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Summary. A new method for construction of transformations T~:(X,., .~;, 
/~i)), i =  1,2, that are factors of each other but that are not measure- 
theoretically isomorphic is provided. This method uses ergodic product 
cocycles of the form (0 o S i 'x  (0oSi2 x ..., where (o:X~Z2 is a cocycle, S 
belongs to the centralizer of T and T is an ergodic translation on a compact, 
monothetic group X. 

O. Introduction 

In [20] Sinai introduced a concept of weak isomorphism between ergodic 
transformations on a Lebesgue space. It has been unknown for some time whether 
this notion is strictly weaker then the measure-theoretic isomorphism. The first 
construction of two ergodic transformations that are factors of each other (i.e. 
weakly isomorphic) but that are not isomorphic was given in [18]. Then in 1978 
Rudolph developed theory of transformations having the minimal self-joining 
property [19]. His machinery applied to the Chacon transformation T: (X, ~,/~) 
[5] gives the following example of two nonisomorphic but weakly isomorphic 
transformations 

T I = T x T x . . . : ( X x X x  .... / l x ~ x  . . . ) )  

T 2 = v x T x T x . . . : ( Y x X x X x  ..., v x f t x / l x . . . ) )  

where r : (Y, t ' ,v ) )  is the factor of (Tx T, .~ |  obtained from the 
o--algebra f c N |  of the flip-invariant sets (i.e. Ae{' if f A = A ,  f (x ,y )  
= (y, x)). Recently Thouvenot [21] constructed new examples of nonisomorphic 
transformations that were weakly isomorphic. His method uses some special 
Gaussian processes. 

There are at least three movivations for this paper. The first purpose is to 
introduce some new method leading to some nontrivial examples in ergodic 
theory. This method uses merely the notion of ergodic transformation with 
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discrete spectrum T: (X,N,  At)) and a Z2-extension of it. More precisely, 
each ~0" X ~  Zz is called a cocycle whenever it is measurable. Then the automor- 
phism 

Y O : ( X X  2 2 ,  ~ , ~ ) )  

T o (x, i) = (Tx,  ~o (x) + i), 

where/7 = At x v2 (v2 (i) = 1/2, i=  0, 1), ~ is the corresponding product a-algebra, 
is called a Z2-extension of  T. By the centralizer C ( T )  of T we mean the set 
of all measure-preserving S: (X, ~ ,  At)) commuting with T. An ergodic cocycle 
~o: X ~ Z  2 is said to be strongly ergodic with respect to S, S ~ C ( T )  (shortly S- 
strongly ergodic), whenever for every i 1 < i 2 < ... < ik, k >  2 and for every 
U E C ( T )  the cocycle ~0S il + {0S i2 + ... + q)S i~ + ~0 Uis ergodic. In Sect. 3 we show 
that this property is not vacuous. Assuming that {0 is S-strongly ergodic the 
following transformations 

T 1 = Te•215215 "(Xx 2 2 X Z 2 x 2 2 x . . . ,  At x 1I 2 )< v 2 x v 2 x .. , ) ~  

T 2 = T~o• ..." ( X x  Z 2 • Z 2 • Z 2 • . . . ,  At • v 2 • v 2 • v 2 • . . . ) ~  

are not isomorphic but that are factors of each other. 
It is not hard to see that the concept of S-strongly ergodic cocycles is a new 

invariant of the relative isomorphism [23] in the class of all ergodic Z2-extensions 
over a fixed T. The class of all ergodic Za-extensions of a Tis especially studied in 
case X is an adding machine and T is an ergodic translation on X because if this is 
the case we achieve some automatic sequences (see [1, 11]) as examples of such 
extensions. It has been noticed by Rudolph that Theorem 8 [8] and Theorem 9 [11] 
combined with the Feldman result [3] say that it is impossible to find a countable, 
complete set of Borel invariants (in sense of [3]) even for the relative isomorphism. 
That is why we seek not real-valued new invariants. 

The third reason is that we exhibit some relations between the ergodicity of the 
cocycles of the form fpS zl x (aS z2 x ... x rpS ~ and the structure of ergodic multi- 
joinings of T o . From this point of view this paper can be regarded as the first step 
to describe all ergodic n-joinings of group extensions of transformations with 
discrete spectrum (or more generally of simple transformations [6]). 

For further discussion we refer to the last section. 
The author wishes to thank M.K.  Mentzen for a lot of discussions on the 

subject, Actually he first formulated Proposition i and proved it using other ideas 
in discrete spectrum case and noticed that any cocycle ~0 with the trivial centralizer 
was prime. 

1. Notations 

All automorphisms are assumed ergodic unless it states otherwise. 
Let T: (X, N', At)) be an automorphismon a Lebesgue space. By Sp(T )  we 

denote the group of all eigenvalues of T. Then by the centralizer C (T) of T we 
mean the semigroup of all endomorphisms S: (X, B, /z))  such that S T  = TS. The 
centralizer is trivial whenever C ( T )  = { T i : i ~ Z } .  A T-invariant sub-a-algebra 
E ~ N (i.e. T -  1 • = ()  is said to be a factor of  T (more precisely T: (X, f ,  # ) )  is 
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called a factor of T: (X, ~ ,  #) ~ ). By J(T, T) we denote the space of all 2-joinings of 
T, i.e. 2~J(T,T) if 2 is a TxT-invariant  probability measure on ~ 1 |  
N i = ~ ,  i = 1,2 and 2]N~ = #. A standard example of ergodic 2-joinings arises 
from C(T). Namely #s defined by 

