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Summary. Given a stationary, @mixing triangular array of Banach space 
valued random vectors whose row sums converge weakly to an infinitely 
divisible probabil i ty measure, necessary and sufficient conditions for the 
validity of the corresponding invariance principle in distribution are given. 

1. Introduction 

Let {X,j} = {Xnj: j =  1 . . . .  , j , ,  hEN}  (N is the set of non-zero natural numbers) 
be a triangular array of B-valued random vectors (r.v.'s) defined on a common 
probabili ty space ((2, d ,  P); here and throughout the paper, B denotes a real 
separable Banach space with norm I1"11 and it will be assumed that j n ~  oe as 

k 

n ~ Go. We shall write Snk = y, Xnj if k = 1, .. . ,  j , .  
j=l  

Assuming that {X~j} is stationary and @mixing (see the definitions below) 
we give conditions which added to the weak convergence of {5~ (if X is 
a random vector, ~ ( X )  denotes its law) to an infinitely divisible probabili ty 
measure imply that the corresponding invariance principle in distribution (or 
functional central limit theorem) holds; we also show the necessity of those 
conditions. This is contained in Theorem 3.2 which gives an extension of a 
well-known result for the independent case due to A.V. Skorohod [12, Theo- 
rem 2.7]. For  the proof  of the sufficiency we adapt  the method of [4] to the 
dependent case; this is carried out by using an appropriate version of an 
inequality in [4] (Lemma 2.3 below) and a certain maximal inequality ([7, 
(3.5)]; [5, Lemma 3.1]) together with some results of [91; for the converse, we 
use an inequality of T.L. Lai [6, (3.28)]. Let us remark that Theorem 3.2 seems 
to be new even for the real-valued case; moreover,  we give an example which 
together with that result contradicts a statement which appears in the literature 
(see Remark  3.4.4). 

In the Gaussian case, Corollary 3.5 below generalizes both part  of [5, 
Theorem 2.131 (which deals with sequences of real valued r.v.'s with finite 
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variances) and the almost sure invariance principle given in [9]; Corollary 3.7 
generalizes Theorem 20.1 of [2]. See [5] and [7] for more information about 
the Gaussian - even nonstationary - case; Herrndorfs work provided an 
important stimulus for the realization of the present paper. 

At the end of the paper we indicate an application of the results given here 
and in [9]. 

Now we recall some definitions. If J/l, ~Av are two sub-a-algebras of sur we 
will consider the coefficients 

fIP(Ec~F) Fc~,, >0} (b(Jr ~A/')=sup~. p ~ -  -P(F) : EeJr P(E) 

and 
f P(Ec~F) } 

O*(J~, #Z) = sup ~-P(E~P~) " EeJ/l, FedV',, P(E) P(F) > 0 . 

Given a triangular array {Xnj: j =  1, ..., Jn, heN} let d ~ ) =  o-({Xnj: j=h, ..., k}) 
for heN and 1 <_h<_k<=j~ (if ~ is a set of r.v.'s, o-(~) is the o--algebra generated 
by ~)  and define 

(b(k)= sup m a x  (b('~)h' ~h+k,#//(n) Jn ) (keN), 
neN, jn>k l <_h<j,--k 

0 * =  sup max O*(d/t~h ), ~'~ ;,)" 
nEN, jn> l l <=h<=jn-1 

Note that (b(1)__<l, O*< ov and {(b(k)} is non-increasing. It is said that {X,j} is 
(b-mixing if (b(k)~0 as k ~  co; we will say that {X,j} is stationary (has stationary 
sums) if ~(~9(Xnl, ' ' ' ,  X n h ) =  ~"Q~(Xn, k+ 1 . . . . .  Xn,  k+h) ( ~ 7 ( X n  1 -Jr-... "Ji-Xnh ) 
=SQX,,k+l +...+X,,k+h) , respectively) for l <=h<=j~, l < k < j , - h ,  neN. We 
have similar definitions for a sequence and for a finite set {X1, ..., X,} of r.v.'s; 

k 
in the last case, we shall write Sk= ~ Xj for k = l ,  ..., n and S0=0. 

1=1 

We denote by ~ the weak convergence of probability measures and by 
the convergence in probability of random vectors. Sometimes we shall write 

P 

E(X; A) for the integral of the r.v. X over the event A. 
The space of functions from [0, 1] into B which are right-continuous on 

[0, 1) and have left-hand limits on (0, 1] equipped with the Skorohod J1- 
topology will be denoted by D=D([0,  1], B) (see [2, Chap. 3], [11]). Given 
xeD and c > 0  we shall write 

Aj~(c, x)= sup rain { Ilx(t)-x(t~)[I, I[x(t2)-x(t)ll}. 
t--c<=tl<t<t2<=t+c 

t~, t, t~[O, 11 

2. Inequalities 

We quote two inequalities. The first is a version of the Ottaviani inequality for 
the dependent case (see [7, Lemma (3.1)], [5, Lemma 3.1]); the second was 
obtained by T i .  Lai ([6, (3.28)]). 
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2.1. Lemma. Let {XI, . . . ,X,}  be a set of B-valued r.v.'s. Suppose qEN, q+ l <n 
and let a > O. Then 

(1 - ~ ( q ) -  max P(llS.--akll >a)) P( max Ilakll >3a) 
q ~ k ~ n  l ~ k ~ n  

~P(I[S.][ >a)+P((q-1)  max []Xil] >a). 
l ~ j ~ n  

2.2. Lemma. Let { X  1 . . . .  , X~} be a set of B-valued r.v.'s such that ~q~(X1) . . . .  
=S(X~).  Suppose q~N, q<-_n and let e>0. Then 

P( max IlXjll >e)__>(P( max IlXjll <e)-4(q))[n/q] P(llX~l[ >e) 
1 <=j<=n 1 <=j<=n 

([ ']  denotes the integer part of a real number). 

