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Summary. A new method for construction of transformations T;:(X;, %,
4:) 0, i=1,2, that are factors of each other but that are not measure-
theoretically isomorphic is provided. This method uses ergodic product
cocycles of the form ¢ o S“x @oS2x ..., where ¢: X — Z, is a cocycle, S
belongs to the centralizer of T and 7 is an ergodic translation on a compact,
monothetic group X.

0. Introduction

In [20] Sinai introduced a concept of weak isomorphism between ergodic
transformations on a Lebesgue space. It has been unknown for some time whether
this notion is strictly weaker then the measure-theoretic isomorphism. The first
construction of two ergodic transformations that are factors of each other (i.e.
weakly isomorphic) but that are not isomorphic was given in [18]. Then in 1978
Rudolph developed theory of transformations having the minimal self-joining
property [19]. His machinery applied to the Chacon transformation 7': (X, %, ) D
[5] gives the following example of two nonisomorphic but weakly isomorphic
transformations

Ti=TxTx ... :(XXXX ..., uxux..)Q
To=1txTxTx ... (YxXXXX ..., vXuxux..)p

where 7:(Y,Z,v)) Is the factor of (TxT, # ® &, ux u) obtained from the
g-algebra /< B # of the flip-invariant sets (i.e. Ae/ if fA=A, f(x,y)
= (y, x)). Recently Thouvenot [21] constructed new examples of nonisomorphic
transformations that were weakly isomorphic. His method uses some special
Gaussian processes. '

There are at least three movivations for this paper. The first purpose is to
introduce some new method leading to some nontrivial examples in ergodic
theory. This method uses merely the notion of ergodic transformation with
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discrete spectrum T:(X, %,u)) and a Z,-extension of it. More precisely,
each ¢: X — Z, is called a cocycle whenever it is measurable. Then the automor-
phism o

Tq):(XXZZ:%Mu)D

T, (x, i) = (Tx, 9 (x) + 1),

where = uxv, (v, (i) =1/2,i=0,1), # is the corresponding product ¢-algebra,
is called a Z,-extension of T. By the centralizer C(T) of T we mean the set
of all measure-preserving S: (X, %, x)» commuting with 7. An ergodic cocycle
p: X —Z, is said to be strongly ergodic with respect to S, Se C(T) (shortly S-
strongly ergodic), whenever for every i, <i,<...<i, k=2 and for every
UeC(T) the cocycle pS™ + ¢S + ... 4+ pS™ + ¢ Uis ergodic. In Sect. 3 we show
that this property is not vacuous. Assuming that ¢ is S-strongly ergodic the
following transformations

T,=T,

T,=T,,ps50xps3x.. (XXZyXZyXZyX ooy WXV XV XVyX 1))

wosxosix . X XZyXZyX Ly X ooy WXV XV XVy X ...)D

are not isomorphic but that are factors of each other.

It is not hard to see that the concept of S-strongly ergodic cocycles is a new
invariant of the relative isomorphism [23]in the class of all ergodic Z,-cxtensions
over a fixed 7. The class of all ergodic Z,-extensions of a T'is especially studied in
case X is an adding machine and T'is an ergodic translation on X because if this is
the case we achieve some automatic sequences (see [1,11]) as examples of such
extensions. It has been noticed by Rudolph that Theorem 8§ [8] and Theorem 9[11]
combined with the Feldman result [3] say that it is impossible to find a countable,
complete set of Borel invariants (in sense of [3]) even for the relative isomorphism.
That is why we seek not real-valued new invariants.

The third reason is that we exhibit some relations between the ergodicity of the
cocycles of the form ¢S x ¢S x ... x ¢S™ and the structure of ergodic multi-
joinings of 7. From this point of view this paper can be regarded as the first step
to describe all ergodic n-joinings of group extensions of transformations with
discrete spectrum (or more generally of simple transformations [6]).

For further discussion we refer to the last section.

The author wishes to thank M.K. Mentzen for a lot of discussions on the
subject. Actually he first formulated Proposition 1 and proved it using other ideas
in discrete spectrum case and noticed that any cocycle ¢ with the trivial centralizer
was prime.

1. Notations

All automorphisms are assumed ergodic unless it states otherwise.