/ts(A xB) =#(AmS-1B) ,  S~C(T) 

belongs to J(T, T) (#s is concentrated on the graph of the S). T is called 2-fold 
simple [6, 22] if every ergodic 2-joining is either # x # or lies on the graph of some 
S~C(T). Another kind of 2-joinings (not necessarily ergodic) comes from the 
factors of T. Namely if # is a factor of ~ and 2 is a 2-joining of T on # then the 
formula 

(1) 2 ( A x B ) =  ~ E(AIf)xE(BJ#)d2,  A, B6~  
XxX 

defines a T x T-invariant measure on ~ | .~ with right marginals called the 
relatively independent extension of 2. It is not hard to see how to define the space of 
all n-joinings J(T,...,  T), n = 1, 2 , . . . ,  ov and also the definitions of the graph 
joinings and the relatively independent extensions can be easily transfered. Any 
transformation with discrete spectrum is 2-fold simple (in fact any ergodic n- 
joining is an off-diagonal measure #sl ..... s,, Si~C(T)) [6]. If  T is 2-fold simple 
and does not have discrete spectrum then it is weakly mixing [6]. 

Let G be a compact, abelian, metric group with the Haar measure #G. Let 
~0 : X ~  G be measurable (i. e. (p is a G-cocycle, i fG = Z 2 q) is simply called a cocycle). 
Then the automorphism 

r :(xx G, 

(x, g) = (:rx, (x) +g) 

is called a G-extension ofT. ~ is said to be ergodic if T~, is ergodic. It turns out that 

~o is ergodic iff whenever z ~ G  (the character group of G) and f:  X---, S 1 is 
measurable satisfy 

(2) f (Tx)  
f ( x )  - z (x)) 

then z = l. [17] 

Let us observe that the automorphisms ao, ag(x,h)= (x,h+g) belong to 
C (T~). We say that (o has the trivial centralizer whenever C (T~) = {(T~)" ag :n ~ Z, 
gE G}. Also, the sub-G-algebra {A x G:A ~ }  is T~-invariant (this factor is iso- 
morphic to T). By abuse of the notations we use the letter .~ to denote the factor. 
A cocycle ~o is said to beprime if the only proper factors of T~ are # and the factors 
of ~ .  

Assume that T is 2-fold simple. When consider T with discrete spectrum we 
claim that ~0 is ergodic. If  Tis weakly mixing we require that q) is weakly mixing as 
well. Assume that ~r C(T~o). Then there are f :  X ~  G measurable, v a continuous 
epimorphism of G and S~C(T) such that 

(3) # (x, g) = (Sx ,  f (x) + v (g)) = (x, g) 

(4) f(x)  + ~ (Sx) =f(Tx)  + v (~o (x)) (see [9, 15]). 



494 M. Lemaficzyk 

If  (4) holds then we say that S can be lifted to the centralizer of T o (i.e. there is 
defined by (3) such that the action of S on N coincides with the action of S). If  S is 
a lifting of S, then S % so is, g e G. ~0 is called 2-simple if for every ergodic 2-joining 
)oeJ (T~, T~o) either 

,Z =/2 x fi or ~ = fis or 

2 =/2 s (i. e. s is the relatively independent extension of an off-diagonal measure 
#s). If 2~J(T~, . . . ,To)  then by 2 we denote the projection of i on N |  ... @ ~  
(i.e. 2eJ (T ,  ...,  T)). We call ~ simple with respect to S, S ~ C ( T )  as soon as for 
every i~ < i2 < ... < ik and for every U~C(T)  such that US~, j~Zcannot  be lifted 
to C(To), the relatively independent extension fis%...,s~v of the off-diagonal 
measure #s%..., s% v is ergodic. 

2. Zz-Cocycles, Joinings and Product Cocycles 

From now on we assume that G = Z2. Having Tto be 2-fold simple we observe the 
following 

Lemma 1. Let ~o ." X-+ Z2 be ergodic (weakly mixing). Then the relatively independ- 
ent extension fis of  #s is ergodic iff the product cocycle (o x ~oS : X + Z 2 x Z 2 is 
ergodic (i.e. T~• is ergodic). 

Proof. Consider T~• (Xx Z 2 N Z2,  # N v 2 x v2) ~ and the measurable map f :  
X )< 22 x 22 ---4- (X M 22) x (X x 22)  , f ( x ,  i,j) -= (x, i, Sx,j). Then (T~o x T~o ) f=fT~o• 
which implies that the dynamical systems (T~o• # x v2 x v2) and (T o x Te,2) 
where s is the image of # x v2 x v2 via f are isomorphic. This is an immediate 
observation that 2 is just the relatively independent extension of #s. [] 

Proposition 1. Every ergodic (weakly mixing) Z2-cocycle is 2-simple. 