We will use the following generalization of Lemma 1, p. 480 of Gihman and 
Skorohod [4]. 

2.3. Lemma. Let {X~ . . . . .  X,} be a stationary set of B-valued r.v.'s. Suppose 
q~N, 2 < q < n - 1  and let e>0. Then 

P( max min{llSj-S~[I, I[Sk-Sjll}>e) 
O<i<j<k<=n 

2(q-- I) 

<(q -1)3 2 nn(I]X1[] >e/(2(q-1)), [[Xr] I >e/(2(q-1))) 
r = 2  

+ (q5 (q) + P( max II Sk 11 > e/e)) P( max [I Sk I[ > e/e). 
l<_k<_n l<_k<_n 

Proof. Write Y= max min{llSj-S~lr, IISk--SjI[} and 
O<i<j<k<<_n 

Z =  max min {[ISj -Sill, NSk -Sf]}.  
O<=i<j<k<n 

j--i<=q-- l ,k--j<=q--1 

We have [Y > el c [Z > e/2] u [Y > e, Z < e/2]. 
Observe that if O<__i<j<k<n, j - i<=q-1 ,  k - j < q - 1 ,  ilSj-Sil[>e/2 and 

I[Sk-Sj[I >e/2 then we have I[X~lrl >e/(2(q-1)) and IIX~211 >e/(2(q-1)) for some 
ra, r 2 which satisfy- i + l < r l = < j ,  j + l < r 2 < k  and r 2 - r l < 2 q - 3 .  Therefore, if 
O<=i<j<k<n, j - i < q - 1 ,  k - j < q - 1  it follows from stationarity that 

P (min { II Sj - S i I[, [I S k  - -  S j  II } > z/R) 
2(q-- 1) 

=<(q-l)  ~ n([]X1U>e/(2(q-1)), ]lXr[l>e/(2(q-1)) ). 
r = 2  

Then 
n- -1  

P(Z > ~/2) =< F~ 
j = l  

<n(q-1)2(q -1) 
r = 2  

P(min {IISj -Sill, IlSk -Sjll } >~/2) 
O < i < j < k < n  

j - - i ~ q -  1, k - - j<q- -  1 

2(q-- 1) 

n(llXa 11 > e/(2(q - 1)), II Xr II > e/(2 (q - 1))). 
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Now define E~=EIIS~II>~/43, Er=E max IIS~11~/4, IIS~1t>~/43 for r 
=2, ..., n - q  and ~_<i_<~-t 

F~=[ max IISk--S~§ 
r§ 

Ur=E~F~ for r = l  . . . .  , n - q .  

Suppose that Z<e/2 and that O<i<j<k<n,  IISj-S~ll >~ and IISk-Sjll >~. 
By the definition of Z, three cases are possible: (1) j - i > q  and k - j > q ,  (2) j 
- i > q  and k - j < q - 1 ,  (3) j-i<__q-1 and k - j > q .  In any case, one of the 
events U r occurs. In order to see this in case (1), observe that since Z<e/2 
we have ( l - a )  IiSj-Sj_q+~ll<~/2 or ( l - b )  IISj+~_~-Sjll<~/2. If []Sj 

- - S j _ q + l ]  [ _<e/2 then IISj_~+l -S~ll _-> IlSj-S~ll- ItSj-Sj_~+~l[ >e/2 which im- 
plies that I[ S~ [I > e/4 or II Sj_q + ~l[ > ~/4. Then if ~- is the first r such that I I sr I/> ~/4 
we have f < j - q + l < n - q  and IISj-S~§ or ]lSk--S~+q_l[]>e/2 be- 
cause IISk-Sjll >~; this shows that U~ occurs. In case ( l - b ) ,  first note that 
/IS~ll >e/2 or I[Sjll >~/2, then if f is defined as above we have ?-_<j. On the other 
hand, IISk--Sj§ l[ ] > I[Sk- Sjl I -IlSj+q_~ - S  jll >~/2 which implies that IlX j+q_ 1 
-S~§ 1/I >~/4 or IIS k-s~+q_ ~11 >~/4 and then U~ occurs. 

In the second case, since k - j < q - 1  and IlSk-Sjll >~, from the definition of 
Z we conclude that IlSj-S~_~§ ~ [I __<e/2 and we can argue as in case (1 -a ) .  The 
case (3) can be treated in a similar manner. 

We have proved that [Y>e,Z<=e/2]c ~)U,. On the other hand, using 
r : l  

stationarity, we see that P(F,)< P( max II Sk [I > ~/4) (r-----1,..., n -  q). Therefore 
l<_k<_n 

n--q n--q 
P(Y>e ,  Z<e/2)< ~ p(U,)<= ~ P(E~)(O(q)+P(F~)) 

r--1 r = l  
n--q 

<=(4)(q)+P( max IlSkll > ~/4)) ~ P(Er) 
l <-k<-n r = l  

==_(~b(q) + P (  max []SkH > e/4)) P( max I[Skll > e/4). 
l<_k<n l<<-k<_n 

[] 

3. Results 

Given an infinitely divisible probability measure v on (the Borel a-algebra of) 
B, {vt: t>0}  will denote the associated weakly continuous convolution semi- 
group of measures and Q~ will be the distribution on (the Borel a-algebra of) D 
of a stochastic process ~v={~(t) :  tE[0, 1]} with stationary independent incre- 
ments, ~(0)=0 a.s., trajectories in D and s176 On the other hand, if 
a 1 .. . .  ,a,~B we define p,(al, ...,a,)~D by Pn(a 1, ...,a,)(t)=aE,t~ if (1/n)<t<l, 
= 0  if 0 < t <  1In ( [ ' ]  denotes the integer part of a real number). 

The following remark will be useful. 