Let T:(X, %, 1)) be an automorphismon a Lebesgue space. By Sp(7T) we
denote the group of all eigenvalues of 7' Then by the centralizer C(T) of T we
mean the semigroup of all endomorphisms S: (X, 4, u)p such that ST=TS. The
centralizer is trivial whenever C(T)={T':ieZ}. A T-invariant sub-c-algebra
£ B (ie. T-' ¢ =¢)is said to be a factor of T (more precisely T:(X,Z, )0 is
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called afactor of T: (X, 4, u) 0 ). By J(T, T) we denote the space of all 2-joinings of
T, i.e. AeJ(T,T) if A is a TxT-invariant probability measure on %, ® %,,
B;=%,i=1,2 and 1| %, = u. A standard example of ergodic 2-joinings arises
from C(T). Namely ug defined by

s (AxB)=pu(AnS™ ' B), SeC(T)

belongs to J(T, T) (i is concentrated on the graph of the ). T is called 2-fold
simple [6,22] if every ergodic 2-joining is either u x 4 or lies on the graph of some
SeC(T). Another kind of 2-joinings (not necessarily ergodic) comes from the
factors of 7. Namely if 7 is a factor of # and / is a 2-joining of T on # then the
formula
(1) J(AxB)= [ E(A|£)xE(B|{)d}., A,Be#
XxX

defines a T x T-invariant measure on # ® # with right marginals called the
relatively independent extension of 2. Itis not hard to see how to define the space of
all n-joinings J(7,...,T), n=1,2,...,cc and also the definitions of the graph
joinings and the relatively independent extensions can be easily transfered. Any
transformation with discrete spectrum is 2-fold simple (in fact any ergodic n-
joining is an off-diagonal measure ug, s , S;eC(T)) [6]. If T is 2-fold simple
and does not have discrete spectrum then it is weakly mixing [6].

Let G be a compact, abelian, metric group with the Haar measure yg;. Let
@: X — Gbemeasurable (i.c. ¢ is a G-cocycle, if G = Z, pis simply called a cocycle).
Then the automorphism

T,:(XxG, 1))  [A=pXpg
1,(x.2)=(Tx,0(x)+g)
is called a G-extension of T. g is said to be ergodic if T, is ergodic. It turns out that

@ is ergodic iff whenever y€G (the character group of G) and f: X — S is
measurable satisfy
f(Ix) _

@ e =100

then y =1. [17]

Let us observe that the automorphisms o,, o,(x,/4)=(x,h+g) belong to
C(T,). We say that ¢ has the trivial centralizer whenever C(T,) = {(T,)"o,:neZ,
geG}. Also, the sub-g-algebra {4 x G: A€%} is T,-invariant (this factor is iso-
morphic to T). By abuse of the notations we use the letter 4 to denote the factor.
A cocycle g is said to be prime if the only proper factors of T, are % and the factors
of 4.

Assume that 7T is 2-fold simple. When consider T with discrete spectrum we
claim that ¢ is ergodic. If T'is weakly mixing we require that ¢ is weakly mixing as
well. Assume that SeC (T,). Then there are f: X — G measurable, v a continuous
epimorphism of ¢ and Se C (T) such that

€) S(x.8)=(Sx, [(x) +v(2) = S, (x.2)
4) S+ Sx)=f(Tx)+v(p(x)) (see[9,15]).
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If (4) holds then we say that S can be lifted to the centralizer of T, (i.¢. there is S
defined by (3) such that the action of S on % coincides with the actlon of §).If Sis
alifting of S, then § 0,801s, geG. pis called 2-simple if for every ergodic 2-joining
LreJ(T,, T,) either
A=jxg or A=jg or

/.= [ig (i.e. 4 is the relatively independent extension of an off-diagonal measure
us). If 1eJ(T,,...,T,) then by 7. we denote the projection of 1 on Z® ... &
(i.e. 1eJ(T,.. T)). We call ¢ simple with respect to S, Se C(T) as soon as for
every i; <i, <...<i,and for every Ue C(T) such that US’, je Z cannot be lifted
to C(T,), the relatively independent extension figu . gw y Of the off-diagonal
measure pgh g 17 18 ergodic.

.....