Proof. First, assume that Tis weakly mixing and let 2~J(T~o, T~) be ergodic. If 
= # x # then it is well-known that 2 = f ix fi [6]. Therefore suppose that 2 = / e ,  

S t  C(T).  Consider the product cocycle (0 x (0S. If  this cocycle is ergodic then by 
Lemma 1 we achieve that/ i  s is ergodic. Assume this is not the case. Then in view of 
(2) we get 

f ( Tx) 
(5) f ( x )  - zl  (~o(x)) z2 (e (Sx)), 

Xi e 2:2, j7: X--+ S 1 is measurable. Hence 7 2 ( T x ) ~ 2  (x) = ~[ and by the ergodicity of 
T s  is constant. Thus f g e t s  either two values, say • 1, or is constant. In both 
cases (5) can be rewrtitten as 

f ( r x )  § f (x )  = (o (x) § q) (Sx) 

for some measurable f :  X-~ Z 2 (if Z1 = 1 orz2 ~ -  1 then (p is not ergodic). Hence, by 
(4) S can be lifted to the centralizer ofT~o. Then the following general lemma says 
that 2 has to be on the graph of an S. [] 
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Lemma 2. Let T be 2-fold simple and assume that (o : X ~  G is ergodic (weakly 
mixing). Assume that 2 ~ J (To, To) is ergodic and ~ =/l s and besides that S can be 
lifted to the centralizer of T o . Then 2 =fixfor some lifting S of S. 

Proof. Consider 2eJ(To, To) which is ergodic and 7~ = / l  s . Then 2 is concentrated 
on the set C =  {(x, Sx, g~,gz):X~X, gi ,gzEG}.  Now, S can be lifted, so the 
formula (4) holds. Denote S = @,,  and observe that the support of / ix  is the 
set {(x, Sx, gi, f(x)q-v (gi)):xEX, g~ e G} = {((x, ga), Sf, v (X, gl)): (X, g~)eXx G}. 
Consider the following measurable map ~:C--*G, ~(x, Sx, g~,g2)=f(x)  
+ v ( g l ) - g  2. It follows from (4) that ~(T~xTo(x,  Sx, g~ ,g2) )=f (Tx  ) 
+ v ( f o ( x ) ) - ( o ( S x ) + v ( g ~ ) - g 2 = f ( x ) + v ( g ~ ) - g 2 = ~ ( x ,  Sx, g~,g2). There- 
fore ~ is a. e. 2 constant. In other words f (x )  + v (g~) - g2 = go 2 a. e. It implies that 
the support of 2 is {(x, Sx, g l , f ( x ) + v ( g l ) - g o ) : x e X ,  g leG } which is the 
support of//g~_oo~. [] 

Proposition l says that the structure of 2-joinings is determined by the 
structure of C (T o). However 2-j oinings determine the structure of factors. Hence, 
not surprisingly, the structure of factors arises from the centralizer of T o . Let Tbe 
2-fold simple. Assume that d ~ ~ is a factor and let 

g ( d ) =  {SeC(T) : (VA6d)  SA = A } .  

Thus H(d)  is a subgroup of the centralizer of T. Conversely, if H c C(T), then 

d(H)= { A E ~ : ( V S e H )  S A =  A} 

defines a factor. In [22] Veech proved that if d is a factor of .~ then there is a 
compact group H c C(T) such that 

(6) d = d (H) = d (H(d)) 

(see also [6]). 

Proposition 2 (Veech theorem). I f  g) is ergodic (weakly mixing) Z2-eoeycle and if 
d ~ ~ is a factor which is not a factor o f ~  then there exists a compact subgroup 
H ~ C(To) such that (6) holds. 

Proof. Let d be a factor o f ~ .  Consider the relatively independent extension of the 
diagonal measure on # (see (1)) 

(7) f i x t / / ( / l x / l ) =  ~ E ( / l l f )  �9 E(/?[d) dfi. 
Xx Z2 

This measure need not be ergodic, so 

(8) p = t P, dv 
jr 

where je  denotes the set of all ergodic 2-joinings of To and v is a probability 
measure on JL However the correspondence C (T o) ~ S ~ / / ~  E je  defines a B orel 
embedding (see the proof of  Theorem 1.8.2 in [6]), therefore (8) can be rewritten as 

px p= y &dv(d)+ j 
c(G) J~\c(L,) 
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If  # x e/~ = ~ /~X dv (S) then the proof of Veech result [22] (see also [6]) says that 
C(T~,) 

our assertion holds. Suppose that in the ergodic decomposition (8) there is an 
ergodic 2-joining which is not on the graph of any Se C (T). Then by Proposition 1 
this joining is fiso for some SoeC(T) .  In view of (7), (8) it follows that Ae~  iff 
# ~ ( A x A ~ ) = 0  v a.e. In particular if A~E then fiso(AXAC)=O. The latter 
condition forces A to belong to N. 

Corollary 1. I f  the centralizer of ~o is trivial then (o is prime. [] 

2.1. Remark on Factors of  Z2-Extension of  Adding Machines 

The first intriguing question we intend to answer is whether or not each factor of a 
Z2-extension is canonical (i. e. different To-invariant sub-a-algebras should lead to 
nonisomorphic factors). We will consider the following case T: (J(, ~ , / t ) ) ,  J(is a 
group of ncadic numbers, (i.e. I / =  {(So, Sa, s2,. . .)  : 0 < si < 2i - 1 }, 2o = no, 
2t = n / n t -  t, Tis the rotation on 1 = (1,0, 0,. . .  )). In addition we will assume that r 
has partly continuous spectrum and that Te is a factor of T o, : (X' x Z2,/~') where 
T' = T x T1. (We recall here that each factor o fa  Z2-extension of a transformation 
with discrete spectrum is again a Z2-extension of another transformation with 
discrete spectrum). We assert that 

(9) r•, = T~ x r l  

(in other words T o is a direct factor of T'e,). Indeed T~, is ergodic. Therefore T x T 1 
is ergodic, whence T o x T t is ergodic since S p ( r ) =  Sp(To) (p has partly 
continuous spectrum). Moreover T~, has both T o and T1 as factors. We conclude 
that T~, has T o x Tt as a factor because in fact T o and T1 are disjoint [4]. Hence (9) 
holds. Thus if we intend to classify all Z2-extensions of adding machines we ought 
to classify all prime cocycles. These cocycles can arise from Corollary 1 (see [10]), 
but this is not the only reason for (0 to be prime. In Sect. 3 we exhibit a rigid Zz- 
extension (of an adding machine) which is prime. 