3.1. Lemma. Let v be an infinitely divisible probability measure on B and let # 
be its L~vy measure. Then for every e > 0  such that #({xeB: Ilxl] =~})=0 we have 

lim -1 Qv({X~D." sup IIx(s)-x(O)ll __>~})=#({x~B: Ilxll >~})< oo. 
t.~O t O<s<=t 
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Proof Observe that the set {x~D: sup Ilx(s)-x(O)[l>~} is Jl-closed. The 
O < s < t  

result follows from the Ottaviani inequality and the well-known fact that 
lim(1/t) v~({x~B: ][xl] >c~})=p({xeB: [[xll >6})<  oo for every 6 > 0  such that 
t + o  

~({xeB: Ikxll=~})=0 [] 

3.2. Theorem. Let {X,j: l < j < j , ,  n~N} be a stationary, ~-mixing triangular 
array; write ~ =pj,(S,1 , ..., S,j,). Let v be a probability measure on B. Then 
assertions (I) to (III) below are equivalent. 

(I) The following conditions hold: 
(a) 5 f ( S , j , ) ~  v, 
(b) {X,j} satisfies 

(.) {r ,}=N, r.<=j,, r,/j ~ O ~ S , ~ - ~ O ,  

(c) for every e>0, supj ,  P([[X,11[ >e)<  o% 
n 

(d) for each integer r > 2 and every e>0, lim j,  P([[X,l [] >e, []X,~]I >e)=0.  
n 

(II) v is infinitely divisible and ~ ( ~ , ) ~  Q~ in D. 
(III) {~(~,)} is relatively compact in D and 5 P ( ~ , ( 1 ) ) ~  v. 

Proof (III)~(II) .  First we show that (.) is satisfied. Let {r ,}~N such that 
r ,<j ,  and r , / j ~ O .  Suppose that 5 r  Q in D for some sequence {nk} = N  
and let e>0. For each t~(0, 1], since F~,~-{x~D: sup [ix(s)-x(o)lr>E} is J1- 

O < s < t  

closed, we have lira P(IIS . . . . .  ~11 >e)< l im P(r t) <Q(F~, t); but lira Q(F~, t)=O 
k k t $ 0  

(x(0+)=x(0)  for each x~D). Then S ---+0. Since {5((~,)} is relatively 
nk,  rn k p 

compact we can deduce that S , ~ . ~  0. 
Now observe that v is infinitely divisible by [9, Proposition 3.1]. If 

0 < t 1 < t 2 __< 1 we have that 5(~(~,(t2) - ~,(tl) ) ~ v t~-t~ (I-9, Theorem 3.3]) and 
arguing as in the proof of 1-9, Proposition 3.1] we can prove that 

~e(~.(t~), ~~ ~~ ..., (.(tk) - ~.(t~_ ~ ) ) ~  v" |  | ... | r 

(product measure) if O<t~<t2<.. .<tk<=l .  From this we conclude that the 
finite-dimensional distributions of ~ converge weakly to that of ~.  This, 
together with the relative compactness of {~(~,)}, shows that ~ ( ~ ) ~  Q~. 

(II)~(I).  Assume (II) holds. For each e>0  and t~(0, 1] we have 

lim P( max IIS, kl[ >e )< l im P(~,eF~,,)<Q,(F~,,), 
n l<-k<- t jn  n 

F~, t being the closed subset of D defined above. Then, by the preceding lemma, 
we have 

1 
(3.1) for every ~>0, lim - lim P( max I/SnkrJ >~)< oe. 

t~o t n lNk<_tjn 

This implies that {Xn; } satisfies (.). To prove (c), fix e>0  and observe that 

from (3.1) we obtain that l im(1/ t) l im P( max IjX.jil>~)<oo. Then we can 
t+O n l <j<=tjn 
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find t l > 0  and nleN such that sup P( max IIX,ji[>a)_-<I/2; now choose q~N 
n>~nl l ~ j ~ t l j ~  

such that 0 (q)<  1/4 and apply Lemma 2.2 to obtain 

1 /2>P(  max IIX.jlt >e)>=(1/4)[[tlj,J/q] P(llX.~ll >~) 
1 <J<=tljn 

if n>n z. This implies (c). 
Now we will prove the following claim: 

(3.2) for every integer r > 2  and each ~>0, l imj,  P IlX, l l l>e,  X.j >~ 
-=0. " J 

Since Y ( ~ , ) ~  Q~ in D we have that for every e>0,  lim lim P(AjI(c , ~ , )>e )=0  
c lO  n 

(argue as in [2, Chap. 3]; see [11, Theorem 3.2.2]). Fix an integer r ~ 2  and 
~> 0. The previous relation implies 

l imP(  max min{[lX,/I, IlS,,j+r_ 1-S.jll}>~)=O, 
n l<=j<=jn--r+l 

Write Y~j=min {[]X,jll, []S,,j+r_I-S,jI[ } for j = l  . . . .  , j - r + 1  and observe that 
the triangular array {Y,~} is also @mixing and stationary. By applying Lemma 
2.2 to {Y, fl, we deduce that limjnP(Y,l>e)=O which proves (3.2). But (d) 

n 

follows from that claim, since for every r > 3 and every e > 0 we have 

P(l[X,a 11 >~, IlX,,I[ >8)<V(llX.111 >~, IIX.2 + ... + x . , l l  >~/2) 

+e( l lX. l l [  >~, I[X.r]l >~, ]lX,2 + ... +X.rll =<e/2) 

and the last term is bounded by P(]IX,1H >~, IIX.2 + ... + x  . . . .  111 > ~/2). 

(I) ~ (II). Assume (I) holds. Using (a) and (b) and arguing as in the proof of the 
implication ( I I I )~(II )  we can conclude that the finite-dimensional distributions 
of ~ converge weakly to that of ~ .  