2. Z,-Cocycles, Joinings and Product Cocycles

From now on we assume that G = Z, . Having T'to be 2-fold simple we observe the
following

Lemma 1. Letp: X — Z, be ergodic (weakly mixing ). Then the relatively independ-
ent extension fig of ug is ergodic iff the product cocycle px 9S: X—>Z,%xZ, is
ergodic (i.e. T, s is ergodic).

Proof. Consider T, ,5: (X X Zyx Z,, pXv,xv,)) and the measurable map f:
XX Zyx Zy = (XX Zy) x (X X Zy), f(x,0,)) = (x,1,Sx,)). Then (T, xT,) f=/T, IPX‘PS
which implies that the dynamical systems (T, ,5, X V5 X vz) and (T,xT,,A)
where A is the image of uxv, xv, via f are isomorphic. This is an immediate
observation that A is just the relatively independent extension of ug. [

Proposition 1. Every ergodic (weakly mixing) Z,-cocycle is 2-simple.

Proof. First, assume that T is weakly mixing and let AeJ(T,,, T,) be ergodic. If
7 = u x u then it is well-known that A = /i x fi [6]. Therefore suppose that 1 = ug,
SeC(T). Consider the product cocycle ¢ x ¢ S. If this cocycle is ergodic then by
Lemma 1 we achieve that fig is ergodic. Assume this is not the case. Then in view of
(2) we get

) ST
J ()
€25, [ X— S'ismeasurable. Hence f2 (Tx)/f2 (x) = 1 and by the ergodicity of
T f?is constant. Thus £ gets either two values, say +1, or is constant. In both
cases (5) can be rewrtitten as

STX)+f(x)=0(x)+9(Sx)

for some measurable f: X —» Z, (if y; = 1 ory, = 1 then g is not ergodic). Hence, by
(4) S can be lifted to the centralizer of T,,. Then the following general lemma says
that 2 has to be on the graph of an §. [

=11 (@ (%)) x2(9(Sx)),
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Lemma 2. Let T be 2-fold simple and assume that ¢: X — G is ergodic (weakly
mixing). Assume that A J(T,, T,) is ergodic and . = pig and besides that S can be
lifted to the centralizer of T,. Then .= fi for some lifting S of S.

Proof. Consider 1eJ(T,, T,) which is ergodic and 2 = ug. Then 1 is concentrated
on the set C={(x,Sx,8,,8,):x€X, g,,2,€G }. Now, S can be lifted, so the
formula (4) holds. Denote S = S;., and observe that the support of ug is the
set {(x, Sx.g1. /(1) +0(21)): XX, £,€G} = {((5,81). S, (%.81): (x:2) X X G}
Consider the following measurable map £:C—G, &(x,Sx,2,,8:.)=/(x)
+v(g)—g,. It follows from (4) that &(T,x7T,(x,Sx,g,,8:)=f(Tx)
+0(@(x) —(Sx)+v(g) — g = () +v(g) —g =< (x,5x,8,,8,). There-
fore £isa.e. A constant. In other words f(x) 4+ v (g;) — g, = go Aa.c. It implies that
the support of A is {(x,Sx,g,,f(x)+v(g,)-—g):x€X, g eG} which is the
support of fg, . U

Proposition 1 says that the structure of 2-joinings is determined by the
structure of C(T,,). However 2-joinings determine the structure of factors. Hence,
not surprisingly, the structure of factors arises from the centralizer of 7,,. Let T be
2-fold simple. Assume that £ < 4 is a factor and let

H({)={SeC(T):(VAe/) SA=A4}.
Thus H (/) is a subgroup of the centralizer of 7. Conversely, if H< C(T), then
((H)={AeB:(VSeH) SA=A}

defines a factor. In [22] Veech proved that if £ is a factor of # then there is a
compact group H < C(T) such that

(6) /=¢(H)={(H(/))
(see also [6]).

Proposition 2 (Veech theorem). If ¢ is ergodic (weakly mixing) Z,-cocycle and if
£ < 4 is a factor which is not a factor of B then there exists a compact subgroup
H < C(T,) such that (6) holds.