Assuming that (9) holds we answer the question when T o is a canonical factor 
of T~,. Let us notice that if T o is a canonical factor of T~, then 

(10) C ( T  O x r l )  = C(T~o ) x C(T1)  

holds. First of all we divide C(T) into 3 mutually disjoint sets 

C(T) = CI (T)~ C 2 (T)w C a (r ) ,  

Ct (T) = {S: ~0 + ~0S is not ergodic}, 
C2 ( T ) =  {S: ~p + ~0S is ergodic and has discrete spectrum}, 
C 3 (T) = {S: ~o + ~0S is ergodic and has partly continuous spectrum}. 

Notice that C1 (T) is precisely the set of all S's which lift to C(To). We prove that 
(10) holds if C 2 (T) = ~). Indeed, assume that S x S 1 ~ C (Tx T t ) =  C (T)x  C (Tt) 
can be lifted to the centralizer of T~ x T1 = ( r x  T1) 0, where 0 (x, xt)  = q~ (x). Then 

(~(Sx St) + (P = f  + f ( T x  7"1) 
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for some cocycle f :  X x  X~ - ,Z= .  This equality means that ( T x  T~)~(s• ~ is not 
ergodic or that Te + ~s x T 1 is not  ergodic. There are two possibilities either T~ + ~s is 
not ergodic or Te+~s is ergodic but Sp(T~+~s)n  S p ( T 1 ) ~  4 = 1. The former 
condition says that S ~ C  1 (T), so S can be lifted to C(To). The latter says that 
S t  C2 (T) because otherwise Sp (Tq, + ~s) = Sp (T). 

Let us notice that Veech Theorem (combined with the analysis in [6]) shows 
that a factor f o f T  o is canonical i f f  S - 1 d = d for  every S~ C ( To) i f f  every compact 
subgroup H c C (To) is normal. Therefore there is only one reason for ( not to be 
canonical. Namely if f has partly continuous spectrum and 

U H ( f )  O - l ~ a S  for some S ~ H ( f )  

then U#=t=f although these two factors are isomorphic (we recall that 
(x, 0 = (x, i + 1)). 

In [13] the authors raised the following question. Is the formula 

(11) c ( u  • u ' )  = c ( u )  • c ( ~ ' )  

valid whenever UZ U' (U is disjoint from U')? Although this is not the case, we 
will deal with the problem for U = Te and U' = T O, where T and T' have discrete 
spectra, ~0, ~0' are cocycles and Te x T 0, is ergodic to achieve some criterion of  the 
validity of  (11). 

Proposition 3. For U and U' as above the formula (11) holds as soon as the sets 
C 2 (T) and C2 (T ' )  are empty. 

Proof 's  sketch. We see that T o x T 0, = ( T x  T')o• = W. Then all W-invariant 
sub-a-algebras E ~ N | ~ with 2-point fibers over ~ | N are 

~ x  +-+ { ( x , O , x ' , i ) ~ ( x ,  J ,x ' , i )} ,  

sea ~ {(x, i, x', 0) ~ (x, i, x', 1)}, 

~r +-+ { ( x , i , x ' , j ) ~ ( x , i +  l , x ' , j +  l)} 

corresponding to T o x T', T x  T0,, ( T x  T')o+ o, respectively. Let S =  S 1 x S z ~ C  
( T x  T')  be lifted to C(T~ x T~,). Thus S can only permute agl ,  ~42, sg3. If  
S ~  = ,M 1 , S d 2  = d 2  then S = S 1 x S 2 since C ( T  o x T')  = C(To) x C(T ' )  as 
we have observed earlier. I f S d a  = ~ 2  then T x  T 0. and T o x T' are isomorphic 
which means that T x  T 0, has T o x T 0, as a factor ( T o l  TOO which is impossible. 
Finally i f S d l  = d 3 ,  S ~ 2  = sr then (T•  T')o and ( T x  T')o• o, are isomorphic 
via a lifting S, so 

~(s1 x s=) + (~0 + ~ ' )  = ~, (Tx ;r,) + ~, 

which implies that ( T x  T')fs,+~ is isomorphic to ( T x  T ' ) r  In other words 
T~s 1 +f x T' is isomorphic to T x  TO,. Since C 2 (T) = O, either T~s ' +e is ergodic and 
then T~s I +~ l T O, and a contradiction as in case S 1 = d 2  or Tfs ~ +~ is not ergodic. 
Then S 1 can be lifted. But S 2 can be lifted as well since Sag'; = sg 2 . [] 

Remark. The partition {C1 (T), C2 (T), Cs (T)} of  C(T)  is an invariant of the 
relative isomorphism. It would be interesting to know what kind of  cocycles 
admits C2 (T) = 0. We state without a p roof  the following result as a sample. 
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Proposition 4. l f  ~o : X - *  Z 2 is a cocycle generated by a continuous substitution on 
two symbols o f  constant length [2] then C2 (T) = O. [] 

3. An Example of an S-Strongly Ergodic Cocycle 

We start with T: (X, ~ , /~) )~  where J; is the group of  n<adic numbers, 

At= 2t+1 + 1, t > 0 .  