Now it is sufficient to show that 

(3.3) for every e>0,  lim lim P(dj~(c, ~, )>e)=0,  
c$0  n 

by an application of [2, Theorem 15.4] since Q~({x6D: x ( 1 ) ~ x ( 1 - ) } ) = 0  (we 
remark that the result remains valid when we replace in the definition of D the 
real line by a complete separable metric space (X, d) - see [11, Theorem 3.2.1 
and 2.7.3]. A slight modification of the compactness argument in its proof is 
needed: first we can prove that for every t />0  and every jEN there exists a 
compact set K j c X  such that supP(~(t)r for some t)<=~/2 j - here K ~ 

n 

= { x 6 X :  inf{d(x, k): k6K}<=e} if K c X  and e>0 ;  this implies that for every 
q > 0  there exists a compact set K c X  such that supP(~,(t)(~K for some t)__<t/ 

n 

and then we use appropriate versions of Theorems 15.3, 14.4 and 14.3 of [2]). 
Fix ~>0. Consider c6(0, 1/2) and write r for the integer part of 1/c, I k 

= [kc, (k + 3) c] for k-- 0, 1, ..., r - 3 and I~_ 2 = [(r - 2) c, i I. Note that if x6D 
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Ajl(c, x)< max sup min {]lx(t)--X(tl)[[ , Ilx(t~)-x(0FI} 
O<-k<-r--2 t l ,  t, t2eIk  

t l < t < t 2  

and that ifj,>2/c and k=0 ,  1, ..., r - 2  then, by stationarity, 

P( sup min {kj(,(t)-~jtl)[l ,  [[~Jt2) -~(t)jb} >e) 
t l ,  t, t2~Ik 

f l  < t < : / 2  

< P (  max rain {llS.j-s,~]l,  IlS,~ -S,~ll) >e) 
O < i < j < k < 4 c j n  

(where S~o=0); thus, using Lemma 2.3, we conclude that if q~N, 
c~(0, 1/2) and n is sufficiently large 

1 
(3.4) P(Aj~(c, ~,)>e)__<- P( max rain (ltS.~-S~ll, IIS~k-S~jII}>~) 

C O < i < j < k < 4 c j n  

2 (q - i) 

<(q-1) 3 2 4JnP([[X.~][ >e/2(q-1), [IX.~[[ >e /2 (q -1 ) )  
r = 2  

1 
+(~b(q)+P( max IIS,k]l>~/4)) P( max IIS.kll>~/4) 

l < k < _ g c j n  C l<=k<=4Cjn 

=Aq,,+B~ . . . .  (say). 

Now we claim that 

1 
(3.5) M - '  lim - lim P( max [IS~k[I >e/4)<  oe. 

c~O C n l<--k<-4-cjn 

q__>2, 

To prove this, take qeN such that qS(q)< 1 and take ~e(~b(q), 1). By hypothesis 
(b), there exists c o > 0  such that for all sufficiently large n we have 

max P(IIS.kll >e/12)<  1 - ~  and then, by Lemma 2.1, if ce(0, co/4 ) 
l <-k<-cojn 

P( max [IS,kll >~/4) 
1 < k < 4 c j n  

<=(~-(9(q))-I {P(HSn,[4cj.]]I >e/12)+P((q-1) m a x  []Xnj][ >e/12)} 
1 < j < r  

for those n; hence, by [9, Theorem 3.3], 

lim P( max IlS, kIl>e/4) 
n l<=k<:4cj~ 

<(~ _ r  1 {v4C({xeB: Irxll = 412}) + 4c sup Jn P((q - 1)I/X~I Ir > e/iX)} 
n 

for each c e(0, Co/4 ). By hypothesis (c) and the fact that 
lim (l/c)v4C({xeB: Ilxll >e/12})< oQ (see the proof of Lemma 3.1) we conclude 
c $ 0  

that (3.5) holds. 

But (3.5) implies that lira lim P( max IIS,J > e/4)= 0. Then for every q > 2 
c l . O  n l<-k<_4cj~ 

we have lim lira Bq . . . .  <=~(q)M and, by hypothesis (d), limAq,.=O which im- 
c $ 0  n n 

ply, by (3.4), that 
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lim lim P(Aj~(c, ~n)>e)<=(o(q)M 
c J, 0 n 

for each integer q>2.  Now the (o-mixing condition implies (3.3). [] 

3.3. Corollary. Let {X,j}, ~,, v be as in Theorem 3.2. 

(i) I f  ~* < oe then assertion (I) can be replaced by 
(I') {X,j} satisfies (a), (b), (c). 

(ii) I f  (O(1)< 1 then assertion (I) can be replaced by 
(I") {X,j} satisfies (a), (b), (d). 

(iii) I f  ~* < oe and (O(1)< 1 then assertion (I) can be replaced by 
(I"') {X,~} satisfies (a) and (b). 

Proof. (i) If ~* < o% (c) implies (d). (ii) See the proof of claim (3.5) or note that 
in this case, by [9, Theorem 3.4], (a) and (b) imply (c). [] 

Condition (.) was considered in [9] (see Sect. 3 there) and [10]. We do not 
know if it can be omitted in Theorem 3.2; when {Xnj } is obtained from a 
single stationary sequence by normalization, condition (.) is related with varia- 
tion properties of the sequence of norming constants (see Remark 3.4.3.1 
below). We do not know if condition (c) can be omitted, but (a) and (b) 
together do not imply (c) (see the example in Remark 3.6.5). The example in 
Remark 3.4.4 shows that (d) can not be removed from (I) of Theorem 3.2. 

3.4. Remarks. 3.4.1. As a consequence of Theorem 3.2, we can obtain a version 
for the dependent case of the arc-sine law in [1, Theorem 5.11. On the other 
hand, we have not been able to obtain a version for the dependent case of the 
invariance principle in probability given in that article. 