Proof. Let{ beafactor of Z. Consider the relatively independent extension of the
diagonal measure on ¢ (see (1))

) ax,A(AxB)= [ E|t)  E@BI¢) da.
XxZ,

This measure need not be ergodic, so

®) Ax A= dv().

where J¢ denotes the set of all ergodic 2-joinings of T, and v is a probability
measure on J°. However the correspondence C(7, )5S > jigeJ¢ defines a Borel
embedding (see the proof of Theorem 1.8.2 in [6]), therefore (8) can be rewritten as

Axgfi= | fsdvS)+ [ gdv(Qy)
c(T,) JNC(T,)
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Ifux,u= [ [fsdv(S)then the proof of Veech result [22] (see also [6]) says that
(T,

our assertior(l qul)lolds. Suppose that in the ergodic decomposition (8) there is an

ergodic 2—joining which is not on the graph of any S C (7). Then by Proposition 1

this joining is 4, for some Soe C(T). In view of (7), (8) it follows that Aet iff

I, (AxA%)=0 v a.e. In particular if e/ then ds, (Ax A°)=0. The latter

condition forces A4 to belong to 4.

Corollary 1. If the centralizer of ¢ is trivial then ¢ is prime. O

2.1. Remark on Factors of Z,-Extension of Adding Machines

The first intriguing question we intend to answer is whether or not each factor of a
Z,-extension is canonical (i.e. different 7 -invariant sub-g-algebras should lead to
nonisomorphic factors). We will consider the following case T: (X, %, u) 0, Xisa
group of ni-adic numbers, (i.e. X ={(5,81,5,,...):055,52,—13}, Ag=ny,
A, =n,/n,_,, Tistherotationon1 = (1,0,0, ...)). In addition we will assume that ¢
has partly continuous spectrum and that T, is a factor of T, : (X" x Z,, 1) where

= T'x T, .(We recall here that each factor of a Z,-extension of a transformation
with discrete spectrum is again a Z,-extension of another transformation with
discrete spectrum). We assert that

(9) T(;,r - Tq, X Tl

(in other words T, is a direct factor of T,). Indeed T, is ergodic. Therefore 7'x T
is ergodic, whence T,x T is ergodic since Sp(T)=Sp(7,) (¢ has partly
continuous spectrum). Moreover T, has both T, and T; as factors. We conclude
that T, has T, x T} as a factor because in fact 7, and 7, are disjoint [4]. Hence (9)
holds. Thus if we intend to classify all Z,-extensions of adding machines we ought
to classify all prime cocycles. These cocycles can arise from Corollary 1 (see [10]),
but this is not the only reason for ¢ to be prime. In Sect. 3 we exhibit a rigid Z,-
extension (of an adding machine) which is prime.

Assuming that (9) holds we answer the question when 7, is a canonical factor
of T, . Let us notice that if 7, is a canonical factor of T, then

(10) C(T,xT;)=C(T,)x C(Ty)
holds. First of all we divide C(T) into 3 mutually disjoint sets
C(T)y=C (T C(TuC(T),

C,(T)={S:¢+ ¢S is not ergodic},
C,(T)={S:9+ ¢S is ergodic and has discrete spectrum},
C3(T)={S:¢+ ¢S is ergodic and has partly continuous spectrumj}.

Notice that C; (T)) is precisely the set of all S”s which lift to C(T,,). We prove that
(10) holds if C,(T) = 0. Indeed, assume that Sx S;eC (T x Tl) =C(T)x C(Ty)
can be lifted to the centralizer of T,x Ty =(TxT,); where @ (x, x;) = ¢ (x). Then

GEXS)+d=+f(TxTy)
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for some cocycle f: X' x X, - Z,. This equality means that (7'x T ) 5(sxs,)+ 518 DOt
ergodic or that 7/, ¢ x T} isnot ergodic. There are two possibilities either 7, , ,¢is
not ergodic or T¢+¢S is ergodic but Sp(7T, ,5) " Sp(Ty)3a=+1. The former
condition says that SeC, (T), so S can be lifted to C(7T,,). The latter says that
Se C, (T) because otherwise Sp(7,, ,5) = Sp(T).