In other words X = {f = (Vo, v~, . . . ,  v~,...) '  0 < vt < 2t - 1} and T =  o-d,o,o,..0. 
Denoting 

D ~ d = { ~ 6 X : v i = O  for i = 0 , 1 , . . . , t )  

we get a T-tower of  height nt 

D - { D o , D ~ , .  Dnnt_l} T i D ~ = D ~ m o d n t .  

Since X is a compact, monothetic group and T is an ergodic translation 

C(T )  = e e X }  _-__ x .  

Let us consider the action of S- -  ~e on D ~ and D "~+~ 

Dn~ __Tn~-2D~ ~ 
n t - 2 - -  "~ 

n t  _ T n t -  3 Dnot Dnt - 3 - -  

nt = T n t - 4  Dno~ Dnt - 4 

o o o  

D'4t = T 4 D~d 

D~t = T 3 D~ t 

D~ t = T 2 D~t 

nt nt D1 = TDo 

D~ t = Tnt Dnd 

Fig. 1 

Definition of tp. The definition will be inductive. At the t-th step our cocycle will 
be defined on Dgr .. . .  D~;-2 and cannot  be defined on D~t,_l. Moreover 
~0[D~ ~ = const -= a~6{0, I}, i--- 0 , . . . , n t - -2 .  Now we define the passage into the 
(t + 1)-th step. 
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n t - -  i 

First  o f  all we define at, t -  1 ( =  0 or 1) so that  ~ a~=~ 1. Then  we put  
i=0 { d .~ -1  s # 2  t+l + 1, 2 t + 2 +  1 

at+l~,t- i = ~" I D"~+ ~ ,  ~,,- i = 1 - at,~- 1 s = 2t+l  + 1 

undefined s = 2 t+z + 1 
(s = 1,2, . . . ,  2 t+2 @ 1). 

Agree to call this fat level in Fig. 3 an error (because the value ofg) on D,"~_ 1 is 
nt+ l near cons tan t  and equal to at,~_ ~ in spite o f  the value ofg) on D(2~ +~ + 1),,- ~). This is 

a correct  definit ion o f a  cocycle 9). Let  us observe that  our  cocycle is " cons t an t "  on 
each level D~ 't because for  i < nt - 1 it is cons tan t  indeed and for  i = nt - 1 the 

D "~+~ is also (relative) measure  o f  the errors is less than 2 /Z  + 1 ~ 0. Hence 9) ,~+~_ 
t 

almost  constant .  This is an immediate  c o m p u t a t i o n  that  in fact 9) I D,"~2 ~ _ 1 defines 
another  error  for  the t-th step. 

D e f i n i t i o n  o f  S. We take S = cr e, where f = (vi)i>:o, vi = [2i/i], i > 0. We observe 
that  the fol lowing holds: given k 

(12) S k = (v}k))i>0, vl k) = k v  i for i > i o . 

Keane ' s  criterion. We will need some criterion concerning  ergodicity o f  some 
cocycles. Let  T:  (X, ~ , /~)~  be an ncad ic  machine  and let 9 ) ' X ~ Z  2 be a cocycle 
such that  9) ID~ ' t -  t = - az const  i = 0, . . . ,  nt - 2, t > 0. Assume that  the number  o f  

nt  errors on D, t_  1 divided by 2t tends to zero. L o o k  at the top o l D  "' and pass to the 
( t +  1)-th tower. 

We g roup  the errors into pairs (see Fig. 4). Then  At is the number  o f  places 
between errors including errors. 

Proposit ion 5. (Keane ' s  criterion). 9) is ergodic i f f  

Z At~2, = + oo.  
t > O  

Proof .  The p r o o f  follows f rom the observat ion that  such a cocycle determines an 
a lmost  periodic point  toe{0,  1} z and, besides, tha t  9) is ergodic iff co is strictly 
transitive (for details see [11]). Then  we use L e m m a  3 f rom [7]. [] 

We intend to argue that  9) is S-s t rongly ergodic,  i.e. that  

9) S i' + ... + 9)S i" + 9) U 

(il < ... < ik, k > 2, U z  C (T)) is ergodic. First  we prove that  ~u = 9)S ~' + . . .  + 9)S ~" 
is ergodic whenever  0 < i 1 < ... < ik. Let  us look  at the passage f rom the t-th step 
into the ( t + l ) - t h  step for  ~,. 

We see that  ~ulD~ '' is cons tan t  except for k levels, say j l  . . . .  ,j~. At  each D~; there are 
two errors. The "d is tance"  (i. e. the number  o f  columns)  between the errors in D ." 

J r  

t I i l l l l l l l i O i l  i l l O ~ l l l i l l O r O i l i l i l  i l l O t l l l i l i l r l  Ili[]-[i A , = 6  

Fig. 4 
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I 

H [ 

I l l  ~ 1 1  

1 
i 

I 1 [  I I I  

I l l  

I I  . ]  . . . .  

Fig. 5 

b t n t -  1 

b t n t _ 2  

b;2 

b~ 

b~ 

and  D ] ,  is at  least t and  m o r e o v e r  the dis tance between these errors  and  the 
2t+ 1 + 1-th (or 2 t+ 2 + t - th)  co lumn  is at  mos t  I t  (these facts are a consequence  o f  
(12)), where  I =  m a x  is. 

N o w  we intend to define a new cocycle ~ satisfying the assumpt ions  of  Keane ' s  
Cri ter ion and,  besides, ~u + q~ is not  ergodic  (i.e. T~ and T o are relatively 
i somorphic) .  

