-iii) 
0 

are satisfied. Moreover, j(t) is continuous, thus k(t) is continuously differentiable, 
and, since j(t) < k(t) 

_k(t) <j(t)" k(t)_k,(t)<O. 
t t t 

Thus iv) holds. []  

Lemma A2. Let f( t) ,  t >= 1, be a positive function such that f (t)=o(t) and f ( t ) / t  
is decreasing. Let ut, t > O, be the solution of the equation 

dut=f(u , )  dt, Uo = 1. 
Let s > O. Then 

\ (1-8)u, u, / 

Proof Define g(s)=e-~f(eg.  Substituting ut= e s in the above integral, we realize 
that our assertion is equivalent to 

(4.1) ~ { g ( s - c )  1) d s =  oo, 
o \ g(s) 

where c = - l o g ( I - e ) > 0 .  Note that g(s) is decreasing and going to zero by 
assumption. We distinguish two cases: 

i) Since g(s) = o(1), 

oo ~ { ~ , - ' t  0 n + c  

log ~ ds = 0 ~ gts) _~ c log g ( s ) d s -  lim ~ log g(s )ds= co. 
n--* oo n 

If now g ( s -  c/2)/g ( s ) ~  1, as s--* 0% consequently g (s - -c) /g(s )~  1, (4.1) follows. 
ii) Now assume that there are numbers tl <t2 < ... going to infinity such 

that g(t~-c/2)/g(tv)> 1 + 5  for some 6 >0. Since g(s) is decreasing, g(s-c) /g(s )  
> 1 + 5 for tv < s < tv + c/2, and (4.1) is trivially satisfied. []  
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