Let us notice that Veech Theorem (combined with the analysis in [6]) shows
that a factor £ of T, is canonical iff S~ ¢ =1 forevery Se C(T,) iff every compact
subgroup H = C(T,) is normal. Therefore there is only one reason for £ not to be
canonical. Namely if £ has partly continuous spectrum and

UH({¢) U 's6S  for some SeH(/)

then U/ =%/ although these two factors are isomorphic (we recall that
o(x,0)=(x,i+1)).
In [13] the authors raised the following question. Is the formula

(11) C(Ux U= C(U)x C(U)

valid whenever U L U’ (U is disjoint from U’)? Although this is not the case, we
will deal with the problem for U= T, and U’ = T, where T'and 7" have discrete
spectra, , ¢ are cocycles and T, x T, is ergodic to achieve some criterion of the
validity of (11).

Proposition 3. For U and U’ as above the formula (11) holds as soon as the sets
C,(T) and C,(T") are empty.

Proof’s sketch. We see that T, x T, =(TxT'),«, = W. Then all W-invariant
sub-g-algebras £ o # ® % with 2-point fibers over Z R # are

oo {(x,0,x,0)~(x,1,x,0)},
oy o {(x, L, x,0)~ (x,i,x', 1)},
‘52{3 g {(xa i, x’,j)~(x,i+1,x',j+1)}

corresponding to T, x T", Tx Ty, (T'x T"), ., respectively. Let =8, x $,eC
(IT'xT") be lifted to C(T,xT, ) Thus S can only permute .7, &lz, oy If
So,=s,,So,=d, then S S x §, since C(T,xT")=C(T,)xC(T") as
we have observed earlier. If $.o/, = then T'x T, and T,x T' are isomorphic
which means that 7'x T, has T, x T as a factor (T 1T, )whlch is impossible.
Finally if § o/, = /5, S&/z = &Iz then (T'xT"),and (T x T’) are isomorphic
via a lifting S SO

@oxo

G S xS+ @+ )=w(TxT)+y

which implies that (T'x 7”),s, ., is isomorphic to (Tx 7"), . In other words
T,s, +,* T isisomorphic to Tx T, .Since C, (T) = 0, either T, S, +¢IS ergodic and
then T ,,1 T, and a contradlctlon asincase S, =, or T,s, +,1s not ergodic.

Then S, can be lifted. But S, can be lifted as well since S.o/, =.o/,. [

Remark. The partition {C,(T), C,(T), C5(T)} of C(T) is an invariant of the
relative isomorphism. It would be interesting to know what kind of cocycles
admits C, (T) = . We state without a proof the following result as a sample.
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Propositiond. If ¢: X — Z, is a cocycle generated by a continuous substitution on
two symbols of constant length [2] then C,(T)=90. O

3. An Example of an S-Strongly Ergodic Cocycle

We start with T': (X, %, 1)) , where X is the group of n,-adic numbers,
AL=2""141,120.

In other words X = {7 = (vy,Vy,...,0,,..): 020, £ A, — 1} and T=0 ¢, -
Denoting

Dy={ieX:v;=0 for i=0,1,...,1}
we get a T-tower of height n,
D" ={Dg, D¥,...,Dw_}, T' D= D! mod n,.
Since X is a compact, monothetic group and T is an ergodic translation

C(T)={o, teX}=X.

Let us consider the action of S=0¢; on D™ and D™*}

n __Tne—1 nn
Dn:—l‘Tt DOt

n -2
Dn:—Z—‘Tt D'(l)t

Dy y=T""3 Dy

n — Tn:—4 nn
Dy_o=T"""Dg

D= T DY

Dy=T>Dy

Dy =T Dy

Dy=TDy

Dy =T" Dy

/

Fig. 1

Definition of ¢. The definition will be inductive. At the #-th step our cocycle will
be defined on Dg,...,Dy_, and cannot be defined on Dyi_;. Moreover
@| DI =const=ae{0,1}, i=0,...,n,—2. Now we define the passage into the
(¢t + 1)-th step.
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n—1

First of all we define a, ., (=0 or 1) so that ) a!=1. Then we put
i=0

a;t~1 S=|=2t+1—|-1,2t+2+1
agl =Dl = 1—a. s=2""1 41
undefined s=22 41
(s=1,2,...,2"2 +1).