Definition of  9 - T h e  defini t ion is inductive.  At  each step t ~pD~ = c~, 
i = 0 , . . . ,  nt - 2 and ~ is not  defined on D,"~_ 1. Firs t  we define c~,~_ 1 so tha t  

nt  - 1 nt  - 1 

(a3) E Z 
i = 0  i = 0  

[ ct,,- 1 if  there is no er ror  in the co lumn  s < 2~+ 

ct+ls,t-1 = 1 - c , _ ~  otherwise s < 2~+~ 

undef ined  s = 2t + 1 

~, and (I are relatively isomorphic. Consider  the passage  f rom the t-th step into the 
( t +  1)-th step for  ~, + ~. 

Then  we put  
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d t  
n t - -  l 

d~., 

d~ 

d~ 
Fig. 6 

We see that qJ + ~ is almost constant on each level D7 t . Moreover  

n t -  1 

(14) }2 d~ = 0 
i =O 

since (13) holds. Let ut denote the number of  columns with errors. Then ut = 2k  
and moreover in any such a column there are even numbers of  errors (either no 
errors or precisely two errors). Consider T~+o : (X x  Z2, f i ) )  and the following 
sequence of  sets 

n t -  1 

Ct= U D ~ x ( d t o + " ' + d ~ - l )  �9 
i=O 

Then an immediate computat ion shows that 

(i) f i (C t )=  1/2, 

(ii) fi(T~+r C,A C,)~O, 

(iii) ~ f i(C,+l A C,) < + c~. 
t>=0 

Hence { Ct } is a Cauchy sequence and C = lira Ct is T~ + 0 invariant, whence T~ + 
cannot  be ergodic. 

Cocycles (oS il + ... + g S  ik are ergodic. Denote ~ = g S  i' + ... + (0 zik and consider 
nt q. It is enough to show that q is ergodic. We divide D,,_ 1 first into 2t+ 1 pieces. 

Then these pieces we group into t groups A 1, . . . ,  At of  consecutive pieces (the last 
group need not have [)0,+ i/t] pieces). We observe that there is no possibility for two 
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different errors to be in the same group A i since i, < ... < i k and (12) holds. This 
means that 

At> 2t/t = 1/2t. 
= 22t 

Since ~ 1/2 t is divergent and Proposition 5 holds, ~ is ergodic and consequently 
t > l  

is ergodic. 

Cocycles ~oS~*+ ... + ~ox~+ ~oU, k > 2 are ergodic. It is enough to apply the 
foregoing arguments because there is no possibility to destroy the divergency 

Ad2, using only two errors more (~0 U gives merely two new errors). 
t>o  

The proof that ~0 is S-strongly ergodic is now complete. 
Because any cocycle ~0 is simple with respect to S as soon as it is S-strongly 

ergodic, we get 

Proposition 6. For the ~o we have defined the relatively independent extensions 
/)s,,, . ,s~ v are ergodic whenever i, < ... < i~ and US J, j e Z  cannot be lifted to the 
centralizer of  T~,. [] 

The cocycle ~0 enjoys an additional property. Namely 

Proposition 7. ~0 is rigid ( i. e. Tg t weakly converges to the identity for some sequence 
mr) and is prime. 

The idea of the proof. The first part is obvious. To prove the second it is enough to 
show that there is no nontrivial compact subgroup H c C (T) such that for every 
Ue H, U can be lifted to the centralizer of T o . However the arguments we just used 
to prove that ~o is S-strongly ergodic show that if U = a~r., # = (wi)i> o can be lifted, 
then wi is "near"  0, 2i or 2i/2 (in the sense made precise by Keane's Criterion). [] 

4. A few Applications 

4.1. Weakly Isomorphic Transformations that Are not Isomorphic 

In this section we assume that T: (X, ~,/~) ) has discrete spectrum and ~o : Z--* Zz 
is an S-strongly ergodic cocycle. 

We will consider (ergodic) transformations of the form 

(15) T~os,,•215 ... : ( X x  2 2  )< 2 2  x . . . .  /.g)<v2xv2x . . . ) )  

ij =t= ik: Denote T~s,, •215 ... by T~, ~2 . Let us notice that Tj, J2 is a factor 
of (15)whenever {J,,J2 . . . .  } c  {i(, {2i-..}. Indeed, the inclusion"is equivalent 
to say that there is an G : N )  one-to-one such that jk=i~,(k). We define 
O: (AZX Z 2 x Z 2 x . . . ,  /1 x 1) 2 x 112 x . . . ) )  putting 

O(x, r l ,  r2 . . . .  ) = ( x , r ~ . ) ,  r . c2 ) , . . . ) .  
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Then  0 preserves the measure and T~, j ..... 0 = 0 T~, ~ .. . . .  . I f  there is an c ~ Z such 
that  

(16) -- ik  + j k = C ,  k >  1 

then T/,, i . . . . .  and Tj .  ~ ..... are isomorphic.  
The point  is tha t  the compos i t ion  o f  these two possibilities exhaustes all cases 

o f  isomorphisms.  Name ly  

Proposit ion 7. I f  Ti~ ' i~ . . . .  and  T~,  j~ .. . .  are i somorphic  then there ex i s t  a p e r m u -  

tat ion a" N ~ and  an in teger  c such that  

J~(k) - ik = C .for every  k > 1.  