3.4.2. There are in 1-9] sufficient (and also necessary) conditions for some 
stationary mixing triangular arrays {X,j} of B-valued r.v.'s under which (I'") of 
Corollary 3.3 holds (see, for example, [-9, Corollary 6.5] and its proof). For the 
case where {X,j} arises from a single sequence {X j} by normalization, see 
Corollaries 5.9; 5.10 of [9] and [3], which contains sufficient conditions for 
convergence under weaker assumptions when the Xjs  are real valued; we note 
that (I) is fulfilled by sequences which satisfy the hypotheses of Theorems 2 or 
3 of [31 (see 3.4.3.1). 

3.4.3.11. Let {Xj: j~N}  be a stationary, (o-mixing sequence of B-valued r.v.'s, 
{a(n)} ~(0, oo) such that a(n)--+ o~ and {b(n)} c B .  Assume that 5r l(X1 + ... 
+ X , - n b ( n ) ) ) ~ v ,  a non degenerate probability measure, and write X, j  
= a ( n ) - l ( X j - b ( n ) )  for j = l ~ . . . , n ,  heN. Then v is stable and, if c~e(0,2] is the 
index of v, {X,j} satisfies (*) if and only if 

(3.6) for some slowly varying function L: (0, o~)--+(0, oo), integrable over finite 
intervals, a(n) = n 1/~ L(n) 

and 

(3.7) {r, ,}~N, rn<n , r , / n -~O~a(n ) - l r , (b ( r , ) -b (n ) ) - - .O  in B. 

t This remark is related to Remark 1 in [9, p. 395], where Theorem 2 of [81 was used. We give 
the present statement since we are aware that there is a forthcoming correction to [8] 
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On the other hand, {X,j} satisfies (*) /f (3.6) holds, sup nP(IIX1 I1 > a(n)) < oQ 
and 

(3.8) {na(n)- l ( b ( n ) - E ( X l ;  [IX 111 <a(n)))} is bounded in B. 

Proof First we show that v is stable. Fix peN.  Take {d,} c N  such that d ~ o o ,  
d , < n - 1  for all sufficiently large n and d, rr(a(n)- lX1)~O, where a(X) 
=E(llXll(l+lIX]l) -1) if X is a random vector. Define S~k)= ~, X i 

and ~(k) = ~ X i for k = 1 . . . .  , p. We have (k- 1),+ 1 ~j~k, 
( k - -  1 ) n +  1 <=j<=kn--dn 

P 

(3.9) ~ a(n)-l(Sl~)-nb(n))=a', ,pa(np)-l(S(~l)-npb(np))+b ' 
n,  p 

k = l  

where an, p=a(n)- la(np)  and ' - -1 ' b , ,p-a(n)  np(b(np)-b(n)). By the choice of 
{d,} we have that 2 , - ~ ( a ( n ) - l ( ~ l ) - n b ( n ) ) ) ~  v and arguing similarly as in 
the proof of [-9, Proposition 3.1] we can conclude that the law of the left 
member of (3.9) converges to v p. Take f e B '  such that v o f -  ~ is non degenerate 
(this is possible since v is non degenerate). Now, applying f to both members of 
(3.9), by the convergence of types theorem, we deduce that there exists 
l ima ' , p>0 ,  because ~ ( a ( n p ) - ~ ( S ~ - n p b ( n p ) ) ) ~ v ,  and then that {b',,p} is 

n 

relatively compact in B. Hence v p and v are of the same type for each peN,  
which shows that v is stable. 

Suppose that {X,j} satisfies (*). We prove (3.6) in a way analogous to that 
of [5, proof of Remark 2.3]. Define L(t)=t-1/~a([t]) for t > 0  (put a(0)= 1). Fix 
te(0,1] and write S, ,N=a(n)- la([nt])SL, t l ,r ,  tl+c,,t where e,,teB. Since 
~(S, ,N)~-*~v t by [-9, Theorem 3.3] we conclude from the convergence of 
types theorem that there exists l i m a ( n ) a a ( [ n t ] ) > 0  (v is non degenerate); 

?l 

looking at the Lhvy-Khintchine representation of v we have that that limit 
must be t~/L On the other hand, we have S ,+~ , ,+~=a(n+l ) -~a (n )S , , ,+d ,  
+ a ( n +  1) -1 X,+ 1 with d, eB and the third term tends to zero in probability 
because a(n)~oo.  Hence l i m a ( n + l ) - l a ( n ) = l  and lim L(s ) -aL( t s )=l ,  Then 

n $ ~ a o  

(3.6) holds. Now take {r,} as in (3.7) and write 

(3.1 O) S . . . .  -~- a (n) - 1 a (r,) S . . . . .  + a (n)- 1 r, (b (G) - b (n)). 

By using the Karamata  representation of slowly varying functions we obtain 
that a(n)- ~ a(G ) --* 0; this, together with S . . . .  --* 0 in probability, implies that the 
last term in (3.10) tends to zero in B. Thus we have proved that if (.) is fulfilled 
then (3.6) and (3.7) hold. The proof of the converse is now clear. 

Assume that M - s u p  nP([[X1] [ >a(n) )<  oo and that (3.6), (3.8) both hold. We 
n 

will prove (3.7). Note that it is sufficient to prove that statement with b'(n) 
=E(X1;IIX11[ <a(n)) in place of b(n) (if {c(n)} is the sequence in (3.8), write 

a(n)- 1 r.(b(G ) -b(n))= a(n)- ~ a(r.) c(r.) - n -  1 r. c(n) + a(n)- 1 r.(b'(r.) -b'(n))). 
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For this, take {rn} as in (3.7) and observe that for all sufficiently large n 

Ha(n) i r,(b'(r,)-b'(n))[I <a(n) - i  r, ~ x~(llXlll)(dx) 
(a(r~), a ( n ) ]  

a(n) 

<a(n) -1 a(r,)r,P(lIXll [ >a(r,))+a(n) -1 r, j P(liX1H >x)dx 
a ( r , d  

= u. + v~ (say). 