Agree to call this fat level in Fig. 3 an error (because the value of g on D}?_ | is
near constant and equal to aj,, _, in spite of the value of p on D441 1), -1 ). Thisis
a correct definition of a cocycle ¢. Let us observe that our cocycle is “constant” on
each level DJ* because for i <n,—1 it is constant indeed and for i=n, — 1 the
(relative) measure of the errors is less than 2/ *? — 0. Hence ¢| D7}y is also

almost constant. This is an immediate computation thatin fact | Dy +: _, defines
another error for the #th step.

Definition of S. We take §=o;, where 7= (v;);5¢, v; =[4;/i], i > 0. We observe
that the following holds: given k

(12) SE= W )0, P =kv; forizi,.

Keane’s criterion. We will need some criterion concerning ergodicity of some
cocycles. Let T: (X, %, 1)) be an n,-adic machine and let ¢ : X — Z, be a cocycle
such that ¢|Df*=a}=const i=0,...,n,—2, t 2 0. Assume that the number of
errors on Dy _, divided by 4, tends to zero. Look at the top of D™ and pass to the
(t+ 1)-th tower.

We group the errors into pairs (see Fig. 4). Then 4, is the number of places
between errors including errors.

Proposition 5. (Keane’s criterion). ¢ is ergodic iff
Y Al =400

(=0

Proof. The proof follows from the observation that such a cocycle determines an
almost periodic point we {0,1}* and, besides, that ¢ is ergodic iff w is strictly
transitive (for details see [11]). Then we use Lemma 3 from [7]. O

We intend to argue that ¢ is S-strongly ergodic, i.e. that
pSh+ ...+ oS+ U

(i; <...<i, k=2 UeC(D))isergodic. First we prove that y = ¢ S' + ... + ¢ S
is ergodic whenever 0 < iy < ... <i,. Let us look at the passage from the #-th step
into the (#+1)-th step for w.

We see that | D}*is constant except for k levels, sayj, , ..., j, . Ateach D’ there are
two errors. The “distance” (i.e. the number of columns) between the errors in D},

1,1,1,4,1,0,1,1,0,1,1,1,0,0,1,1,1,1,0,1,1,1,1 .1 1[1] A=6

Fig. 4
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>t =t
NN\ bt

ne~ 1

t
no—2

b,

b

J2

b

J1

b

Fig.5

and Dj, is at least # and moreover the distance between these errors and the
2'"1 4 1-th (or 2'*? 4 1-th) column is at most /¢ (these facts are a consequence of
(12)), where I = maxi,.

Now we intend to define a new cocycle 7 satisfying the assumptions of Keane’s
Criterion and, besides, w + is not ergodic (i.e. T, and T, are relatively
isomorphic).

Definition of . The definition is inductive. At each step ¢ ¥|D!=ci,

i=0,...,n,—2 and y is not defined on D} _, . First we define ¢}, _; so that
ne—1 ne—1
(13) Y ci= ) b
i=0 i=0
Then we put
¢n, 1 if there is no error in the column §<Ai4q
cihli= {1—¢, -, otherwise 5§ <At
undefined §=Aers

w and \J are relatively isomorphic. Consider the passage from the ¢-th step into the
(t+1)-th step for w + .
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t
dn:— 1

d;

J1

Fig. 6

We see that w + 7 is almost constant on each level DY, Moreover

ne—1

(14) Y di=0

since (13) holds. Let u, denote the number of columns with errors. Then u, =2k
and moreover in any such a column there are even numbers of errors (either no
errors or precisely two errors). Consider T, , ;: (X' x Z,, 1)) and the following
sequence of sets

ne—1

C,= 'Uo DEx(dy+...+d_,).

Then an immediate computation shows that
(@) acy=1y2,
(i) (T, ., CA C)=>0,
(iii) z;)ﬁ(ct+1 AC)< + 0.

Hence {C,} is a Cauchy sequence and C =1im C, is T, , , invariant, whence 7, . 7
cannot be ergodic.

Cocycles pSU + ... + ¢S are ergodic. Denote y = ¢ S** + ... + p** and consider
. It is enough to show that ¥ is ergodic. We divide Dji_, first into 4, pieces.
Then these pieces we group into ¢ groups A,, ..., 4, of consecutive picces (the last
group need not have [, , /] pieces). We observe that there is no possibility for two
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different errors to be in the same group 4, since i; < ... < i, and (12) holds. This
means that .
t
t_ -
A= =Ly 1/2¢.

l‘t

Since Y 1/2¢is divergent and Proposition 5 holds, i is ergodic and consequently
fz1
w is ergodic.