Proof .  Assume that  T~, ~2 .... and T~, j~ .... are isomorphic.  These au tomorph i sms  
are ergodic Z 2 x Z 2 x . . . -extensions o f  T, so this i somorphism must  be o f  the fo rm 

U i , ~ : ( X •  .... /~x v2 x v2 • . . .)~ 

where U ~ C ( T ) ,  f : X - * Z z x Z 2 x  . . .  is measurable  and v is a cont inuous  
a u t o m o r p h i s m  o f  Z2 x Z2  x ... (see [15]). Let  us notice that  f =  ( f~ , f2 , . . . ) ,  
f :  X ~  Z 2 is a cocycle and  

(17) f T =  ( f i T ,  f z T  . . . .  ) .  

I f  v is a cont inuous  a u t o m o r p h i s m  o f  Z 2 • Z 2 x ... then v acts as an infinite 
matr ix  [aij]q, aq = 0, 1, where the the i-th co lumn [agi] k = v (el) = ( 0 , . . . ,  O, I ,  0 , . . . ) .  
Moreove r  in any row the number  o f  l ' s  is finite and 

(18) v (r l ,  r2 , . . . ) l i  = ~, aij rj.  
J 

In  view o f  (4) 

f (x )  + 9) S i~ x 9) S ~:~ x . . .  ( U x )  = f ( T x )  + v (9) S j'- x 9) S J2 x . . . )  (x) .  

Combin ing  (17) and (18) we get 

�9 ~ c ,  J k l l )  ~ 1  
Z (x) + 9) ( s  il Ux) = A  (Tx)  + [9) (S ''~' x) + . . .  + 9) t~" s, x)j 

,f2 (x) + 9) ( S ~: Us)  =f2 Tx)  + [9) ( S Jk~, x) + . . .  + 9) ~ ~: x)j 

But these condi t ions  mean  that  

9) U +  9)S Jk~' -i~ 

9) U +9) S)k?, - i2 

, . .  

c~Jk (1 )  i l  + . . .  + 9 ) j  s, 

+ . . .  + 9) sJk~? - i~ 

are no t  ergodic. Since our  cocycle is S-s t rongly ergodic, Sl = s2 . . . .  = 1. Then  

9) U + 9) S ~k?' - il , 9) U + 9 ) S&?' - i2 , . . .  

are no t  ergodic which means  that  S jki'' - ~  U - 1 ,  sJk~ 2,-~2 U - 1  . . . .  can be lifted to 
the centralizer o f  T~0. But C (T~) is a g roup  (every ergodic Zz-extension of  a 2-fold 



Weakly Isomorphic Transformations 505 

simple map enjoys this property). Therefore S ~<'' < U 1 (SJ<2, - i2U-I )  1 

= Sik?, - il -(Jk?,-~2) can be lifted to the centralizer of T. We have achieved that 

J<*, - i l  = Jk~, - i 2  = . . .  = c 

because S k can be lifted iff k = 0. Hence the proof  is complete. [] 

Corollary2. T0,1,2, 3 .... and T0,:, 3 .... are weakly isomorphic but the), are not 
isomorphic. [] 

Corollary 3. There exists  an ergodic Z 2 • Z 2 • . . . -extension T~ o f  a transformation 
with discrete spectrum T such that there is an S e C ( T ~ )  which is not invertible 
(in particular h (S)  > 0). 

P r o o f  Take To, 1,2 .... . We see that S (x, r l ,  r2 , . . . )  = (Sx ,  r 2, r3. . . )  (not invertible) 
is in C(To,1, 2 .... ) and h ( S ) = l o g 2 .  [] 

F rom the proof  of  Proposition 7 we deduce the following 

Corollary 4. I f  U e  C (T) then U can be lifted to the centralizer o f  Til ' i . . . . .  i f f  
(i) there is f :  N )  one-to-one such that i y ( , ) -  i,, = c, 

(ii) U S  -~ can be lifted to the centralizer o f  T,p. In particular all elements 
U ~ C (T)  which can be lifted to C ( T~, ) can also be lifted to C (Ti,, i . . . . .  ) and only such 
elements are invertible in C(Ti~ ' i: .... ) .  [] 

4.2. A Transformation with the Centralizer to Be a Group 
but with a Factor Whose Centralizer Is not a Group 

We answer Newton question [14]. Consider "two-sided" version of the construc- 
tion given in 4.1. Iffp is S-strongly ergodic then Z.,-1,0, ~,2,. is still ergodic and the 
centralizer of it can be computed from Corollary 4. But condition (i) of this 
corollary says that f is in fact a permutat ion and therefore any element from 
C(T..,-1,0,1,2,...) is invertible. However T 0 , 1 , 2 , . .  ' is a factor of T..,-1,0,1,2,... and the 
centralizer of  the former automorphism is not a group. 

4.3. Compact  Rank  Need  not Imply  that the Centralizer Is a Group 

(For the definition of  the rank we refer to [16], a transformation has the compact 
rank if it is a d-limit of  finite rank transformations). We answer Thouvenot 's  
question stated in a conversation. Observe that the ~ we constructed in Sect. 3 
satisfies : T o has rank 1, T~• has rank at most 2 2 �9 2, Te• 2 has rank at most 
2 3 - 3 . . . . .  Therefore T~ • ~s • ~s2. has compact rank because it is an inverse limit of  
T~• . . . . .  ~s~,k >= 1. 