Given se(O, 1) take {r'.} c N  such that r'.<n and r'Jn~s; again by the theorem 
of Karamata, we have a(n) -1 a(r~)-~O and a(n) -1 a(r'n)~s 1/~. Then, breaking 
the integral involved in v~ at a(r'~) we see that, for all sufficiently large n, 

v, _-< (a(n) -1 a(r',) - a (n ) -  1 a(rn)) r, P(ll X111 > a(r,)) 
! r t ! r +(1 -a(n)  - i  a(r~))(rJ ~) rn P(lIJ~ II > a(r.)) 

which shows that lim vn<=s~/~M. This implies v,--,0; also u , ~ 0 .  Then (3.7) is 
n 

proved and (,) holds. [] 

3.4.3.2. Let {X,j} be a O-mixing triangular array with stationary sums such that 
5F(S , j . )~  w v. Then {X,j} satisfies (,) if and only if X,i  ~ 0 and for every e>0  
there exists a > 0 such that 

lira max P(llS, kl]>e)<l. 
n 1Nk<-ajn 

Proof We prove the "if" part. Let {rn} be as in (*) and fix e>0. By hypothesis, 
we can find qeN, ~(r  1), po~N and no~N such that 

max P([]S,kLI>e)<I--c~ if n>n o. Given peN, P>Po let naeN, nl>n o such 
1 <-_k<~jn/PO 

that rn+q<jJ p if n>-_nl; for such n's write U~P~= ~ X~j, V~(P~=Snr~ 
rn +q<=j<_jn/p 

+U, (p~. By [9, Proposition 3.1] and since ~ X~j~0  in probability (be- 
r n < j < r n + q  

cause X ~ - ~ 0  in probability), we have ~(V, (P~)~  v lip. On the other hand, if 
n > niitholdsthat(e-O(q))P(HS,~.]I >2e)<-_P([IS,~.l[ >2e, 11U,(p)11 <= e) < r (  It r.(') l I >e). 

Then lim P(lISnr~ll > 2 e ) < ( ~ - - 4 ( q ) ) - i r  IIXll >~}) for every P>Po. This im- 
n 

plies limP(I]S~.]] >2e)=0.  [] 
n 

3.4.4. Fix ~e(0, 2), Let Yj, jeN, rlj, j>=O be independent identically distributed 
real random variables with ~(Yi)(dx)=I~x:lyl>_li(x)(c~/2)lxl-l-~dx. Then 
P(iYll>x)=x -~ if x > l .  Define X j = Y j - ~ - I ~ j - - ~ j _ I  for j eN  and Xnj=n-1/~Xj 
for j= l , . . . , n ,  nEN; then {Xj} is stationary and 1-dependent. Since 
Ae(n-i/~(Yi+ .-. + Y n ) ) ~  v, a stable measure of index c~, (a) of (I) of Theorem 
3.2 holds with this v. Remark 3.4.3.1 (or, by symmetry, Remark 2 on p. 395 of 
[9]) shows that {X,j} satisfies (,). Also (c) is fulfilled: given ~>0, 
nP(lXnl [>e)<3nP(lYil>(e/3) ni/~)=3(e/3) -~. But {X,j} does not satisfy (d): 
given e > 0, for all sufficiently large n 
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n P ( I X . l  l > e, IX . z l  > ~) 

=> nP(l~/ll > 2anl/~, [Yll =< (a/2)n 1/~, I~ol ____ (a/2) n 1/~, I r~l =< (e/2) n 1'~, I~1 < (a/2)n 1/~) 

= nP(l~ll > 2enl/~)(P(I Y~l__<(e/2) n~/=))~ 
= (2 e) - ~ (1 - (e/2)- ~ n -  1) 4 

which goes to (2e) -~ as n ~ oo. Hence (d) can not  be omit ted in Theorem 3.2. 
Now we point  out another  feature of this example. Let  raN,  r>=2 and 

consider the subsequence {X j~ : jaN} ;  we have ~b(r)=0 and s  
+ . . .  +X, , . ) )~-~  v 3 which has the same index ~ (note that  Y~ + Y2~+ ... + Y,~, G 
+ r/2~ + . . .  + G,. and G -  ~ +~1~- ~ +- . -  + G~-  ~ are independent  for each n). Here 
(4.2) of Theorem 4 of [8J is satisfied, even with the same norming constants 
than those for the whole sequence, but  the conclusion there can not  hold 
because it would  imply assertion (II) of Theorem 3.2. (For  the Gaussian case, 
see Remark  3.6.5.) 

Now we turn to the Gaussian case. Our  next result generalizes Theorem 4.8 
and Corollaries 4.9 and 4.10 of [9] (see Remark  3.6.1 and, concerning to 
hypotheses (1) and (2) of [9, Theo rem 4.8], Remark  3.4.3.2) and part  of 
Theorem 2.13 of [5] (see Remark  3.4.3.1 and [5, L e m m a  3.3]). 

Recall that  if 7 is a Gaussian probabi l i ty  measure on B then the process ~ 
can be taken with trajectories in C, the Banach space of cont inuous functions 
from [0, 1] into B endowed with the supremum norm. We will denote by Q'~ 
the distr ibution of ~ on (the Borel a-algebra of) C. If al, . . . ,  an~B we define 
p'n(al . . . . .  a , )EC by p',(a 1 . . . .  , a , ) ( t )=a[ml+(nt -[n t] ) (a[nt l+l -a[ ,q)  for ta[0 ,  I] 
(with the convent ion a o =0). 