Cocycles pS" + ...+ ¢**+ U, k=2 are ergodic. It is enough to apply the
foregoing arguments because there is no possibility to destroy the divergency
Y. A,/4, using only two errors more (p U gives merely two new errors).
t=0

The proof that ¢ 1s S-strongly ergodic is now complete.

Because any cocycle ¢ is simple with respect to S as soon as it is S-strongly

ergodic, we get

Pr0p051t10n6 For the ¢ we have defmed the relatively independent extensions
fisi gy are ergodic whenever iy <...<i, and US’, je Z cannot be lifted to the
centralzzer of T,. [

The cocycle ¢ enjoys an additional property. Namely

Proposition 7. ¢ is rigid (i.e. T, weakly converges to the identity for some sequence
m,) and is prime.

The idea of the proof. The first part is obvious. To prove the second it is enough to
show that there is no nontrivial compact subgroup H < C(T) such that for every
UeH, U can belifted to the centralizer of T,,. However the arguments we just used
to prove that ¢ is S-strongly ergodic show thatif U = o, w = (w;);5, can be lifted,
then w;is “near” 0, 2, or 4,/2 (in the sense made precise by Keane’s Criterion). [J

4. A few Applications
4.1. Weakly Isomorphic Transformations that Are not Isomorphic

In this section we assume that T': (X, 4, ©) D has discrete spectrum and ¢ : X — Z,
is an S-strongly ergodic cocycle.
We will consider (ergodic) transformations of the form

(15) Tosixgsix . (XXZyXZyX o jhXVy XYy X 1) D

I; % i: Denote T,guygstx.. by T, i, . Let us notice that 7}, ;,  is a factor
of (15) whenever {jl,jz,...} {11,12,. .}. Indeed, the inclusion is equivalent
to say that there is an o:N D one-to-one such that j, =i,,. We define

O:(XXZyXZyX ooy WX V3 XV, X ...)D putting

O, 71,7,..) = (X, Fa(1ys To2)s o)
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Then 0 preserves the measure and 7}, ;0 =0T, ,,  .IfthercisanceZ such
that
then T;, ;,, .. and T; ,, . are isomorphic.

The point is that the composition of these two possibilities exhaustes all cases
of isomorphisms. Namely

Proposition 7. If T;, ;, and T} ;, . are isomorphic then there exist a permu-

tation g: N ) and an inieger c such that
Joego— = for every k=1.

Proof. AssumethatT; ;,  andT; , . areisomorphic. These automorphisms

areergodic Z, X Z, x ...-extensions of 7, so this isomorphism must be of the form
Up it (XX Zy X ZyX ooy XV XVy X 00)D

where UeC(T), fX—Z,xZ,x ... is measurable and v is a continuous
automorphism of Z,xZ, x ... (see [15]). Let us notice that f=(f;,/s,...),
fi: X—Z, is a cocycle and

17 =0T, T,...).

If v is a continuous automorphism of Z, x Z, x ... then v acts as an infinite
matrix [g;;];;, a;; = 0, 1, where the the i-th column [a;], = v (e;) = (0, ...,0,1,0,...).
Moreover in any row the number of 1’s is finite and '

(18) v(rl,rz,...)1i=2aijrj.
In view of (4) ]
f(xX)+0SixpS2x ... (Ux)=f(Tx)+v(pS"* x pS”x ...)(x).
Combining (17) and (18) we get
A +0(STUX) =f (T +p (8™ x) + ... +9(5™ x)]
L)+ 0(S2Ux) =£,(Tx) + [ (8™ 0) + ... + 9 (s™2 x)]