Remark .  Although some of  these constructions can be done using only Rudolph's  
machinery (see [19, 6, 12]), there is at least one advantage of  our approach. All our 
examples are loosely Bernoulli [LB] as ergodic group extensions of transfor- 
mations with discrete spectra [16], (we recall here that it is still unknown whether 



506 M. Lemaficzyk 

T x Tis  LB for  C h a c o n  t r a n s f o r m a t i o n  and  whether  Tis  LB when  Tis  a Gauss i an  
automorphism with spectral measure concentrated on a Kronecker set). 
Moreover using our special (p these examples enjoy even compact rank property. 

5. Final Remarks 

We raise some  open  quest ion.  Hav ing  T and  (p : X--,  Z2 for  any  i~ < i 2 < . . .  < ik, 
k >_ 2 we define 

C(1) ik (T) = {S~ C(T)  "q~S il + + q2S i" is not  ergodic} 
i 1 , . . .  , . . .  

. . . .  = c ( r ) :  + .  + 

is ergodic  with discrete spec t rum},  

C(3) , ~k (T) = {Se  C ( T ) '  (0 S i* + + (o S ~ 
i l , . - .  " ' "  

is ergodic  with par t ly  con t inuous  spec t rum}.  

We  get a par t i t ion  C ~1 ..... z~ ~C (1) .... = t - - i ,  . . . . .  ik ( r ) ,  C[2? . . . .  ik ( Z ) ,  C[  3) , i2 (T)} o f  C ( r ) .  

This is an invar ian t  o f  the relative i s o m o r p h i s m  and q) and  0 + 1 have this invar iant  
the same. Is the sequence {C i . . . . . .  ~} a complete set of  invariants of the relative 
isomorphism up to q) + 17 

We have been unable to decide whether for any Tand ergodic there is S~ C (T) 
such that (p is S-strongly ergodic. In order to get such an S, first of  all we need an S 
such that for any k, S k cannot be lifted. Fortunately the set of  such S's has Haar 
measure 1 (see [9]). 

Another question is the following. Let 2 e J (To, T~, T~o) be such that/is, , st, i =# j 
is ergodic (i.e. Si S f  1 cannot be lifted). Is then 2 =/~sl,  s~, s~ ergodic? 

References 

1.Christol, G., Kamae, T., Mend~s-France, M., Rauzy, G.: Suites alg~briques, automates et 
substitutions, BSMF 108, 401-419 (1980) 

2. Coven. E., Keane, M.: The structure of substitution minimal sets. TAMS 62, 89 102 (1971) 
3. Feldman, J.: Borel structures and invariants for measurable transformations. PAMS 46, 383-394 

(1974) 
4. Fiirstenberg, H.: Disjointness in ergodic theory, minimal sets and Diophantine approximation. 

Math. Syst. Theory 1, 1 49 (1967) 
5. De1 Junco, A., Rahe, A.M., Swanson, L.: Chacon transformation has minimal self-joinings. J. Anal. 

Math. 37, 276-284 (1980) 
6. DeI Junco, A., Rudolph, D.: On ergodic actions whose self-joinings are graphs. To appear in Ergodic 

Theory Dyn. Syst. 
7. Keane, M.: Generalized Morse sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb. 100 335-353 

(1968) 
8. Kwiatkowski, J.: Isomorphism of regular Morse dynamical systems. Studia Math. 62, 59 89 (1982) 
9. Kwiatkowski, J., Lemaficzyk, M.: Centralizer of group extensions, preprint 

10. Lemaficzyk, M.: The centralizer of Morse shifts. Ann. Univ. Clermont-Ferrand 87, 43-56 (i985) 
11. Lemaficzyk, M.: Toeplitz Zz-extensions. To appear in Ann. Henri Poincar~ Inst. 24, 1~43 (1988) 
12. Lemaficzyk, M.: Factors of coalescent automorphisms. To appear in Studia Math. 
13. Lemaficzyk, M., Mentzen, M.K.: Metric properties of substitutions. Composito Math. 65, 241-263 

(1988) 



Weakiy Isomorphic Transformations 507 

14. Newton, D.: Coalescence and spectrum of automorphisms of a Lebesgue space. Z. Wahrscheinlich- 
keitstheor. Verw. Geb. 19, 11%122 (1971) 

15. Newton, D.: On canonical factors of ergodic dynamical systems. J. London Math. Soc. (2) 19, 
129-i36 (1979) 

16. Ornstein, D. Rudolph, D., Weiss, B.: Equivalence of measure-preserving transformations. Memoirs 
AMS 37, 262 (1982) 

17. Parry, W.: Compact abelian group extensions of discrete dynamical systems. Z. Wahrscheinlich- 
keitstheor. Verw. Geb. 13, 95-113 (1969) 

18. Polit, S.: Weakly isomorphic maps need not be isomorphic. Ph.D. dissertation, Stanford 1974 
19. Rudolph, D.: An exampte of a measure-preserving map with minimal self-joinings and applications. 

J. Anal. Math. 35, 97-122 (1979) 
20. Sinai, Y.G.: On weak isomorphism of transformations with invariant measure (in Russian). Math. 

Sb. 63, 23-42 (1963) 
21. Thouvenot, J. P.: The metrical structure of some Gaussian processes. Proc. Erg. Theory Rel.; Topics 

II, pp. 195-198, Georgenthal 1986 
22. Veech, W.A.: A criterion for a process to be prime. Monatsh. Math. 94, 335-341 (1982) 
23. Zimmer, R.: Extensions of ergodic actions. Illinois J. Math. 20, 373-409 (1976) LH 

Received May 27, 1987 