3.5. Corollary.  Let  {X,j: l < j < j , ,  naN}  be a stationary, O-mixing triangular 
array; write 3, =pj,(S,1,  . . . ,  S,j,) and ~',=p),(S,1, . . . ,  S,jn). Let  ? be a probability 
measure on B. Then the following statements are equivalent: 

(1) L P ( S , j , ) ~ 7 ,  {X,j} satisfies (.) and for every e>0 ,  l imj~P(HX~II]>e) 
~--0. n 

(2) 7 is Gaussian and S ( ~ , ) ~  Q,~ in D. 
(3) 7 is Gaussian and ~ ( ~ ' , ) ~  Q'~ in C. 
(4) {5r is relatively compact in C and 2 X ( ~ ' ( 1 ) ) ~  7. 
(5) 7 is Gaussian and there exist a triangular array {X',j} and a stochastic 

process ~ = {~(t): ta [0 ,  1]} with trajectories in C defined on a common probabili- 
ty space which satisfy 

(a) ~(~(X'nl  , . . . ,  X t n j , ~ ) = ~ 9 ( X , l ,  . . . ,  X, j , )  for each naN,  
2' (b) (3) = Q,, 

(c) m a x  I Is '~k-~(k /L) l l - - ,o  a.s. as n ~ o � 9  
l <=k~jn 

k 
where Sink = E Xtnj" 

j _ l  

Proof  That  (1) implies (2) follows from [10, Proposi t ion 2.4] and Theorem 3.2. 
In order  to prove the equivalence of (2) and (3) see [2, w 18] and [5, P roof  of 
Remark  2.11]. It it easy to deduce (3) from (5). 
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(4) ~(1).  As in the proof of the implication (III)~(II)  of Theorem 3.2 we can 
show that {Xnj } satisfies (,) (F~,d~C is a closed subset of C). Arguing as in [5, 
Proof of Remark 2 . 3 7  (given ~ >0  and e>0, {x~C: sup {]lx(s) 
-x(t)ll" s, teE0, 1], [s-tl__<5}__>e} is a closed subset of C) we can prove that if 
{Sf(~',k)} converges weakly in C for some sequence {nk}cN then 
max IIX.~, ill ~ '  0; this implies that max IIX.jll 7 o. By Lemma 2.2, 
j<=jn k J<Jn 

jnP(I[XnII[ >r for every e>0. 

(3) ~ (5). Suppose that (3) holds. By applying a well-known result of Skorohod 
[-11, 3.1.1] we obtain C-valued r.v.'s 40, 41, ... (defined on some probability 
space) such that ~(40)=Q.'~, ~ ( 4 , ) =  ~(~'n)if n~N and 4,---' 4o a.s. 

Define S0--C, S,=B j" for n = l , 2 , . . . ,  T,=C for n=0,  1,... and let S 
= ~[ S,, T= [I T, (with the product c-algebras). Define G: S,---, T, by ~c0=id c, 

n>__0 n>__0 

G=p)noh~ if n = 1 , 2 , . . ,  where hj:BJ"~B j~ is defined by hj,(xl,...,xj~) 
t =(x~,x~+x2, ... ,x~+...+xj,). Consider the probability measures #o=Q~ on 

So, g = ~ ( X ~ x , . . . , X ~ 9  on S, (n= l ,  2,.. .) and 2=s162 on T. Now, 
letting ~ be the canonical projection from S onto S O and (X'~ . . . .  , X'~j,) that of 
S onto S, we have, by an application of [1, Theorem A.1], that there exists a 
probability measure ~ on S such that ~ ( X ' ~  . . . . .  X', j ,)=#, if n = 1 , 2  . . . .  and 
~(~,{G(X'I,...,X'~j,)}~eI)=2. Then (a) and (b) of (5) are satisfied and (c) 
also holds since Y~({maxl[S'.k--~(k/j.)[[}~>=l)=Z#({max H4(k/j,)-4o(k/j,)ll}n>=O 

k ~ j .  k ~ j n  

and 4,-~ 4o (in C) a.s. [] 

3.6. Remarks. 3.6.1. The hypothesis of stationarity in Corollary 3.5 can be 
replaced by the assumption that {X~j} has stationary sums; we now sketch a 
direct proof of (1)~(2) for this case. Assume (1) holds. By [-10, Proposition 
2.47, ? is Gaussian. The convergence of the finite-dimensional distributions can 
be treated as in the proof of Theorem 3.2; by [-2, Theorem 15.5] it is sufficient 
to show that 

lim lim P( sup lib.(s)-~(t)[[ > e ) = 0  
c $ 0  n [ s - t l < c ; s , t ~ [ O ,  11 

for every e>0. Fix 8>0. Let c>0,  write r for the integer part of 1/c, Ik= [-(k 
-1)c, kc) for k=l , . . . , r  and l~+l=[-rc, 1]. Arguing as in [-2, p. 56] and by 
stationarity we have 

P( sup I[r >~) 
[s - t l<-c  

r + l  

< ~ P(sup II G ( t ) -  G((k - 1) c) ll > ~/3) 
k= 1 t~Ik  

<((1/c)+l)P( max Ils,kll>~/3 ). 
l <_k <c j~+  l 

Now the proof is concluded through an argument similar to that which led to 
(3.5), using Lemma 2.1 and the fact that lim (1/c)y~({x: Ilxll > ~/9})= 0 since 7 is 
aaussian, c ~ o 



Invariance Principles for 0-Mixing Triangular Arrays 257 

3.6.2. A. de Acosta called our attention to the fact that in the Gaussian case, in 
contrast to the general one, the invariance principle in probability is a direct 
consequence of the invariance principle in distribution; the above proof of 
(3)0(5) follows his suggestion. 

3.6.3. In (1) of Corollary 3.5 the condition limj, P(l[X,1N > e ) = 0 f o r  every ~>0 

can be replaced by max IlX.jl[ 7 0 (Lemma 2.2). 
1 <j<j~ 

3.6.4. I f  C(1)< 1 and 7 is Gaussian then statement (1) in Corollary 3.5 can be 
replaced by 

(1') ~ ( S n j n ) ~  7 and {Xnj } satisfies (*). 