But these conditions mean that
U+ gonk‘x”_il + ...+ (/)‘S‘j’“s‘ﬁfi1
U+ (pS’jkgl’iz +o+ (DSjk(szz)_iz

are not ergodic. Since our cocycle is S-strongly ergodic, s; =5, =...=1. Then
pU+ S " gU s 2,
are not ergodic which means that 74"~ U=, §%* ™2 =1 can be lifted to

the centralizer of T,,. But C(7,,) is a group (every ergodic Z,-extension of a 2-fold
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simple map enjoys this property). Therefore ST g (gl T gy
= s TR TR TR oo be lifted to the centralizer of T. We have achieved that

jk(l”_il =jk§2)"‘ iz =...=cC
because S* can be lifted iff k = 0. Hence the proof is complete. []

Corollary 2. T ,,5. and Ty, are weakly isomorphic but they are not
isomorphic. [

Corollary 3. There exists an ergodic Z, x Z, X ...-extension T, of a transformation
with discrete spectrum T such that there is an Se C(T,) which is not invertible
(in particular h{(S) > 0).

Proof. TakeTj 5, . . Weseethat S(x,71,F5,...) =(Sx,7,,75...) (not invertible)
isin C(Ty 4 5, ) and A(S)=log2. T[]

From the proof of Proposition 7 we deduce the following

Corollary 4. If Ue C(T) then U can be lifted to the centralizer of T, ., . iff
() there is f: N one-to-one such that iy, —1i,=c,
(i) US™° can be lifted to the centralizer of T,. In particular all elements
Ue C(T') which can be lifted to C(T,) can also be lifted to C(T;, ;, ) andonly such
elements are invertible in C(T;, ,, ). O

4.2. A Transformation with the Centralizer to Be a Group
but with a Factor Whose Centralizer Is not a Group

We answer Newton question [14]. Consider “two-sided” version of the construc-
tion given in 4.1. If p is S-strongly ergodic then T'_,  ; , . isstill ergodic and the
centralizer of it can be computed from Corollary 4. But condition (i) of this
corollary says that f is in fact a permutation and therefore any element from
C(T . 101, )1sinvertible. However T; |, isafactorof T 4, and the
centralizer of the former automorphism is not a group.

4.3. Compact Rank Need not Imply that the Centralizer Is a Group

(For the definition of the rank we refer to [16], a transformation has the compact
rank if it is a d-limit of finite rank transformations). We answer Thouvenot’s
question stated in a conversation. Observe that the ¢ we constructed in Sect. 3
satisfies : 7, has rank 1, T, s has rank at most 2 - 2, T, , 5, 5> has rank at most
2°-3,.... Therefore T, “has compact rank because it is an inverse limit of
Tyrpsx . xpsr k21

xpSxpS2..

Remark. Although some of these constructions can be done using only Rudolph’s
machinery (see [19, 6, 12]), there is at least one advantage of our approach. All our
examples are loosely Bernoulli [LB] as ergodic group extensions of transfor-
mations with discrete spectra [16], (we recall here that it is still unknown whether
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T x T'is LB for Chacon transformation and whether Tis LB when T'is a Gaussian
automorphism with spectral measure concentrated on a Kronecker set).
Moreover using our special ¢ these examples enjoy even compact rank property.

5. Final Remarks

We raise some open question. Having Tand ¢: X - Z, forany i, <, <... <,
k =2 we define
CH (D)= {SeC(T):pS" + ...+ pS™ is not ergodic},

CP ., (T)={SeC(T):pS" + ...+ pS™
is ergodic with discrete spectrumj,

W (D) ={SeC(T):pS" +... + ¢ S*
is ergodic with partly continuous spectrum} .

We get a partition Ci1 ’’’’’ o= {Cl(ll,) s ik (T)7 Ci(12,)- bk (T)> Cl(i) ca iz (T)} of C(T)
This is an invariant of the relative isomorphism and ¢ and ¢ + 1 have this invariant
the same. Ts the sequence {C** %} a complete set of invariants of the relative
isomorphism up to ¢ + 1?7

We have been unable to decide whether for any T"and ergodic thereis Se C (1))
such that ¢ is S-strongly ergodic. In order to get such an S, first of all we need an S
such that for any k, S* cannot be lifted. Fortunately the set of such S’s has Haar
measure 1 (see [9]).

Another question is the following. Let A€ J(T,,, T,,,T,,) be such that fi5, 5,14 ]
is ergodic (i.e. S;S; ' cannot be lifted). Is then 4 = g, g, s, ergodic?

.....
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