(See the proof above or use [-9, Theorem 4.1]). 

3.6.5. We do not know if condition (,) can be removed from (1) of Corollary 
3.5. The following example shows that the condition limj~P(]FXnz ][ > 0 = 0  for 

n 

every e>0  can not be omitted. Let Yj, j~N, ~j, j_>-0, be independent symmetric 
real random variables such that Yj, j~N, are identically distributed with E(Y~ 2) 
= 1 and ~i, J--> 0, are identically distributed with Y(~lo)(dx) =/{y: [y[ ~ t}(x) 2 Ix[- 3 
log]x]dx. Then P(]tlo]>X)=X-2(l+21ogx) if x > l .  Define Xj=Yjj~-~j--~j_I 
for j e N  and X,j=n-1/2Xj for j = l ,  ...,n, neN;  then {Xj} is stationary and 1- 
dependent. We have that Y ( S , , ) ~  N(O, 1) and {X,j} satisfies (,) but, given 

> 0, for all sufficiently large n 

nP([ X,~ ] > e) > (2 0 -  2 (1 + 2 log (2e n'/2)) P([ YI[< (e/2) n 1/2) P(] t/o 1~ (e/2) n 1/2) 

which goes to oo as n ~ oo (incidentally, this example shows that the hypothesis 
C(1)<1 can not be omitted in two results of [9] - Theorem 3.4 and "only if" 
part of Theorem 4.1; see [101). Now let reN, r>2 and consider the sub- 
sequence { X j / j e N } ;  we have C(r)=0 and ~q~(a(n)-l(X~+Xz~+...+X,~)) 

w~ N(0, 1) where a(n)=n ~/2 logn. Here the norming constants for such sub- 
sequences are larger than those for the whole sequence. This example shows 
that condition (4.2) in Theorem 4 of [8] must be modified (in the Gaussian 
case); the following holds: let {Xj: jEN} be a stationary, C-mixing sequence of 
B-valued r.v.'s, {a(n)} ~(0, oo), {b(n)} c B  such that {Xnj }.~ {a(n)- l(Xj--b(n))} 
satisfies (,), {~(a(n)-l(X1 + ... + X -nb(n)))} converges weakly to a probability 
measure 7 and, for some integer r> 1 with C(r)<l ,  ~(a(n)-  l(Xr + X2~ + ... + X,~ 
- n b ( n ) ) ) ~  7~ for some Gaussian law 7,.; then (5) of Corollary 3.5 holds (since 
(1) is satisfied as an application of [9, Theorem 4.1] shows). 

As proved in [-10], the hypothesis C(1)<I can be removed from Theorem 
4.4 of [9] and its corollaries and, moreover, (1) of Corollary 3.5 above is 
satisfied (look at the proofs in [9]); the same holds for the results in I-i0]. Thus 
we have a functional central limit theorem in such cases. We write out the one 
obtained from [10, Corollary 3.4]. 

We will assume that B is a separable Hilbert space and we shall write dk(x ) 
=inf{l[x--yI]:yefk}, F k being the subspace spanned by {e 1 . . . .  ,ek}, where 
{e~: ieN} is a fixed (but arbitrary) orthonormal basis of B, when B is infinite- 
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dimensional ;  if the d imension  of B is finite we have an o r thono rma l  basis 
{el, . . . ,  e,} (naN) and we put  dk=O for k>n. If 7 is a centered Gauss ian  
measure  on B, q )  denotes  its covariance.  Fo r  a r.v. X and faB'  (the topological  
dual of B) we write 

{ (Ef(X))2 if o<EIIX[I~< oo 
m ~ ( f ) =  l im (E(f(X); I[Xll <x))~= EIIXII 2 

x ~  E( lIX[I2;  [IXll_-<x) 0 if EllXll2=oo. 

3.7. Corollary.  Suppose that B is a Hilbert space. Let {Xj: jaN} be a stationary, 

@mixing sequence with ~ ~bl/2(j)< oo. Assume that g(lIXl[12)e(0, oo] and 
j=l 

X2 P(HX11[ > x )  
(i) ~lim g(l[Xlll2; [IXxll _-<x) =~ 

(ii) there exists a sequentially w*-dense subset W of B' such that for every 
f e W  and each j a n  the limit 

~}o) ( f )=  l im E(f(X~)f(Xj);  IIX~ll <x, [IXsll <x) 
x ~  g(llXlll2; ilXt[i <x  ) exists, 

(iii) lira l im E(d2(X1); IlXlll < x ) - 0 .  
k x-~oo E(lIXllI2; I[Xlll < x )  

Then g[lX~ll < o% the sum 

q~ (f) = (~(1 ~ - m~l (f)) + 2 ~ (~}o)(f) _ m~ (f)) 
j = 2  

converges for every f e W  and there exist a sequence {a.} with a~ > O, a. ~ oo and 
a centered Gaussian measure ~ such that ~ ( f , f ) = ~ ( f ) f o r  each f e W  and 
Y ( ~ . ) ~ Q ~ i n D w h e r e ~ ( t ) = a 7 1  ~ (Xj -EX1) / fO_<t<I .  

1 <=j<=[nt] 

Note.  Let (2 = i r r a t i ona l  numbers  in (0, 1), ~r = Borel subsets of f2, P defined by 
P(dco) = (log 2)-  ~(i +co)-  ~ do) (Gauss '  measure) ;  given maY2, let 
(al(cO), a2(co ), ...) be the sequence of part ial  quot ients  of the cont inued fract ion 
expansion of co. Fo r  each nan  let h, be a funct ion f rom N into B and define 
X~j=h,(aj) if j - l ,  ..., n, naN. Then  {X~j} is s ta t ionary  and satisfies all the 
dependence  assumpt ions  here (in part icular ,  those of Corol la ry  3.3(iii)) and in 
[9]. Someth ing  abou t  this will appea r  elsewhere. 
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